Alternativas de solución para minimizar el uso del polietileno en los empaques para golosinas
datacite.rights | http://purl.org/coar/access_right/c_16ec | spa |
dc.contributor.advisor | Verdaza Villalobos, Arnaldo | |
dc.contributor.author | Acuña Yépez, Azel | |
dc.contributor.author | Rodríguez Guette, Daily | |
dc.contributor.author | Villalobos Martínez, Andrés | |
dc.contributor.author | Osorio González, Rivaldo | |
dc.contributor.author | Villegas Castillo, Roiner | |
dc.date.accessioned | 2023-07-27T19:33:38Z | |
dc.date.available | 2023-07-27T19:33:38Z | |
dc.date.issued | 2023 | |
dc.description.abstract | El objetivo de este artículo es presentar un análisis bibliográfico sobre los diferentes materiales biodegradables existentes y que pueden ser utilizados como reemplazo del polietileno en los empaques para golosinas, teniendo en cuenta la problemática global sobre la contaminación ambiental y principalmente el impacto que tienen este tipo de empaques sobre el entorno y su dificulta para ser reciclado. Agregando a lo anterior, este propone un análisis cualitativo y cuantitativo orientada al estudio de los materiales biodegradables presentes, desde aspectos como seguridad alimentaria y compatibilidad, protección del producto, durabilidad del materia y sostenibilidad y costos. En tal sentido, este trabajo utilizara indicadores para cada uno de los criterios los cuales van a permitir realizar la clasificación de los materiales y así poder lograr el objetivo del proyecto. | spa |
dc.description.abstract | The objective of this article is to present a bibliographic analysis on the different biodegradable materials that exist and that can be used as a replacement for polyethylene in candy packaging, taking into account the global problem of environmental contamination and mainly the impact of this type of packaging on the environment and its difficulty to be recycled. Adding to the above, this article proposes a quantitative analysis oriented to the study of biodegradable materials present, from aspects such as food safety and compatibility, product protection, material durability and sustainability and costs. In this sense, this work will use indicators for each of the criteria which will allow the classification of materials and thus be able to achieve the objective of the project. | eng |
dc.format.mimetype | spa | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/12978 | |
dc.language.iso | spa | spa |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ingenierías | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Empaque | spa |
dc.subject | Empaques biodegradables | spa |
dc.subject | Polietileno | spa |
dc.subject | Packaging | eng |
dc.subject | Biodegradable packaging | eng |
dc.subject | Polyethylene | eng |
dc.title | Alternativas de solución para minimizar el uso del polietileno en los empaques para golosinas | spa |
dc.title.translated | Solution alternatives to minimize the use of polyethylene in candy packaging | eng |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.spa | Trabajo de grado - pregrado | spa |
dcterms.references | Cerqueira, M. A., Bourbon, A. I., Pinheiro, A. C., Martins, J. T., Souza, B. W. S., Teixeira, J. A., & Vicente, A. A. (2011). Galactomannans use in the development of edible films/coatings for food applications. In Trends in Food Science and Technology (Vol. 22, Issue 12). https://doi.org/10.1016/j.tifs.2011.07.002 | eng |
dcterms.references | Dukalska, L., Ungure, E., Augspole, I., Muizniece-Brasava, S., Levkane, V., Tatjana, R., & Krasnova, I. (2014). Evaluation of the Influence of Various Biodegradable Packaging Materials on the Quality and Shelf Life of Different Food Products. Proceedings of the Latvia University of Agriculture, 30(1). https://doi.org/10.2478/plua-2013-0011 | eng |
dcterms.references | Durango, A., Soares, N. D. E. F., & Arteaga, M. R. (2011). Filmes y revestimientos comestibles cmo empaques activos biodegradables en la conservacion de alimentos. Biotecnología En El Sector Agropecuario y Agroindustrial, 9(1). | spa |
dcterms.references | Enriquez C, M., Velasco M, R., & Fernandez Q, A. (2013). Caracterización de almidones de yuca nativos y modificados para la elaboración de empaques biodegradables. Biotecnología En El Sector Agropecuario y Agroindustrial, 2(2). | spa |
dcterms.references | Farris, S., Schaich, K. M., Liu, L. S., Piergiovanni, L., & Yam, K. L. (2009). Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: a review. In Trends in Food Science and Technology (Vol. 20, Issue 8). https://doi.org/10.1016/j.tifs.2009.04.003 | eng |
dcterms.references | Janssen, L. P. B. M., & Moscicki, L. (2010). Thermoplastic Starch: A Green Material for Various Industries. In Thermoplastic Starch: A Green Material for Various Industries. https://doi.org/10.1002/9783527628216 | eng |
dcterms.references | Junior, I. T., Dal Bosco, T. C., Bertozzi, J., Michels, R. N., & Mali, S. (2020). Biodegradability assessment of starch/glycerol foam and poly(butylene adipate-co-terephthalate)/starch film by respirometric tests. Brazilian Journal of Food Technology, 23. https://doi.org/10.1590/1981-6723.24818 | eng |
dcterms.references | López-Ojeda, G. C., Vargas-Zavala, A. V., Gutiérrez-Lara, M. R., Ramírez-Zamora, R. M., & Durán-Moreno, A. (2011). Oxidación fotoelectrocatalítica de fenol y de 4-clorofenol con un soporte de titanio impregnado con TiO 2. Revista Internacional de Contaminacion Ambiental, 27(1). | spa |
dcterms.references | Maftoonazad, N., & Badii, F. (2012). Use of Edible Films and Coatings to Extend the Shelf Life of Food Products. Recent Patents on Food, Nutrition & Agriculturee, 1(2). https://doi.org/10.2174/2212798410901020162 | eng |
dcterms.references | Motloung, M. P., Ojijo, V., Bandyopadhyay, J., & Ray, S. S. (2019). Cellulose nanostructure-based biodegradable nanocomposite foams: A brief overview on the recent advancements and perspectives. In Polymers (Vol. 11, Issue 8). https://doi.org/10.3390/polym11081270 | eng |
dcterms.references | Pillai, S. K., Ray, S. S., Scriba, M., Ojijo, V., & Hato, M. J. (2013). Morphological and thermal properties of photodegradable biocomposite films. Journal of Applied Polymer Science, 129(1). https://doi.org/10.1002/app.38763 | eng |
dcterms.references | Piringer, O. G., & Baner, A. L. (2008). Plastic Packaging: Interactions with Food and Pharmaceuticals, Second Edition. In Plastic Packaging: Interactions with Food and Pharmaceuticals, Second Edition. https://doi.org/10.1002/9783527621422 | eng |
dcterms.references | Shulga, O., Chorna, A., & Kobylinskyi, S. (2017). Differential scanning calorimetry research of biodegradable films for confectionery and bakery products. Chemistry and Chemical Technology, 11(4). https://doi.org/10.23939/chcht11.04.492 | eng |
dcterms.references | Sid, S., Mor, R. S., Kishore, A., & Sharanagat, V. S. (2021). Bio-sourced polymers as alternatives to conventional food packaging materials: A review. Trends in Food Science and Technology, 115. https://doi.org/10.1016/j.tifs.2021.06.026 | eng |
dcterms.references | Siracusa, V., Rocculi, P., Romani, S., & Rosa, M. D. (2008). Biodegradable polymers for food packaging: a review. In Trends in Food Science and Technology (Vol. 19, Issue 12). https://doi.org/10.1016/j.tifs.2008.07.003 | eng |
dcterms.references | Villada, H. S., Acosta, H., & Velasco, R. (2007). Biopolímeros naturales usados en empaques biodegradables. Temas Agrarios, 12(2). https://doi.org/10.21897/rta.v12i2.652 | spa |
dcterms.references | Wei, L., & Yazdanifard, R. (2013). Edible Food Packaging as an Eco-friendly Technology using Green Marketing Strategy. Global Journal of Commerce & Management Perspective, 2(6). | eng |
dcterms.references | Xia, Z., Curtin, W. A., & Sheldon, B. W. (2004). A new method to evaluate the fracture toughness of thin films. Acta Materialia, 52(12). https://doi.org/10.1016/j.actamat.2004.04.004 | eng |
dcterms.references | PROEXPANSION. (08 de 08 de 2014). Comida envasada: Los diferentes tipos ed plastico para empacar. Obtenido de Comida envasada: Los diferentes tipos ed plastico para empacar: https://proexpansion.com/es/articles/443-comida-envasada-los-diferentes-tipos-de-plastico-para-empaquetar | spa |
dcterms.references | Wrigley, M. (2022). Mars Home. Obtenido de Mars Home: https://www.mars.com/made-by-mars/mars-wrigley | spa |
dcterms.references | Procurement Resource . (12 de julio de 2022). Obtenido de Procurement Resource : https://www.procurementresource.com/resource-center/cassava-starch-price-trends | spa |
dcterms.references | S Global HDPE prices 2022 | Statista. (2023, May 16). Statista. https://www.statista.com/statistics/1171074/price-high-density-polyethylene-forecast-globally/ | spa |
dcterms.references | Donzis, R. H. (2006). La Eficacia Social de las Normas Jurídicas. Revista Electrónica de Teoría y Práctica de la Elaboración de Normas Jurídicas, 2(4), 6–24. | spa |
oaire.version | info:eu-repo/semantics/acceptedVersion | spa |
sb.programa | Ingeniería Industrial | spa |
sb.sede | Sede Barranquilla | spa |