Liouvillian solutions for second order linear diferential equations with polynomial coefcients

datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
dc.contributor.authorAcosta‑Humánez, Primitivo B.
dc.contributor.authorBlázquez‑Sanz, David
dc.contributor.authorVenegas‑Gómez, Henock
dc.date.accessioned2020-10-20T18:21:17Z
dc.date.available2020-10-20T18:21:17Z
dc.date.issued2020-09-10
dc.description.abstractIn this paper we present an algebraic study concerning the general second order linear diferential equation with polynomial coefcients. By means of Kovacic’s algorithm and asymptotic iteration method we fnd a degree independent algebraic description of the spectral set: the subset, in the parameter space, of Liouville integrable diferential equations. For each fxed degree, we prove that the spectral set is a countable union of non accumulating algebraic varieties. This algebraic description of the spectral set allow us to bound the number of eigenvalues for algebraically quasi-solvable potentials in the Schrödinger equation.eng
dc.format.mimetypepdfspa
dc.identifier.doihttps://doi.org/10.1007/s40863-020-00186-0
dc.identifier.issn23169028
dc.identifier.urihttps://hdl.handle.net/20.500.12442/6724
dc.identifier.urlhttps://link.springer.com/article/10.1007/s40863-020-00186-0
dc.language.isoengeng
dc.publisherSpringereng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceSão Paulo Journal of Mathematical Scienceseng
dc.subjectAnharmonic oscillatorseng
dc.subjectAsymptotic iteration methodeng
dc.subjectKovacic algorithmeng
dc.subjectLiouvillian solutionseng
dc.subjectParameter spaceeng
dc.subjectQuasi-solvable modeleng
dc.subjectSchrödinger equationeng
dc.subjectSpectral varietieseng
dc.titleLiouvillian solutions for second order linear diferential equations with polynomial coefcientseng
dc.title.abbreviatedSão Paulo J. Math. Sci.eng
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.spaArtículo científicospa
dcterms.referencesAcosta-Humánez, P., Blázquez-Sanz, D.: Non-integrability of some Hamiltonian systems with rational potential. Discrete Contin. Dyn. Syst. Ser. B 10(2–3), 265–293 (2008)eng
dcterms.referencesAcosta-Humánez, P.B.: Galoisian Approach to Supersymmetric Quantum Mechanics. PhD thesis, Universitat Politècnica de Catalunya (2009). https://www.tdx.cat/handle/10803/22723eng
dcterms.referencesAcosta-Humánez, P.B.: Galoisian Approach to Supersymmetric Quantum Mechanics. The Integrability Analysis of the Schrödinger Equation by Means of Diferential Galois Theory. VDM Verlag, Dr Müller, Saarbrücken, Deutschland (2010)eng
dcterms.referencesAcosta-Humánez, P.B., Morales-Ruiz, J.J., Weil, J.-A.: Galoisian approach to integrability of schrödinger equation. Rep. Math. Phys. 67(3), 305–374 (2011)eng
dcterms.referencesBender, C., Dunne, G.: Quasi-exactly solvable systems and orthogonal polynomials. J. Math. Phys. 37(1), 6–11 (1996)eng
dcterms.referencesBlázquez-Sanz, David, Yagasaki, Kazuyuki: Galoisian approach for a Sturm–Liouville problem on the infnite interval. Methods Appl. Anal. 19(3), 267–288 (2012)eng
dcterms.referencesCiftci, H., Hall, R., Saad, N.: Asymptotic iteration method for eigenvalue problems. J. Phys. A Math. Gen. 36(47), 11807–11816 (2003)eng
dcterms.referencesCiftci, H., Hall, R., Saad, N., Dogu, E.: Physical applications of second-order linear diferential equations that admit polynomial solutions. J. Phys. A Math. Theor. 43(41), 415206–415219 (2010)eng
dcterms.referencesCombot, T.: Integrability of the one dimensional Schrödinger equation. J. Math. Phys. 59(2), 022105 (2018)eng
dcterms.referencesDuval, A., Loday-Richaud, M.: Kovacic’s algorithm and its application to some families of special functions. Appl. Algebra Eng. Commun. Comput. 3(3), 211–246 (1992)eng
dcterms.referencesHall, R., Saad, N., Ciftci, H.: Sextic harmonic oscillators and orthogonal polynomials. J. Phys. A Math. Gen. 39(26), 8477–8486 (2006)eng
dcterms.referencesKovacic, J.: An algorithm for solving second order linear homogeneous diferential equations. J. Symb. Comput. 2(1), 3–43 (1986)eng
dcterms.referencesMartinet, J., Ramis, J.-P.: Theorie de galois diferentielle et resommation. In: Tournier, E. (ed.) Computer Algebra and Diferential Equations, pp. 117–214. Academic Press, London (1989)eng
dcterms.referencesNatanzon, G.A.: Investigation of a one dimensional Schrödinger equation that is generated by a hypergeometric equation. Vestnik Leningrad. Univ 10, 22–28 (1971). in Russianeng
dcterms.referencesRainville, E.D.: Necessary conditions for polynomial solutions of certain Riccati equations. Am. Math. Mon. 43(8), 473–476 (1936)eng
dcterms.referencesSaad, N., Hall, R., Ciftci, H.: Criterion for polynomial solutions to a class of linear diferential equations of second order. J. Phys. A Math. Gen. 39(43), 13445–13454 (2006)eng
dcterms.referencesSinger, Michael F.: Moduli of linear diferential equations on the Riemann sphere with fxed Galois groups. Pac. J. Math. 160(2), 343–395 (1993)eng
dcterms.referencesTurbiner, A.V.: Quantum mechanics: problems intermediate between exactly solvable and completely unsolvable. Soviet Phys. JETP 10(2), 230–236 (1988)eng
dcterms.referencesVenegas-Gómez, H.: Enfoque galoisiano de la ecuación de schrödinger con potenciales polinomiales y polinomios de laurent. Master’s thesis, Universidad Nacional de Colombia, sede Medellín (2018). http://bdigital.unal.edu.co/71580/eng
oaire.versioninfo:eu-repo/semantics/publishedVersionspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
1.55 MB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones