Liouvillian solutions for second order linear diferential equations with polynomial coefcients
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
dc.contributor.author | Acosta‑Humánez, Primitivo B. | |
dc.contributor.author | Blázquez‑Sanz, David | |
dc.contributor.author | Venegas‑Gómez, Henock | |
dc.date.accessioned | 2020-10-20T18:21:17Z | |
dc.date.available | 2020-10-20T18:21:17Z | |
dc.date.issued | 2020-09-10 | |
dc.description.abstract | In this paper we present an algebraic study concerning the general second order linear diferential equation with polynomial coefcients. By means of Kovacic’s algorithm and asymptotic iteration method we fnd a degree independent algebraic description of the spectral set: the subset, in the parameter space, of Liouville integrable diferential equations. For each fxed degree, we prove that the spectral set is a countable union of non accumulating algebraic varieties. This algebraic description of the spectral set allow us to bound the number of eigenvalues for algebraically quasi-solvable potentials in the Schrödinger equation. | eng |
dc.format.mimetype | spa | |
dc.identifier.doi | https://doi.org/10.1007/s40863-020-00186-0 | |
dc.identifier.issn | 23169028 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/6724 | |
dc.identifier.url | https://link.springer.com/article/10.1007/s40863-020-00186-0 | |
dc.language.iso | eng | eng |
dc.publisher | Springer | eng |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | São Paulo Journal of Mathematical Sciences | eng |
dc.subject | Anharmonic oscillators | eng |
dc.subject | Asymptotic iteration method | eng |
dc.subject | Kovacic algorithm | eng |
dc.subject | Liouvillian solutions | eng |
dc.subject | Parameter space | eng |
dc.subject | Quasi-solvable model | eng |
dc.subject | Schrödinger equation | eng |
dc.subject | Spectral varieties | eng |
dc.title | Liouvillian solutions for second order linear diferential equations with polynomial coefcients | eng |
dc.title.abbreviated | São Paulo J. Math. Sci. | eng |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.spa | Artículo científico | spa |
dcterms.references | Acosta-Humánez, P., Blázquez-Sanz, D.: Non-integrability of some Hamiltonian systems with rational potential. Discrete Contin. Dyn. Syst. Ser. B 10(2–3), 265–293 (2008) | eng |
dcterms.references | Acosta-Humánez, P.B.: Galoisian Approach to Supersymmetric Quantum Mechanics. PhD thesis, Universitat Politècnica de Catalunya (2009). https://www.tdx.cat/handle/10803/22723 | eng |
dcterms.references | Acosta-Humánez, P.B.: Galoisian Approach to Supersymmetric Quantum Mechanics. The Integrability Analysis of the Schrödinger Equation by Means of Diferential Galois Theory. VDM Verlag, Dr Müller, Saarbrücken, Deutschland (2010) | eng |
dcterms.references | Acosta-Humánez, P.B., Morales-Ruiz, J.J., Weil, J.-A.: Galoisian approach to integrability of schrödinger equation. Rep. Math. Phys. 67(3), 305–374 (2011) | eng |
dcterms.references | Bender, C., Dunne, G.: Quasi-exactly solvable systems and orthogonal polynomials. J. Math. Phys. 37(1), 6–11 (1996) | eng |
dcterms.references | Blázquez-Sanz, David, Yagasaki, Kazuyuki: Galoisian approach for a Sturm–Liouville problem on the infnite interval. Methods Appl. Anal. 19(3), 267–288 (2012) | eng |
dcterms.references | Ciftci, H., Hall, R., Saad, N.: Asymptotic iteration method for eigenvalue problems. J. Phys. A Math. Gen. 36(47), 11807–11816 (2003) | eng |
dcterms.references | Ciftci, H., Hall, R., Saad, N., Dogu, E.: Physical applications of second-order linear diferential equations that admit polynomial solutions. J. Phys. A Math. Theor. 43(41), 415206–415219 (2010) | eng |
dcterms.references | Combot, T.: Integrability of the one dimensional Schrödinger equation. J. Math. Phys. 59(2), 022105 (2018) | eng |
dcterms.references | Duval, A., Loday-Richaud, M.: Kovacic’s algorithm and its application to some families of special functions. Appl. Algebra Eng. Commun. Comput. 3(3), 211–246 (1992) | eng |
dcterms.references | Hall, R., Saad, N., Ciftci, H.: Sextic harmonic oscillators and orthogonal polynomials. J. Phys. A Math. Gen. 39(26), 8477–8486 (2006) | eng |
dcterms.references | Kovacic, J.: An algorithm for solving second order linear homogeneous diferential equations. J. Symb. Comput. 2(1), 3–43 (1986) | eng |
dcterms.references | Martinet, J., Ramis, J.-P.: Theorie de galois diferentielle et resommation. In: Tournier, E. (ed.) Computer Algebra and Diferential Equations, pp. 117–214. Academic Press, London (1989) | eng |
dcterms.references | Natanzon, G.A.: Investigation of a one dimensional Schrödinger equation that is generated by a hypergeometric equation. Vestnik Leningrad. Univ 10, 22–28 (1971). in Russian | eng |
dcterms.references | Rainville, E.D.: Necessary conditions for polynomial solutions of certain Riccati equations. Am. Math. Mon. 43(8), 473–476 (1936) | eng |
dcterms.references | Saad, N., Hall, R., Ciftci, H.: Criterion for polynomial solutions to a class of linear diferential equations of second order. J. Phys. A Math. Gen. 39(43), 13445–13454 (2006) | eng |
dcterms.references | Singer, Michael F.: Moduli of linear diferential equations on the Riemann sphere with fxed Galois groups. Pac. J. Math. 160(2), 343–395 (1993) | eng |
dcterms.references | Turbiner, A.V.: Quantum mechanics: problems intermediate between exactly solvable and completely unsolvable. Soviet Phys. JETP 10(2), 230–236 (1988) | eng |
dcterms.references | Venegas-Gómez, H.: Enfoque galoisiano de la ecuación de schrödinger con potenciales polinomiales y polinomios de laurent. Master’s thesis, Universidad Nacional de Colombia, sede Medellín (2018). http://bdigital.unal.edu.co/71580/ | eng |
oaire.version | info:eu-repo/semantics/publishedVersion | spa |