Real-Time PCR applied to bacterial waterborne pathogens detection and quantification

dc.contributor.authorSoto Varela, Zamira
dc.contributor.authorRosado Porto, David
dc.contributor.authorCeballos Sandoval, Jairo
dc.contributor.authorPichón González, Camila
dc.contributor.authorBettín Martínez, Alfonso Carlos
dc.contributor.authorBadillo Viloria, María
dc.contributor.authorGranados Pantoja, Bertha
dc.contributor.authorEstrada Alvarado, Dalidier
dc.contributor.authorOrozco Sánchez, Christian
dc.contributor.authorBolívar Anillo, Hernando
dc.contributor.authorVillarreal Camacho, José Luis
dc.contributor.authorPérez Lavalle, Liliana
dc.date.accessioned2019-02-13T21:03:01Z
dc.date.available2019-02-13T21:03:01Z
dc.date.issued2017-03
dc.description.abstractSimón Bolívar University, through the microbiology program belonging to the faculty of basic and biomedical sciences and its research group Bio-organizaciones, present the book entitled Real-time PCR applied to bacterial waterborne pathogens detection and quantitication, which is a research outcome, effort of professors, researchers, students and graduated students who actively participated in the executión of the project named "Implementación y estandarización de la técnica de qPCR en la detección de microorganismos patógenos bacterianos de importancia en salud pública como bioindicadores de la calidad del agua", financed with resources from national fund of Royalties of Colombia which enabled the creation of facilities for microbiology research at the Simón Bolívar University for the molecular microbiological diagnosis of water. In this work, categorized as a research product book, the tests carried out and the results obtained in the process of implementing the real-time PCR technique to evaluate the quality of the water through the identification and quantification of salmonella spp and escherichia coli bacteria are detailed. The data presented will be of great contribution to the reader for the implementation of this technique in their laboratories and for students in related areas to enrich their knowledge in this subject. The book is the product of the collaborative work of various researchers, mostly linked to the Simón Bolívar University and the Microbiology Program, such as professors Zamira Soto, David Rosado, Jairo Ceballos, Hernando Bolívar and Christian Orozco, who have a solid background in molecular and water microbiology; in addition, the professors María Badillo and Liliana Pérez supported: José Villareal from the Universidad Libre and Alfonso Bettin from the Univerisdad Metropolitana, who prepared a chapter where they express their experiences on the standardization of the PCR techniques. Also, it is worth mentioning the participation of the students Camila Pichón and Bertha Granados and the graduated student Dalidier Estrada from the Microbiology Program, who supported the execution of the project and the writing of the manuscript, being an example for those students who wish to follow the researcher career.spa
dc.identifier.issn9789585430174
dc.identifier.urihttp://hdl.handle.net/20.500.12442/2616
dc.language.isospaspa
dc.publisherEdiciones Univerisidad Simón Bolívarspa
dc.rights.licenselicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
dc.subjectAnálisis de aguaspa
dc.subjectComposición de aguaspa
dc.subjectCalidad del aguaspa
dc.titleReal-Time PCR applied to bacterial waterborne pathogens detection and quantificationspa
dc.typeBookspa
dcterms.referencesMomtaz H, Dehkordi FS, Rahimi E, Asgarifar A. Detection of Escherichia coli, Salmonella species, and Vibrio cholerae in tap water and bottled drinking water in Isfahan, Iran. BMC Public Health. 2013 Jun 7; 13: p. 556.eng
dcterms.referencesAshbolt NJ. Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology. 2004; 198(1-3): p. 229-38.eng
dcterms.referencesFranco P, López L, Orozco M. Calidad microbiológica del agua destinada para consumo humano en siete municipios de la región Caribe. Cienc Actual. 2011;2(2248-468X): p. 84-93.spa
dcterms.referencesClark ST, Gilbride KA, Mehrvar M, Laursen AE, Bostan V, Pushchak R, et al. Evaluation of low-copy genetic targets for waterborne bacterial pathogen detection via qPCR. Water Res. 2011;45(11): p. 3378-88.eng
dcterms.referencesSingh G, Vajpayee P, Bhatti S, Ronnie N, Shah N, McClure P, et al. Determination of viable Salmonellae from potable and source water through PMA assisted qPCR. Ecotoxicol Environ Saf. 2013; 93: p. 121-7.eng
dcterms.referencesvan Blerk GN, Leibach L, Mabunda A, Chapman A, Louw D. Rapid and specific detection of Salmonella in water samples using real-time PCR and High Resolution Melt (HRM) curve analysis. Water Sci Technol J Int Assoc Water Pollut Res. 2011;64 (12): p. 2453-9.eng
dcterms.referencesBonetta S, Borelli E, Bonetta S, Conio O, Palumbo F, Carraro E. Development of a PCR protocol for the detection of Escherichia coli O157:H7 and Salmonella spp. in surface water. Environ Monit Assess. 2011; 177(1-4): p.493-503.eng
dcterms.referencesFukushima H, Katsube K, Hata Y, Kishi R, Fujiwara S. Rapid Separation and Concentration of Food-Borne Pathogens in Food Samples Prior to Quantification by Viable-Cell Counting and Real-Time PCR. Appl Environ Microbiol. 2007 Jan 1; 73(1): p. 92-100.eng
dcterms.referencesMandal PK, Biswas AK, Choi K, Pal UK. Methods for Rapid Detection of Foodborne Pathogens: An Overview. Am J Food Technol. 2011 Feb 1; 6(2): p.87-102.eng
dcterms.referencesDwivedi HP, Jaykus L-A. Detection of pathogens in foods: the current state-of-the-art and future directions. Crit Rev Microbiol. 2011 Feb 1; 37(1): p.40-63.eng
dcterms.referencesStevens KA, Jaykus L-A. Bacterial Separation and Concentration from Complex Sample Matrices: A Review. Crit Rev Microbiol. 2004 Jan 1; 30(1): p.7-24.eng
dcterms.referencesAw TG, Rose JB. Detection of pathogens in water: from phylochips to qPCR to pyrosequencing. Curr Opin Biotechnol. 2012 Jun; 23(3): p.422-30.eng
dcterms.referencesvan Reis R, Zydney A. Membrane separations in biotechnology. Curr Opin Biotechnol. 2001 Apr 1; 12(2): p. 208-11.eng
dcterms.referencesCai L, Yang Y, Jiao N, Zhang R. Evaluation of Tangential Flow Filtration for the Concentration and Separation of Bacteria and Viruses in Contrasting Marine Environments. PLoS ONE [Internet]. 2015 Aug 25; 10(8).eng
dcterms.referencesSundaran B, Palaniappan C, Rao YUB, Boopathy R, Rao Bhau LN. Tangential flow filtration technology applicable to large scale recovery of diphtheria toxin. J Biosci Bioeng. 2002 Jan 1; 94(2): p. 93-8.eng
dcterms.referencesJubery TZ, Srivastava SK, Dutta P. Dielectrophoretic separation of bioparticles in microdevices: A review: Microfluidics and Miniaturization. Electrophoresis. 2014 Mar; 35(5): p. 691-713.eng
dcterms.referencesQiu J, Zhou Y, Chen H, Lin J-M. Immunomagnetic separation and rapid detection of bacteria using bioluminescence and microfluidics. Talanta. 2009 Aug 15; 79(3): p. 787-95.eng
dcterms.referencesXiong Q, Cui X, Saini JK, Liu D, Shan S, Jin Y, et al. Development of an immunomagnetic separation method for efficient enrichment of Escherichia coli O157:H7. Food Control. 2014 Mar; 37: p. 41-5.eng
dcterms.referencesDíaz M, Herrero M, García LA, Quirós C. Application of flow cytometry to industrial microbial bioprocesses. Biochem Eng J. 2010 Feb 15; 48(3): p. 385-407.eng
dcterms.referencesÁlvarez-Barrientos A, Arroyo J, Cantón R, Nombela C, Sánchez-Pérez M. Applications of Flow Cytometry to Clinical Microbiology. Clin Microbiol Rev. 2000 Apr; 13(2): p.167-95.eng
dcterms.referencesWang Y, Hammes F, Roy KD, Verstraete W, Boon N. Past, present and future applications of flow cytometry in aquatic microbiology. Trends Biotechnol. 2010 Aug 1; 28(8): p. 416-24.eng
dcterms.referencesRodríguez A.S, Martínez Rizo A.B, López de la Mora D.A. Chapter: Extracción de ácidos nucleicos. In: Biología molecular: fundamentos y aplicaciones en las ciencias de la salud. McGraw-Hill Interamericana; 2013.p. 99-109spa
dcterms.referencesMicrobial System. La extracción y purificación del ADN para el análisis por PCR. Mitos y realidades. Newsletter microbial. 2009; 3: p.1-2.spa
dcterms.referencesDa LL, G CM. Evaluación de métodos de extracción de ADN para detección de Listeria monocytogenes en productos cárnicos. Revista MVZ Córdoba. 2012; 17(3): p.3169-3175.spa
dcterms.referencesZavala Castro J. Chapter: Extracción de ADN. In: Manual de Técnicas Básicas de Biología Molecular. UADY; 2005. p.31-40.spa
dcterms.referencesPuerta C.J, Ureña C.P. Chapter: Extracción de ADN. In: Prácticas de biología molecular. Pontificia Universidad Javeriana; 2005. p.15-21spa
dcterms.referencesStenesh J. Dictionary of Biochemistry and Molecular Biology, 2nd Edition. New York: Wiley-Interscience; 1989.eng
dcterms.referencesMahmoudi N, Slater GF, Fulthorpe RR. Comparison of commercial DNA extraction kits for isolation and purification of bacterial and eukaryotic DNA from PAH-contaminated soils. Can J Microbiol. 2011 Aug 1; 57(8): p. 623-8.eng
dcterms.referencesInvitrogen PureLink Genomic DNA Mini Kit: Life Sciences [Internet]. [cited 2017 Mar 5]. Available from: https://www.fishersci.com/shop/ products/purelink-genomic-dna-kit-50/k182001eng
dcterms.referencesTamay de Dios, Ibarra C, Velasquillo C. Fundamentos de la reacción en cadena de la polimerasa (PCR) y de la PCR en tiempo real. May- Aug 20; 2(2): p.70-78spa
dcterms.referencesLuque J, Herraez A. Chapter: Amplificación de la cadena in vitro del DNA: reacción en cadena de la polimerasa o PCR. In: Texto ilustrado de Biología molecular e Ingeniería genética: conceptos, técnicas y aplicaciones en ciencias de la salud. Elsevier España; 2001. p. 188-196spa
dcterms.referencesPinilla G, Cubillos K, Rodríguez M. Bodas de plata de la reacción en cadena de la polimerasa (PCR). NOVA [Internet]. 2008 Jun 30 [cited 2017 Mar 5]; 6(9). Available from: http://unicolmayor.edu.co/publicaciones/ index.php/nova/article/view/107spa
dcterms.referencesVinueza-Burgos C. PCR en Tiempo Real: La nueva era de la información genética celular [Internet]. REDVET. Revista Electrónica de Veterinaria. 2009 [cited 2017 Mar 5]. Available from: http://www.redalyc. org/articulo.oa?id=63617114013spa
dcterms.referencesAhmed W, Sawant S, Huygens F, Goonetilleke A, Gardner T. Prevalence and occurrence of zoonotic bacterial pathogens in surface waters determined by quantitative PCR. Water Res. 2009 Nov; 43(19): p. 4918-28.eng
dcterms.referencesWilley JM, Sherwood L, Woolverton CJ, Prescott LMM. Prescott, Harley, and Klein’s microbiology. New York: McGraw-Hill Higher Education; 2008.eng
dcterms.referencesWong ML, Medrano JF. Rapid Detection and Characterization of Foodborne Pathogens by Molecular Techniques. CRC Press. 2009.eng
dcterms.referencesSambrook J, Russell DW. Chapter 8: Invitro amplification of dna by the polimerase chain reaction. Molecular Cloning: A Laboratory Manual. CSHL Press; 2001. p.778eng
dcterms.referencesMolecular Microbiology: Diagnostic Principles and Practice, 2nd edition. Edited by Persing David H., Tenover Fred C., Tang Yi-Wei, Nolte Frederick S., Hayden Randall T., and Belkum Alex Van 960 pages. Washington, DC: ASM Press, 2011.eng
dcterms.referencesMahmoud DBSM, editor. Salmonella - A Dangerous Foodborne Pathogen [Internet]. InTech; 2012 [cited 2017 Mar 5]. Available from: http://www.intechopen.com/books/ salmonella-a-dangerous-foodborne-pathogeneng
dcterms.referencesPulido I, Ruisánchez R, Boqué F.X. Rius. Analytica Chimica Acta | Vol 455, 2002.eng
dcterms.referencesBhatta D r., Bangtrakulnonth A, Tishyadhigama P, Saroj S d., Bandekar J r., Hendriksen R s., et al. Serotyping, PCR, phage-typing and antibiotic sensitivity testing of Salmonella serovars isolated from urban drinking water supply systems of Nepal. Lett Appl Microbiol. 2007 Jun 1; 44(6): p. 588-94.eng
dcterms.referencesLevantesi L, Bonadonna R, Briancesco E, Grohmann S, Toze, and Tandoi V. Salmonella in surface and drinking water: Occurrence and water- mediated transmission. Food Res. 2012; Vol. 45(2) p. 587-602.eng
dcterms.referencesMendes Silva D and Domingues L. On the track for an efficient detection of Escherichia coli in water: A review on PCR-based methods. Ecotoxicol Environ Saf. 2015 Mar; p. 113:400-11.eng
dcterms.referencesBanihashemi M, Van Dyke I and Huck PM. Detection of viable bacterial pathogens in a drinking water source using propidium monoazide-quantitative PCR. 2015, J. Water Supply Res. Technol., Vol. 64, p. 139.eng
dcterms.referencesFields BS, Benson RF, Besser RE. Legionella and Legionnaires’ disease: 25 years of investigation. Clin Microbiol Rev. 2002 Jul; 15(3): p. 506-26.eng
dcterms.referencesYáñez MA, Barberá BM, Catalán V and Carrasco-Serrano C. Quantitative Detection of Legionella pneumophila in Water Samples by Immunomagnetic Purification and Real-Time PCR Amplification of the dotA . Appl. Environ. Mcrobiology, Vol. 71 7, 2005, p. 3433-3441.eng
dcterms.referencesTrakhna F, Maaroufi A, Gadonna-Widehem P. Using a Real-time Quantitative Polymerase Chain Reaction (PCR) method for reliable enumeration of Aeromonas hydrophila in water samples. Afr J Microbiol Res. 2013 May; 7 (19): p.2119.eng
dcterms.referencesJanda M, Abbott S. The genus Aeromonas: Taxonomy, pathogenicity, and infection. Clin. Microbiol Rev, 2010. Vol. 23(1), p. 35-73.eng
dcterms.referencesDekker JP, Frank KM. Salmonella, Shigella, and Yersinia. Clin Lab Med. 2015 Jun; 35(2): p. 225-46.eng
dcterms.referencesPegues DA, Miller SI. Salmonella Species. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. Elsevier Inc. Vol. 2, 2014. p. 2559-2568.eng
dcterms.referencesCabral JPS. Water Microbiology. Bacterial Pathogens and Water. Int J Environ Res Public Health. 2010 Oct; 7(10):3657-703.eng
dcterms.referencesWiedemann A, Virlogeux-Payant I, Chaussé AM, Schikora A and Velge P. Interactions of Salmonella with animals and plants. Front Microbiol, 2014; 5: 791. p. 1-18.eng
dcterms.referencesAugustine J. Rapid and sensitive detection of low number of Salmonella in water by loop- mediated isothermal amplification. Advanced biotech, 2015 Vol. 11, p. 28-30.eng
dcterms.referencesHarish BN, Menezes GA. Determination of antimicrobial resistance in Salmonella spp. Methods Mol Biol Clifton NJ. 2015; 1225:47-61.eng
dcterms.referencesMarvasi M, Teplitski M, George A and Hochmuth G. Salmonella y Escherichia coli enteropatógena en el ambiente de producción de cultivos: fuentes potenciales, supervivencia y gestión. 2012, Vol. 1, p. 2-4.eng
dcterms.referencesOh J-H, Park M-K. Immunosensors combined with a light microscopic imaging system for rapid detection of Salmonella. Food Control. 2016 Jan; 59: p.780-6.eng
dcterms.referencesMoganedi KLM, Goyvaerts EMA, Venter SN, Sibara MM. Optimisation of the PCR-invA primers for the detection of Salmonella in drinking and surface waters following a pre-cultivation step. Water SA. 2007 Vol. 33, p. 195-202.eng
dcterms.referencesPark SH, Hanning I, Jarquin R, Moore P, Donoghue DJ, Donoghue AM, et al. Multiplex PCR assay for the detection and quantification of Campylobacter spp., Escherichia coli O157: H7 and Salmonella serotypes in water samples. FEMS Microbiol Lett. 2011 Mar; 316(1): p.7-15.eng
dcterms.referencesZoonotic Pathogens in Household Drinking Water Taps Fed from Rainwater Tanks in Southeast Queensland, Australia. Appl Environ Microbiol. 2012 Jan 1; 78(1): p.219-26.eng
dcterms.referencesXiao L, Zhang Z, Sun X, Pan Y, Zhao Y. Development of a quantitative real-time PCR assay for viable Salmonella spp. without enrichment. Food Control. 2015 Nov; 57: p. 185-9.eng
dcterms.referencesRoy RP, Bahadur M, Barat S. Isolation, Identification and Antibiotic Resistance of Aeromonas spp. and Salmonella spp. From the Fresh Water Loach, Lepidocephalichthys Guntea and Water of Terai River Lotchka, West Bengal, India. Zool Pol. 2013; 58(1-2): p.5-17.eng
dcterms.referencesSha Q, Vattem Da., Forstner MRJ, Hahn D. Quantifying Salmonella Population Dynamics in Water and Biofilms. Microb Ecol. 2013; 65(1): p. 60-7.eng
dcterms.referencesHsu B-M, Huang K-H, Huang S-W, Tseng K-C, Su M-J, Lin W-C, et al. Evaluation of different analysis and identification methods for Salmonella detection in surface drinking water sources. Sci Total Environ. 2011; 409(20): p.4435-41.eng
dcterms.referencesDobrindt U. (Patho-) Genomics of Escherichia coli. Int J Med Microbiol IJMM. 2005 Oct; 295(6-7): p.357-71.eng
dcterms.referencesDebRoy C, Roberts E, Fratamico PM. Detection of O antigens in Escherichia coli. Anim Health Res Rev. 2011 Dec; 12(2): p.169-85.eng
dcterms.referencesShulman ST, Friedmann HC, Sims RH. Theodor Escherich: the first pediatric infectious diseases physician? Clin Infect Dis, 2007 Oct 15;45(8): p.1025-9.eng
dcterms.referencesGarrity GM, Bell JA, Lilburn TG, Garrity GM, Lansing E, Bell JA. Taxonomic outline of the Prokaryotes Bergey’s manual® of systematic bacteriology. 2004.eng
dcterms.referencesCroxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev. 2013 Oct; 26(4): p.822-80.eng
dcterms.referencesBrenner DJ, Krieg NR, Staley JT, Garrity GM, Brenner DJ, Vos P De, et al. The Proteobacteria, Part B: The Gammaproteobacteria. In: Bergey’s Manual® of Systematic Bacteriology - Volume 2: The | George Garrity | Springer 2005. p. 1106.eng
dcterms.referencesvan Elsas JD, Semenov AV, Costa R, Trevors JT. Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J. 2011 Feb; 5(2): p.173-83.eng
dcterms.referencesKurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al. Versatile and open software for comparing large genomes. Genome Biol. 2004; 5(2):R12.eng
dcterms.referencesKaper JB. Pathogenic Escherichia coli. Int J Med Microbiol. 2005 Oct 5; 295(6-7): p.355-6.eng
dcterms.referencesFrank C, Werber D, Cramer JP, Askar M, Faber M, and er Heiden M, et al. Epidemic profile of Shiga-toxin-producing Escherichia coli O104: H4 outbreak in Germany. N Engl J Med. 2011 Nov 10; 365(19): p.1771-80.eng
dcterms.referencesRiley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, Davis BR, et al. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med. 1983 Mar 24; 308(12): p.681-5.eng
dcterms.referencesJafari A, Aslani MM, Bouzari S. Escherichia coli: a brief review of diarrheagenic pathotypes and their role in diarrheal diseases in Iran. Iran J Microbiol. 2012 Sep; 4(3): p.102-17.eng
dcterms.referencesE. coli (Escherichia coli) | E.coli | CDC [Internet]. [Cited 2017 Mar 13]. Available from: https://www.cdc.gov/ecoli/eng
dcterms.referencesDutta S, Pazhani GP, Nataro JP, Ramamurthy T. Heterogenic virulence in a diarrheagenic Escherichia coli: evidence for an EPEC expressing heat-labile toxin of ETEC. Int J Med Microbiol IJMM. 2015 Jan; 305(1): p.47-54.eng
dcterms.referencesNyholm O, Heinikainen S, Pelkonen S, Hallanvuo S, Haukka K, Siitonen A. Hybrids of Shigatoxigenic and Enterotoxigenic Escherichia coli (STEC/ETEC) Among Human and Animal Isolates in Finland. Zoonoses Public Health. 2015 Nov; 62(7): p.518-24.eng
dcterms.referencesWang L, Rothemund D, Curd H, Reeves PR. Species-wide variation in the Escherichia coli flagellin (H-antigen) gene. J Bacteriol. 2003 May; 185(9): p.2936-43.eng
dcterms.referencesKlemm P. Fimbrial adhesions of Escherichia coli. Rev Infect Dis. 1985 Jun; 7(3): p. 321-40.eng
dcterms.referencesCalvo JCB, Castillo AM, Serrano RM, Cuan AG. E. coli 0157: H7 en las canales de bovinos en plantas de beneficio: un peligro biológico con gran impacto para la salud pública. Biociencias. 2012; 6(2): p.53-61.spa
dcterms.referencesClermont O, Bonacorsi S, Bingen E. Rapid and Simple Determination of the Escherichia coli Phylogenetic Group. Appl Environ Microbiol. 2000 Oct; 66(10): p. 4555-8.eng
dcterms.referencesClermont O, Christenson JK, Denamur E, Gordon DM. The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep. 2013 Feb; 5(1): p.58-65.eng
dcterms.referencesPerry JD. A Decade of Development of Chromogenic Culture Media for Clinical Microbiology in an Era of Molecular Diagnostics. Clin Microbiol Rev. 2017 Jan 4; 30(2): p.449-79.eng
dcterms.referencesVendruscolo JW, Waldrich TL, Pelayo JS, Nakazato G, Londrina UE De. Novel multiplex PCR for detection of diarrheagenic Escherichiacoli strains isolated from stool and water samples. Genet Mol Res. 2017;16(3).eng
dcterms.referencesFatemeh D, Reza ZM, Mohammad A, Salomeh K, Reza AG, Hossein S, et al. Rapid detection of coliforms in drinking water of Arak city using multiplex PCR method in comparison with the standard method of culture (Most Probably Number). Asian Pac J Trop Biomed. 2014;4(5): p. 404-9.eng
dcterms.referencesGensberger ET, Polt M, Konrad-Köszler M, Kinner P, Sessitsch A, Kostić T. Evaluation of quantitative PCR combined with PMA treatment for molecular assessment of microbial water quality. Water Res. 2014;67(0): p.367-76.eng
dcterms.referencesTruchado P, Hernandez N, Gil MI, Ivanek R, Allende A. Correlation between E. coli levels and the presence of foodborne pathogens in surface irrigation water: Establishment of a sampling program. Water Res. 2018; 128: p.226-33.eng
dcterms.referencesPandove G, Sahota P, Vikal Y, Kaur B. Multiplex PCR water testing kit for rapid, economic and simultaneous detection of Escherichia coli, Yersinia enterocolitica and Aeromonas hydrophila from drinking water. 2013; 104(3).eng
dcterms.referencesBecerra-Arévalo YM. Sistema general de regalías: nuevos recursos para la ciencia, tecnología e innovación en Colombia. Rev CEA. 2015 Jan 2;1(1): p.75-91.spa
dcterms.referencesComisión Colombiana del Océano - CCO. Lineamientos para la formulación del plan nacional de manejo integrado de zonas costeras – PNMIZC. Comité Técnico Nacional de Manejo Integrado de Zonas Costeras-CTN MIZC. Bogotá, Colombia. 2014.spa
dcterms.referencesColciencias. Balance y retos en CTeI del Programa Nacional en Mar y los Recursos Hidrobiológicos de 1991 a 2014. 1 de Mayo. Bogotá, Colombia. 2015.spa
dcterms.referencesBisha B, Perez-Mendez A, Danyluk MD, Goodridge LD. Evaluation of modified moore swabs and continuous flow centrifugation for concentration of Salmonella and Escherichia coli O157:H7 from large volumes of water. J Food Prot. 2011 Nov;74(11): p. 1934-7.spa
dcterms.referencesTissier A, Denis M, Hartemann P, Gassilloud B. Development of a rapid and sensitive method combining a cellulose ester microfilter and a real-time quantitative PCR assay to detect Campylobacter jejuni and Campylobacter coli in 20 liters of drinking water or low-turbidity waters. Appl Environ Microbiol. 2012 Feb;78(3): p. 839-45.eng
dcterms.referencesRani N, Vajpayee P, Bhatti S, Singh S, Shanker R, Gupta KC. Quantification of Salmonella Typhi in water and sediments by molecular-beacon based qPCR. Ecotoxicol Environ Saf. 2014 Oct;108: p. 58-64.eng
dcterms.referencesVillareal Camacho J, Soto Varela Z, Pereira San Andrés N, Varela Prieto L, Jaramillo Lanchero R, Villanueva Torregoza D, et al. Reacción en cadena de la polimerasa para la detección de Salmonella sp., en leche en polvo: Optimización del método en 12 horas. Rev Científica Salud Uninorte. 2011.spa
dcterms.referencesJanjarasjitt N, Leukyai T, Jantama SS. Study on Optimal Condition for Salmonella spp. detection in Drinking Water by Polymerase Chain Reaction. Isan J Pharm Sci IJPS. 2014;9(3): p. 168.eng
dcterms.referencesDepartamento Nacional de Planeación - DNP. Visión Colombia II Centenario: Aprovechar el territorio marino-costero en forma eficiente y sostenible. Propuesta para discusión, Bogotá, Colombia, 2008. p.100.spa
dcterms.referencesArenas P. “Manejo Costero Integrado y sustentabilidad en Iberoamérica: aproximación a un diagnóstico”, Barragan Muñoz, J.M. (coord.). Manejo Costero Integrado en Iberoamérica: Diagnóstico y propuestas para una nueva política pública. Red IBERMAR (CYTED), Cadiz, 2011: p. 21-68spa
dcterms.referencesFricker CR. The isolation of Salmonellas and Campylobacters. J Appl Bacteriol. 1987 Aug 1;63(2): p. 99-116.eng
dcterms.referencesSuo B, He Y, Paoli G, Gehring A, Tu S-I, Shi X. Development of an oligonucleotide-based microarray to detect multiple foodborne pathogens. Mol Cell Probes. 2010 Apr;24(2): p. 77-86.eng
dcterms.referencesTaylor JM, Illmensee R, Summers J. Efficient transcription of RNA into DNA by avian sarcoma virus polymerase. Biochim Biophys Acta. 1976 Sep 6;442(3): p. 324-30.eng
dcterms.referencesPrasad D, Vidyarthi AS. DNA based methods used for characterization and detection of food borne bacterial pathogens with special consideration to recent rapid methods. Afr J Biotechnol. 2009 May;8(9): p. 1768-75eng
dcterms.referencesMullis KB. The unusual origin of the polymerase chain reaction. Sci Am. 1990 Apr;262(4): p. 56-61, 64-5.eng
dcterms.referencesVu HL, Troubetzkoy S, Nguyen HH, Russell MW, Mestecky J. A method for quantification of absolute amounts of nucleic acids by (RT)– PCR and a new mathematical model for data analysis. Nucleic Acids Res. 2000 Apr 1;28(7): p. 18.eng
dcterms.referencesHeid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res. 1996 Oct;6(10): p. 986-94.eng
dcterms.referencesStewart GSAB. Challenging food microbiology from a molecular perspective. Microbiology. 1997;143(7): p. 2099-108.eng
dcterms.referencesMaurer JJ. Rapid detection and limitations of molecular techniques. Annu Rev Food Sci Technol. 2011;2: p. 259-79.eng
dcterms.referencesSelvin PR. Fluorescence resonance energy transfer. Methods Enzymol. 1995;246: p. 300-34.eng
dcterms.referencesMartinez KF, Rao C, Burton N. Exposure assessment and analysis for biological agents. Grana. 2004;43(4): p. 193-208.eng
dcterms.referencesMcCabe EM, Burgess CM, O’Regan E, McGuinness S, Barry T, Fanning S, et al. Development and evaluation of DNA and RNA real-time assays for food analysis using the hilA gene of Salmonella enterica subspecies enterica. Food Microbiol. 2011 May;28(3): p. 447-56.eng
dcterms.referencesHyeon J-Y, Park C, Choi I-S, Holt PS, Seo K-H. Development of multiplex real-time PCR with Internal amplification control for simultaneous detection of Salmonella and Cronobacter in powdered infant formula. Int J Food Microbiol. 2010 Nov 15;144(1): p. 177-81.eng
dcterms.referencesAlmeida C, Cerqueira L, Azevedo NF, Vieira MJ. Detection of Salmonella enterica serovar Enteritidis using real time PCR, immunocapture assay, PNA FISH and standard culture methods in different types of food samples. Int J Food Microbiol. 2013 Jan 15;161(1): p. 16-22.eng
dcterms.referencesChen J, Zhang L, Paoli GC, Shi C, Tu S-I, Shi X. A real-time PCR method for the detection of Salmonella enterica from food using a target sequence identified by comparative genomic analysis. Int J Food Microbiol. 2010 Feb 28;137(2-3): p. 168-74.eng
dcterms.referencesJosefsen MH, Krause M, Hansen F, Hoorfar J. Optimization of a 12- Hour TaqMan PCR-Based Method for Detection of Salmonella Bacteria in Meat. Appl Environ Microbiol. 2007 May;73(9): p. 3040-8.eng
dcterms.referencesD’Urso OF, Poltronieri P, Marsigliante S, Storelli C, Hernández M, Rodríguez-Lázaro D. A filtration-based real-time PCR method for the quantitative detection of viable Salmonella enterica and Listeria monocytogenes in food samples. Food Microbiol. 2009 May;26(3): p. 311-6.eng

Archivos

Bloque original
Mostrando 1 - 5 de 8
Cargando...
Miniatura
Nombre:
RealTimePCRappliebactewaterbopathodetecquantification.pdf
Tamaño:
3.34 MB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Cargando...
Miniatura
Nombre:
Preliminares.pdf
Tamaño:
495.29 KB
Formato:
Adobe Portable Document Format
Descripción:
Preliminares
Cargando...
Miniatura
Nombre:
Cap_1_Context_Concerning.pdf
Tamaño:
204.76 KB
Formato:
Adobe Portable Document Format
Descripción:
Cap_1_Context_Concerning
Cargando...
Miniatura
Nombre:
Cap_2_Theoretical_Framework.pdf
Tamaño:
277.95 KB
Formato:
Adobe Portable Document Format
Descripción:
Cap_2_Theoretical_Framework
Cargando...
Miniatura
Nombre:
Cap_3_Development_Methodology.pdf
Tamaño:
277.26 KB
Formato:
Adobe Portable Document Format
Descripción:
Cap_3_Development_Methodology
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones