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Abstract
In this paper we present an algebraic study concerning the general second order 
linear differential equation with polynomial coefficients. By means of Kovacic’s 
algorithm and asymptotic iteration method we find a degree independent algebraic 
description of the spectral set: the subset, in the parameter space, of Liouville inte-
grable differential equations. For each fixed degree, we prove that the spectral set is 
a countable union of non accumulating algebraic varieties. This algebraic descrip-
tion of the spectral set allow us to bound the number of eigenvalues for algebraically 
quasi-solvable potentials in the Schrödinger equation.
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algorithm · Liouvillian solutions · Parameter space · Quasi-solvable model · 
Schrödinger equation · Spectral varieties

Mathematics Subject Classification  Primary 34M15 · Secondary 81Q35

1  Introduction

Let us consider the family of second order linear differential equations,
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with polynomial coefficients of bounded degree. This family is parameterized by 
the coefficients of P and Q and therefore endowed of an structure of affine algebraic 
variety. We are interested in characterizing the moduli of Liouville integrable dif-
ferentential equations in (1) and describing how the Liouvillian solutions of those 
integrable equations depend on the coefficients. From a result of Singer [17], we 
expect that this moduli to be enumerable union of constructible set corresponding to 
possible choices of local exponents at infinity of Liouvillian solutions.

With this purpose we explore the application of Kovacic’s algorithm (see [10, 
12]) to the family (1). Some steps of the algorithm, dealing with polynomial solu-
tions of auxiliar equations, are very sensitive to changes of the parameters. However, 
the Asymptotic Iteration Method (see [7]) allows us to describe the algebraic condi-
tions on the parameters giving rise to the existence of Liouvillian solutions.

The structure of the paper is as follows. Section 2 is devoted to the definitions 
of parameter space ℙ2n , spectral set �2n , spectral varieties �2n,d and the statement 
of our first main result, Theorem 2.3. Section 3 is devoted to the definition of pol-
ynomial-hyperexponential solutions, the reduction of the parameter space through 
D’Alembert transformation, and Kovacic’s algorithm. The analysic of equation 
y�� = (x2n + �xn−1)y allows us to prove the non-emptyness of the spectral varie-
ties �2n,kn and �2n,kn+1 (Corolary  3.6). Section  4 contains the results of this paper 
related to Asymptotic Iteration Method. We find a sequence of differential polyno-
mials Δd(a, b) in two variables that codify the equations of the spectral varieties �2n,d 
inpendently of n (Theorem 4.3). The proof of Theorem 2.3 is included at the end of 
the section. Section 5 is devoted to the Liovullian solutions of Schrödinger equations 
with polynomial potentials. We proof that the number of the values of the energy 
parameter allowing a Liouvillian eigenfunction is bounded by the arithmetic condi-
tion which is a simple function of the coefficients of the potential (Theorem 5.2).

2 � Parameter space

Let us consider Eq. (1) with polynomial coefficients P(x) =
∑n

j=1
pjx

j ∈ ℂ[x]≤n and 
Q(x) =

∑2n

j=1
qjx

j ∈ ℂ[x]≤2n . We also take into account a non-degeneracy condition 
p2
n
− q2n ≠ 0 , which implies that the equation can be reduced to trace free form with 

a polynomial coefficient of degree 2n. Thus, the parameter space corresponding to 
the family of Eq. (1) is,

that we consider an an affine algebraic variety of dimension 3n + 2 with affine coor-
dinates p0,… , pn, q0,… , q2n . Our purpose is to describe algebraically the spectral 
set 𝕃2n ⊆ ℙ2n . That is, the set of equations in the family (1) admitting a Liouvillian 
solution. An important class of Liouvillian functions, specifically relevant for the 
integrability of Eq. (1) is the following.

(1)u�� + P(x)u� + Q(x)u = 0,

ℙ2n = (ℂ[x]≤n× ∈ ℂ[x]≤2n) − {p2
n
− q2n = 0},
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Definition 2.1  A polynomial-hyperexponential function of polynomial degree d 
and exponential degree k is a function of the form

with Pd(x) and Ak(x) polynomials of degree d and k respectively.

Definition 2.2  The spectral subvariety �2n,d is the subset of �2n corresponding to 
equations in the family (1) having a polynomial-hyperexponentional solution of pol-
ynomial degree d.

Theorem 2.3  Let 𝕃2n ⊂ ℙ2n be the set of equations in family (1) having a Liouvil-
lian solution, and �2n,d be the set of equations in family (1) having a polynomial-
hyperexponential solution of polynomial degree d . The following statements hold: 

(a)	 For any fixed n ∈ ℕ there is an infinite set of values of d such that �2n,d is not 
empty.

(b)	 If not empty, �2n,d is an algebraic variety of codimension ≤ n in ℙ2n.
(c)	 For any d ≠ k the algebraic varieties �2n,d and �2n,k are disjoint in ℙ2n.
(d)	 Any compact subset of ℙ2n intersects only a finite number of algebraic varieties 

of the family {𝕃2n,d}d∈ℕ.

Furthermore,

Therefore we conclude that �2n is a singular analytic submanifold of ℙ2n consisting 
in the enumerable union of pairwise disjoint algebraic varieties of codimension ≤ n 
in ℙ2n.

In what follows we will deal with the proof of Theorem 2.3 and the calculation of 
the equations of the spectral subvarieties �2n,d in suitable coordinates.

3 � Liouvillian solutions

3.1 � Reduction of the parameter space

As it is well known, Eq. (1) can be reduced to trace free form

by means of D’Alembert transform u = exp
(
−

1

2
∫ P(x)dx

)
y , where 

R(x) =
P(x)2

4
+

P�(x)

2
− Q(x) . Note that the degree of R(x) is not greater than 

max{deg(Q(x)), 2deg(P(x))} . Note that the family of equations of the form (3) with 

(2)u(x) = Pd(x)e
∫ Ak(x)dx,

�2n =

∞⋃
d=0

�2n,d.

(3)y�� = R(x)y
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R(x) of fixed degree 2n are parameterized by the space 𝕂2n = ℂ[x]2n of polynomials 
of degree 2n that we see as an affine algebraic variety of dimension 2n + 1 , parame-
terized by the coefficients of R(x) and thus isomorphic to ℂ∗ × ℂ2n . Note that the 
family (3) is included in (1), where R(x) ∈ �2n corresponds to (0,−R(x)) ∈ ℙ2n . The 
D’Alembert transformation is a polynomial map in the coefficients of P(x) and Q(x) 
and it can be seen as a retract,

of the natural inclusion 𝕂2n ⊂ ℙ2n . Taking into account that the ratio between u and 
y is the exponential of a polynomial, we obtain that (P(x),Q(x)) ∈ �2n,d if and only 
if R(x) ∈ �2n,d ∩ �2n . Therefore, the analysis of polynomial-hyperexponential solu-
tions of a given polynomial degree can be restricted to the trace free family �2n.

Let us write R(x) =
∑2n

j=0
rjx

j . Equation (3) can be reduced to the case of monic 
polynomial coefficient by the change of variables x ↦ 2n+2

√
1

r2n
x which lead us to the 

equation

For the next step, let us consider �2n ⊂ �2n the family of Eq. (3) with monic polyno-
mial coefficient. It is an an algebraic variety isomorphic to ℂ2n . Since the (2n + 2)-th 
root of r2n is an algebraic multivalued function of r2n , any equation in �2n has 2n + 2 
different equivalent reductions in �2n . This can be seen as an algebraic correspond-
ence C2n ⊂ �2n ×�2n . This algebraic correspondence is a (2n + 2)-fold covering 
space of �2n by the first projection, �1 and the (2n + 2) monic reductions of the equa-
tion of coefficient R(x) are given by �2(�−1

1
({R(x)})) . Note that R(x) is in �2n,d if and 

only if so are any of its monic reductions. Therefore, if suffices to focus our analysis 
to equations in the family �2n.

3.2 � Kovacic’s algorithm and adapted coordinates in �
2n

From now on let ��
2n

= �2n ∩�2n be the reduced spectral set consisting of equations 
in �2n having a Liouvillian solution, and let ��

2n,d
= �2n,d ∩�2n be the reduced spec-

tral variety consisting of equations in �2n having a polynomial-hyperexponential 
solution of polynomial degree d.

Note that, since D’Alembert reduction does not affect the polynomial degree of 
polynomial-hyperexponential solutions then a differential equation in the family (1) 
has a polynomial-hyperexponential solution of polynomial degree d if and only if so 
has any of its monic D’Alembert reductions. Therefore, if �2n,d is a subvariety of ℙ2n 
then codim(𝕃2n,d,ℙ2n) = codim(𝕃�

2n,d
,𝕄2n).

Here we will analyze the existence of Liovillian solutions of equations in the 
family �2n . This is done in terms of some known theoretical results obtained by 

dal2n ∶ ℙ2n → 𝕂2n ⊂ ℙ2n, (P(x),Q(x)) ↦ R(x) =
P(x)2

4
+

P�(x)

2
− Q(x) ↦ (0,−R(x))

(4)y�� =

⎛⎜⎜⎜⎝
x2n +

2n−1�
j=0

rj

2n+2

�
1

r2n

xj

⎞⎟⎟⎟⎠
y, ak ∈ ℂ

∗, ai ∈ ℂ.
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application of Kovacic’s algorithm [12]. A first step is to introduce a system of 
coordinates in �2n that fits our analysis of Eq. (3) better than the coefficients of 
R(x). The following Lemma that can be traced back to [15, p. 474], allows to 
decompose the monic polynomial R(x) in a suitable form for the application of 
the algorithm.

Lemma 3.1  Every monic polynomial M(x) of even degree 2n can be written in one 
only way completing squares, that is,

with A(x) = xn +
∑n−1

j=0
ajx

j is a monic polynomial of degree n and B(x) =
∑n−1

j=0
bjx

j 
is a polynomial of degree at most n − 1.

According to the proof given in [1, Lemma 2.4, p. 275] it also clear that 
the decomposition map 𝕄2n → ℂ2n , R(x) ↦ (a0,… , an−1, b0,… , bn−1) where 
R(x) = A(x)2 + B(x) is a regular invertible polynomial map. Therefore, we may 
consider the coefficients of A(x) and B(x) as a system of regular coordinates is 
�2n . The following results gives us precise information about the sets �′

2n
 and 

�′
2n,d

.

Theorem 3.2  [1, Theorem 2.5, pp. 276] Let us consider the differential equation,

with M(x) ∈ ℂ[x] a monic polynomial of degree k > 0. Then its differential Galois 
Group G with coefficients in ℂ(x) falls in one of the following cases: 

1.	 G = SL2(ℂ) (non-abelian, non-solvable, connected group).
2.	 G = ℂ∗ ⋉ ℂ (non-abelian, solvable, connected group).
Furthermore, the second case is given if and only if the following conditions holds:
3.	 M(x) has even degree k = 2n,
4.	 Writing M(x) = A(x)2 + B(x) as in Lemma 3.1, the quantity ±bn−1 − n is a non-

negative even integer 2d, d ∈ ℤ≥0.
5.	 There exist a monic polynomial Pd of degree d satisfying at least one of the fol-

lowing differential equations, 

In such case, Liouvillian solutions are given by

(5)M(x) = A(x)2 + B(x),

(6)y�� = M(x)y,

(7)P��
d
+ 2AP�

d
− (B − A�)Pd = 0,

(8)P��
d
− 2AP�

d
− (B + A�)Pd = 0.

(9)y1 = Pde
∫ Adx, y2 = y1 �

e−2 ∫ Adx

P2
d

, or
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A careful read of Theorem 3.2 gives us the following.

Corollary 3.3  The sets �′
2n

 and �′
2n,d

 in �2n satisfy the following. 

1.	 ��
2n

=
⋃∞

d=0
��
2n,d

.
2.	 �2n,d is contained in the hypersurface of �2n of equation b2

n−1
− (n + 2d)2 = 0.

Therefore, the sets �2n and �2n,d in ℙ2n satisfy �2n =
⋃∞

d=0
�2n,d.

Proof 

1.	 It is a consequence of the dichotomy of the Galois group. In case the group is not 
SL2(ℂ) it leads to a polynomial-hyperexponential solution.

2.	 It is a direct consequence of point 2 in the second part of Theorem 3.2, The last 
statement of the corollary is a consequence of the point 1. and the fact the the 
reductions process from ℙ2n to �2n preserves polynomial-hyperexponential solu-
tions. 	�  ◻

3.3 � Canonical equation

The following example:

that we refer to as canonical equation gives us some information about the non 
emptiness of the sets L2n,d for large d. Due to theorem 3.2, if (11) has a Liouvillian 
solution, the parameter � in the canonical coefficient x2n + �xn−1 is forced to be a 
discrete parameter that can be � = 2d + n or either � = −2d − n , where d is a non-
negative integer, which lead us to deal with two different equations,

Proposition 3.4  The differential equation (12) is integrable in the liouvillian sense 
if and only if, d = (n + 1)k or d = (n + 1)k + 1 where k is a non-negative integer.

Proof  The differential equation (12), is transformed into the Whittaker differential 
equation,

(10)y1 = Pde
− ∫ Adx, y2 = y1 �

e2 ∫ Adx

P2
d

.

(11)y�� = (x2n + �xn−1)y, � ∈ ℂ.

(12)y�� =(x2n + (2d + n)xn−1)y, or

(13)y�� =(x2n − (2d + n)xn−1)y.
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through the change of variables z = 2

n+1
xn+1 , y = z

−
n

2n+2W . Applying Martinet-Ramis 
theorem, see [13], we have that

which left only two posibilities, d = (n + 1)k or d = (n + 1)k + 1 . 	�  ◻

It is easy to see that the change of variables made in above proof also trans-
form the Eq. (13) into a Whittaker equation. Nevertheless this new equation will 
have parameters � =

2d+n

2n+2
 and � =

1

2n+2
 . So via Martinet–Ramis theorem we can 

enunciate the following result analogous to the previous proposition.

Proposition 3.5  The differential equation (13) is integrable in the liouvillian sense 
if and only if, d = (n + 1)k or d = (n + 1)k + 1 where k is a non-negative integer.

Moreover, the solutions to the Eq. (11) can be explicitly written as

where the polynomials Pd,n can be find by a Frobenius-like method. Having said 
that, it is a tedious process. In any case, for d = (n + 1)k we have that

On the other hand, for d = (n + 1)k + 1

�j j = (n + 1)m , j = (n + 1)m + 1

� = 2d + 2
∏m

r=1
−

(d+2−r(n+1))(d+3−r(n+1))

−2(d+2−r(n+1)−n)−2d

� = −2d − 2
∏m

r=1
−

(d+2−r(n+1))(d+3−r(n+1))

2(d+2−r(n+1)−n)+2d

Corollary 3.6  For any pair (n, d) of degrees with d ≡ 0 or d ≡ 1 mod (n + 1) there 
exist a monic polynomial M(x) of degree 2n such that the equation

(14)W
�� =

(
1

4
−

−2d−n

2n+2

z
+

4(
1

2n+2
)2 − 1

4z2

)
W,

±
−2d − n

2n + 2
±

1

2n + 2
=

1

2
+ k, k ∈ ℤ≥0,

(15)
yd,n(x) = Pd,n(x)e

xn+1

n+1 , if� = 2d + n, or

yd,n(x) = Pd,n(x)e
−

xn+1

n+1 , if� = −(2d + n),

(16)Pd,n(x) = xd +

d∑
j=n+1

�jx
d−j,where�j = 0forj ≠ (n + 1)m.

(17)Pd,n(x) = xd +

d∑
j=n+2

�jx
d+1−j,where�j = 0forj ≠ (n + 1)m + 1.
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has a polynomial-hyperexponential solution of exponential degree n + 1 and polyno-
mial degree d; therefore �2n,d is non-empty.

4 � Analysis of auxiliary equations

We refer to Eqs. (7) and (8) as auxiliary equations for Eq. (6). As it is stated in The-
orem 3.2 the existence of a Liouvillian solution of Eq. (6) depends of the existence 
of a polynomial solution of the auxiliary equations. In what follows we will show 
that conditions for the existence of a polynomial solution Pd of given degree is alge-
braic in the coefficients of A(x) and B(x), and therefore in the coefficients of M(x).

4.1 � Asymptotic iteration method

The asymptotic iteration method or AIM was introduced by Ciftci et al in [7] as a 
tool to solve homogeneous differential equations of the form

where �0 and r0 are smooth functions defined on a real interval. Nevertheless, the 
method is purely differential algebraic, so we can extent the result to differential 
rings of characteristic zero. By derivation of Eq. (19) we obtain a sequence of dif-
ferential equations,

where the sequences {�j}j∈ℕ and {rj}j∈ℕ are defined by the recurrence,

and the sequence of obstructions,

We say that the AIM stabilizes at p > 0 if �p = 0 . The following statement is a dif-
ferential algebraic translation of [16, Theorem 1].

Theorem  4.1  Let �0 and r0 be elements of a differential field R of characteristic 
zero. If there exist p > 0 such that

then differential equation (19) has general solution,

(18)y�� = M(x)y

(19)y�� = �0y
� + r0y

(20)y(j+2) = �jy
� + rjy

(21)�j+1 = �
�
j
+ rj + �0�j, rj+1 = r�

j
+ r0�j.

�j = rj�j−1 − �jrj−1.

(22)
rp

�p

=
rp−1

�p−1

∶= �,
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in the extension R⟨�, u, u−1, v, �⟩ where u, v, � are solutions of u� = �u , v� = �0v y 
�� = u2v, respectively.

Proof  By derivation of Eq. (19) we obtain,

and from there

If condition (22) is satisfied, then we have

On the other hand, from the recurrence, we have,

and replacing into the above equation we obtain,

We have that y(p+1) = c1�p−1uv is a general solution for this equation and finally we 
obtain

that yields the general solution of the statement. 	�  ◻

The AIM method tests whether the auxiliary equations have polynomial solu-
tion. The following statement is a differential algebraic translation of [16, Theo-
rem 2]. There is no difference in the proof, so we refer the reader to the original 
text.

Theorem 4.2  Let �0, r0 be elements in a differential field R of characteristic zero 
that contains ℂ[x] . 

	 (i)	 If (19) has a polynomial solution of degree p, then �p = 0

	 (ii)	 If �p�p−1 ≠ 0 and �p = 0, then the differential equation (19) has a polynomial 
solution of degree at most p.

(23)y = u−1(c2 + c1�), c1, c2 arbitrary constants,

y(p+2) = �py
� + rpy,

log(y(p+1))� =

�p

(
y� +

rp

�p

y
)

�p−1

(
y� +

rp−1

�p−1

y
) .

(y(p+1))� =
�p

�p−1

y(p+1).

�p

�p−1

= log(�p−1)
� + � + �0,

(y(p+1))� = (log(�p−1)
� + � + �0)y

(p+1).

y� + �y = c1uv
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4.2 � Liouvillian solutions by means of AIM

Let us proceed to the AIM of auxiliary equations (7) and (8). For Eq.  (7) we 
should start with �+

0
= −2A(x) and r+

0
= B(x) − A�(x) . By the recurrence law (21) 

we have a sequence:

A condition for the existence of a polynomial solution of degree at most p of (7) is 
the vanishing of the polynomial �+

p
= r+

p
�+

p−1
− r+

p−1
�+
p
 . We proceed analogously 

with Eq. (8) obtaining sequences of polynomials r−
p
 , �−

p
 and �−

p
.

In order to model this process, let us consider ℚ{a, b} the ring of differential 
polynomials in two differential variables a, b. We may consider the following ℚ
-linear differential operator in the space of 2 by 2 matrices (Table 1).

We consider the iterations of this map. If we give to the differential variables a, b the 
values of the polynomials A(x) and B(x) we obtain:

Let us define the sequence of universal differential polynomials,

 
As we will see this sequence {Δd}d∈ℕ of differential polynomials governs the 

Liouvillian integrability of Eq. (6) for any even degree 2n of M(x).

[
�+

p+1

r+
p+1

]
=

[
�+
p

r+
p

]�
+

[
−2A(x) 1

B(x) − A�(x) 0

][
�+
p

r+
p

]

� ∶ Mat2×2(ℚ{a, b}) → Mat2×2(ℚ{a, b}), C ↦ �(C) = C� +

[
−2a 1

b − a� 0

]
C

(
�p+1

([
1 0

0 1

]))
(A(x),B(x)) =

[
�p �p−1

rp rp−1

]
.

Δp = − det

(
�p+1

([
1 0

0 1

]))
∈ ℚ{a, b}.

Table 1   First values of the universal differential polynomials Δ
n

Δ0 b − a�

Δ1 2a
(
a�� − b�

)
+ 4ba� − 3(a�)2 − b2

Δ2 −9b2a� − 15(a�)3 − 2(−3a��b� + 2(a2(a(3) − b��) + (a��)2) + (b�)2)

+b(−a(3) + 2a(3b� − 5a��) + 23(a�)2 + b��) + a�(3a(3) − 2a(7b� − 9a��) − 3b��) + b3

Δ3 2(2a�� + 2a(b − 4a�) + 4a3 − b�)(a(4) − 4a2(b� − a��) + b(10a�� − 4b�) + 10a�b� + 8a3(b − a�)

+2a(−a(3) − 14ba� + 12(a�)2 + b�� + 2b2) − 16a�a�� − b(3)) − (−5a(3) + a(26a�� − 10b�)

+12a2(b − 5a�) − 10ba� + 21(a�)2 + 16a4 + 3b�� + b2)(−a(3) − 2a(b� − a��) + 4a2(b − a�)

−6b(a�) + 5a�2 + b�� + b2)
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Theorem 4.3  Equation (6) with M(x) = A(x)2 + B(x) has a polynomial-hyperexpo-
nential solution of polynomial degree d if and only if,

Therefore �′
2n,d

 is an algebraic subvariety of �2n contained in the union of the irre-
ducible hypersurfaces of equations:

Proof  Note that, by definition of the sequence Δd we have �+
d
= Δd(A(x),B(x)) . 

Analogously, the application of the AIM to Eq.  (8) produces an obstruction, �−
d
 . 

Note that, because of the symmetry between Eqs. (7) and (8) �−
d
= Δd(−A(x),B(x)).

We need only to check that �±

d−1
�
±

d
≠ 0 for the auxiliar equations. This comes 

easily from the fact that �±

0
= ±2A(x) is of bigger degree than r0 = B ± A� . Note 

that Δd(A(x),B(x))Δd(−A(x),B(x)) is a polynomial in x, a0,… , an−1, b0,… , bn−1 . Its 
coefficients as a polynomial in x are the algebraic equations of the restricted spectral 
variety �′

2n,d
 in �2n . 	�  ◻

Example 4.4  As a first example of AIM applications, let us consider an equation on 
�2

An elementary traslation as x ↦ x + a0 reduces the determination of �′
2 structure to 

an analysis of liouvillian-integrability conditions for quantum harmonic oscillator

These conditions are b2
0
= (2d + 1)2 and Δd(x, b0)Δd(−x, b0) = 0 . It is easy to verify 

that Δd(x, b0) = Δd(−x, b0) = 2d+1
∏d

k=0
d − k . Therefore,

Let us note that for a given equation �2n , conditions bn+1 = 2d + n and 
bn+1 = −2d − n are mutually exclusive. In the first case, auxiliary equation (7) may 
have a polynomial solution but not (8). The opposite occurs in the second case. 
Therefore, we decompose the spectral variety �′

2n,d
 as the disjoint union of two com-

ponents ��
2n,d = �

+

2n,d
∪ �−

2n,d
 . The first component �+

2n,d
 correspond to equations 

whose auxiliary equation (7) has a polynomial solution of degree d and the second 
component �−

2n,d
 correspond to equations whose auxiliary equation (8) has a polyno-

mial solution of degree d.

Definition 4.5  ��
2n,d = �

+

2n,d
∪ �−

2n,d
 , where

and

b2
n−1

= (n + 2d)2 and Δd(A(x),B(x))Δd(−A(x),B(x)) = 0.

bn−1 = 2d + n, −bn−1 = 2d + n.

(24)y�� = ((x + a0)
2 + b0)y.

(25)y�� = (x2 + b0)y.

(26)�
�
2,d ∶ (b0 + 2d + 1)(b0 − 2d − 1) = 0

�
+

2n,d
=

{
bn−1 = 2d + n

Δd(A(x),B(x)) = 0,
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As in the previous Example 4.4 it is always possible to get rid of the coefficient 
an−1 by means of a translation in the x axis. Therefore is convenient to consider the 
sets,

whose equations are easier to describe. For instance, in �4 and �6 we restrict our 
analysis to equations of the forms:

and

respectively. The following calculations of the equations of V+

2n,d
 for n = 2, 3 and 

small values of d, in Tables 2 and 3 is performed by means of the universal differen-
tial polynomials Δd.

4.3 � Codimension of the spectral variety

As the degree in x of the polynomials Δp(A(x),B(x)) grows quickly with p and the 
degree of M(x) = A(x)2 + B(x) it seems that the sets �2n,p are smaller as p grows. 
However, a direct analysis of the auxiliary equations allows us to bound the codi-
mension of the spectral varieties �2n,d in �2n . As we have seen before the algebraic 

�
−
2n,d

=

{
bn−1 = −2d − n

Δd(−A(x),B(x)) = 0.

V±

2n,d
= {an−1 = 0} ∩ �

±

2n,d
.

(27)y�� = ((x2 + a0)
2 + b1x + b0)y.

(28)y�� = ((x3 + a1x + a0)
2 + b2x

2 + b1x + b0)y

Table 2   Algebraic equations of restricted spectral varieties V+

4,d
= �

+

4,d
∩ {a1 = 0} for small values of d 

V+

4,0

{
b1 = 2

b0 = 0

V+

4,1

{
b1 = 4

b2
0
+ 4a0 = 0

V+

4,2

{
b1 = 6

b3
0
+ 16a0b0 − 16 = 0

V+

4,3

{
b1 = 8

b4
0
+ 40a0b

2

0
− 96b0 + 144a2

0
= 0

V+

4,4

{
b1 = 10

b5
0
+ 80a0b

3

0
− 336b2

0
+ 1024a2

0
b0 − 3072a0 = 0

V+

4,5

{
b1 = 12

b6
0
− 140a0b

4

0
+ 896b3

0
− 4144a2

0
b2
0
+ 28160a0b0 − 14400a3

0
− 25600 = 0

V+

4,6

{
b1 = 14

b7
0
+ 224a0b

5

0
− 2016b4

0
+ 12544a2

0
b3
0
− 142848a0b

2

0
+ 147456a3

0
b0 + 288000b0 − 884736a2

0
= 0
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equations for �2n,0 are well expressed by the obstruction Δ0(a, b) = b − a� , so 
henceforth we will consider d > 0.

Proposition 4.6  If �′
2n,d is not empty, then codim(��

2n,d,�2n) ≤ n.

Proof  Now, let us suppose that Pd =
∑d

k=0
pkx

k is a solution to one of the following 
algebraic equations

where A = xn +
∑n

k=1
an−kx

n−k and B =
∑n

k=1
bn−kx

n−k . Hence the coefficients of the 
polynomial

(29)P��
d
± 2AP�

d
− (B ∓ A�)Pd = 0

Table 3   Algebraic equations of restricted spectral varieties V+

6,d
= �

+

6,d
∩ {a1 = 0} for small values of d 

V+

6,0 ⎧⎪⎨⎪⎩

b2 = 3

b1 = 0

b0 − a1 = 0

V+

6,1 ⎧⎪⎨⎪⎩

b2 = 5

2a1b1 − 8a0 − 2b0b1 = 0

−6a1 − b2
1
+ 2b0 = 0

4a1b0 − 2a0b1 − 3a2
1
− b2

0
= 0

V+

6,2 ⎧⎪⎪⎨⎪⎪⎩

b2 = 7

23a2
1
b0 − 9a1b

2

0
− 14a0a1b1 + 6a0b0b1 − 15a3

1
− 24a1 + 32a2

0
+ b3

0
− 2b2

1
+ 8b0 = 0

9a2
1
b1 − 12a1b0b1 + 6a0b

2

1
+ 24a0b0 − 24a0a1 + 3b2

0
b1 − 12b1 = 0

−3a1b
2

1
+ 36a1b0 + 24a0b1 − 30a2

1
− 6b2

0
+ 3b0b

2

1
− 48 = 0

22a1b1 − 32a0 + b3
1
− 6b0b1 = 0

V+

6,3 ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

b2 = 9

176a3
1
b0 − 86a2

1
b2
0
− 116a0a

2

1
b1 + 16a1b

3

0
− 20a1b

2

1
+ 264a1b0 + 80a0a1b0b1

− 12a2
0
b2
1
− 144a2

0
b0 − 12a0b

2

0
b1 + 120a0b1 − 105a4

1
− 372a2

1
+ 432a2

0
a1

− b4
0
− 36b2

0
+ 8b0b

2

1
− 288 = 0

60a3
1
b1 − 92a2

1
b0b1 + 56a0a1b

2

1
+ 192a0a1b0 + 36a1b

2

0
b1 + 96a1b1 − 48a0b

2

0

− 24a0b0b
2

1
− 288a2

0
b1 − 144a0a

2

1
+ 576a0 + 8b3

1
− 4b3

0
b1 = 0

− 18a2
1
b2
1
+ 372a2

1
b0 − 132a1b

2

0
+ 24a1b0b

2

1
− 72a0a1b1 − 12a0b

3

1
− 72a0b0b1

− 252a3
1
− 288a1 + 12b3

0
− 6b2

0
b2
1
+ 48b2

1
+ 288b0 = 0

4a1b
3

1
− 48a0b

2

1
+ 136a2

1
b1 − 160a1b0b1 + 288a0b0 − 864a0a1 − 4b0b

3

1
+ 24b2

0
b1

+ 192b1 = 0

−52a1b
2

1
+ 144a0b1 + 120a1b0 − 252a2

1
− b4

1
+ 12b0b

2

1
− 12b2

0
− 288 = 0
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in ℂ[x] vanish. This give place to a system of equations which are sufficient condi-
tions for the existence of Pd,

We will denote the coefficient matrix of the system (31) by M±

d,n
(A,B) . Note this 

matrix has size (d + n) × (d + 1) and it also has the property

Remark 4.7  As there is no solution P of degree less than d, then 
rank(M±

d−1,n
(A,B)) = d.

In order to determinate the codimension of �′
2n,d

 around a point (A0,B0) we shall 
choose a suitable d × d submatrix D of M±

d−1,n
(A0,B0) such that its determinant is dif-

ferent from zero. In addition, the vanishing of the determinants of the matrices set by 
adding one of the remaining n rows of M±

d−1,n
(A0,B0) to D, generates n conditional 

equations which guarantees the existence of a non-trivial solution to (31). 	� ◻

4.4 � An example: case n = 3

As an useful example in order to illustrate further computes, specially for look-
ing accurate spectral values on Schrödinger type problems, let us assume that 
A(x) = x3 + a3,1x

2 + a3,2x + a3,3 and B(x) = b2,0x
2 + b2,1x + b2,2 . So, the analysis on 

previous Sect. 4.3 for case n = 3 can be summarized with the following proposition.

Proposition 4.8  A necessary condition for equation

in order to have a polynomial solution of degree d is b2,0 + 3 = −2d for 
d = 0, 1, 2,…

(30)

d∑
k=2

k(k − 1)pkx
k−2 ±

(
2xn +

n∑
k=1

2an−kx
n−k

)(
d∑

k=1

kpkx
k−1

)

−

(
n∑

k=1

bn−kx
n−k ∓ nxn−1 +

n−1∑
k=1

(n − k)an−kx
n−1−k

)(
d∑

k=0

pkx
k

)
= 0

(31)

⎡⎢⎢⎢⎢⎣

a1 − b0 2a2 2 0 ⋯ 0 0

2a2 − b1 3a1 − b0 4a0 6 ⋯ 0 0

⋱ ∗ ∗

0 0 0 0 ⋯ 2(d − 1) + n − bn−1 (2d + n − 1)an−1 − bn−2
0 0 0 0 ⋯ 0 2d + n − bn−1

⎤
⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣

p0
p1
⋮

pd

⎤⎥⎥⎥⎦
= 0.

(32)M±

d,n
(A,B) =

⎡
⎢⎢⎢⎣

0

M±

d−1,n
(A,B) ⋮

∗

0 ⋯ 0 2d + n ± bn−1

⎤
⎥⎥⎥⎦
.

(33)
y�� − (2x3 + 2a3,1x

2 + 2a3,2x + 2a3,3)y
� − ((b2,0 + 3)x2 + (2a3,1 + b2,1)x + a3,2 + b2,2)y = 0
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On the other hand, sufficient conditions are coded by the solutions of the linear 
system associated to the matrix

where

It creates a set of at most two polynomial equations in the variables a3,0 , a3,1 , a3,2 , 
a3,3 , a2,0 , a2,1 , a2,2 which guarantees likewise a non-trivial solution to the associated 
system to M−

d
(A,B) and a polynomial solution to Eq. (33).

Proof  This is a restriction of the analysis developed on Sect. 4.3 to n = 3 . 	�  ◻

Generically we can suppose that our d × d principal minor is different from 
zero, so the equations given by Proposition 4.8 are the determinants

and

(34)M−
d
(A,B) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�0 �0 �0
�1 �1 �1 �1
�2 �2 �2 �2 �2

⋱ ⋱ ⋱ ⋱ ⋱

�d−2 �d−2 �d−2 �d−2 �d−2
�d−1 �d−1 �d−1 �d−1

�d �d �d
0 �d+1 �d+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

�k = −a3,2(2k + 1) − b2,2,

�k = −2a3,3(k + 1),

�k = (k + 2)(k + 1),

�k = −2a3,1k − b2,1,

�k = −2k − b2,0 + 1,

k = 0, 1, 2,…

k = 0, 1, 2,…

k = 0, 1, 2,…

k = 1, 2, 3…

k = 2, 3, 4…

(35)Δ1
d,3
(−A,B) =

|||||||||||||||

�0 �0 �0
�1 �1 �1 �1
�2 �2 �2 �2 �2

⋱ ⋱ ⋱ ⋱ ⋱

�d−2 �d−2 �d−2 �d−2 �d−2
�d−1 �d−1 �d−1 �d−1
�d �d �d

|||||||||||||||

= 0

(36)Δ2
d,3
(−A,B) =

|||||||||||||||

�0 �0 �0
�1 �1 �1 �1
�2 �2 �2 �2 �2

⋱ ⋱ ⋱ ⋱ ⋱

�d−2 �d−2 �d−2 �d−2 �d−2
�d−1 �d−1 �d−1 �d−1
0 �d+1 �d+1

|||||||||||||||

= 0
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Several detailed examples of this equations can be found on [8, 19].

4.5 � Proof of Theorem 2.3

We can now state the proof, which follows easily from the other results. Statement 
(a) is a direct consequence of Proposition  3.5. Statement (b) is a consequence of 
Theorems  4.3 and Proposition  4.6. Note that, from d’Alembert reduction, the 
codimension of �′

2n,d
 in �2n coincide with that of �2n,d in ℙ2n . Statement (c) and 

(d) are also clear, as �′
2n,d

 is contained in the union of hyperplanes of equations 
bn+1 = 2d + n and bn−1 = −2d − n . 	� ◻

5 � Schrödinger equation

Let us summarize briefly the known results about explicit solutions for the one dimen-
sional stationary Schrödinger equation. We start mentioning that Natanzon in 1971, 
see [14], introduced exactly solvable potentials, which today are known as Natanzon 
potentials. The seminal work of Natanzon inspired further researchers about exactly 
solvable potentials, although in the sense of Natanzon exactly solvable potentials also 
include potentials in where Schrödinger equations have eigenfunctions of hypergeo-
metric type, not necessarily Liouvillian functions. The exactly solvable potentials, 
also known as solvable potentials, we extended to Schrödinger equations with explicit 
eigenfunctions. In this sense, solvable potentials are related to Schrödinger equations 
with eigenfunctions belonging to the set of special functions (Airy, Bessel, Error, Ei, 
Hypergeometric, Whittaker, Heun), not necessarily Liouvillian! Moreover, in case 
of Coulomb and 3D harmonic oscillator potentials correspond to Schrödinger equa-
tions which are transformed into Whittaker differential equations, Martinet-Ramis in 
[13] established the necessary and sufficient conditions to determine the obtaining 
of Liouvillian solutions of the Whittaker differential equations. Recently Combot in 
[9] developed another method to obtain exactly solvable potentials, in the sense of 
Natanzon, involving rigid functions in the sense of Katz.

To avoid confusion between explicit and Liouvillian solutions it was introduced 
the concept of algebraic spectrum in [2]. Also known as Liouvillian spectral set it 
is the set of eigenvalues for which the Schrödinger equation has Liouvillian eigen-
functions, see also [3, 4]. In some scenarios it is known that bounded eigenfunctions 
of Schrödinger operator are necessarily Liouvillian, see [6]. Potentials with infinite 
countable algebraic spectrum are called algebraically solvable potentials and those 
with finite algebraic spectrum algebraically quasi-solvable potentials, for complete 
details see [4, §3.1, pp. 316] and see also [2, 3].

On the other hand, Turbiner in 1988, see [18], following the same philosophy of 
Natanzon, introduced quasi-solvable potentials. The seminal paper of Turbiner leaded to 
the seminal paper of Bender and Dunne in 1996, see [5], in where they obtain a family 
of orthogonal polynomials in the energy values of the Schrödinger equation with sextic 
anharmonic potentials, see also [11] for the study of more general sextic anharmonic 
oscillators. Due to Schrödinger equation with quartic anharmonic oscillator potential 
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falls in triconfluent Heun equation, see [10], it is in some sense a generalized Natan-
zon potential (exactly solvable) although there no exist Liouvillian eigenfunctions. In a 
similar way for algebraically solvable potentials, in [4, §3.1, pp. 316] also was introduced 
the concept of algebraically quasi-solvable potential as those finite non empty algebraic 
spectrum, see also [2, 3]. Examples of algebraically solvable potentials and algebraically 
quasi-solvable potentials (quartic and sextic oscillators) were presented in [2–4] using [1, 
Theorem 2.5, pp. 276], which corresponds to the application of Kovacic algorithm for 
reduced second order linear differential equation with polynomial coefficients.

Let us consider the one dimensional stationary Schrödinger equation

with a polynomial potential U(x). It is clear that the potential U(x) is algebraically 
quasi-exactly solvable if there are some values of � for wich equation (37) has a 
Liouvillian solution. This is equivalent to say that the line,

paremeterized by � , intersects the spectral set �2n.
As it is well know, and we examined in Example 4.4, any quadratic potential is 

quasi-exactly solvable (and more over, exactly solvable). It is also clear that any 
quasi-exactly solvable potential is of even degree. Let us assume from now on that 
U(x) is of degree 2n ≥ 4.

We consider the decomposition −U(x) = A(x)2 + B(x) as in Theorem  3.2. We 
define the arithmetic condition of U(x) as the complex number,

where bn−1 is the coefficient of xn−1 the polynomial B(x) appearing in the unique 
decomposition −U(x) = A(x)2 + B(x) . Note that a necessary condition for U(x) to 
be quasi exactly solvable is its arithmetic condition to be a non-negative integer. In 
such case the intersection between the line:

and �2n is confined to the spectral variety �2n,d.
Let us consider the universal sequence of differential polynomials Δd ∈ ℚ{a, b} as 

in Theorem 4.3. The following lemma allows us to bound the number of admissible 
values of energy (for which the Schrödinger equation admits a Liouvillian solution) of 
any quasi-exactly solvable polynomial potential. Let us make clear that by the degree of 
a differential polynomial Δd in the variable b we mean its ordinary degree: that is we 
consider a, a�, a��,… , b, b�, b��,… as an infinite set of independent variables.

Lemma 5.1  The degree of Δd in the variable b is at most d + 1.

Proof  Let us recall the differential polynomials �d and rd appearing in the definition 
of Δd . Let us prove first: 

(37)� �� = (� − U(x))�

{𝜆 − U(x) ∶ 𝜆 ∈ ℂ} ⊆ 𝕄2n

d =
|bn−1| − n

2

{𝜆 − U(x) ∶ 𝜆 ∈ ℂ} ⊆ 𝕄2n



	 São Paulo Journal of Mathematical Sciences

1 3

(a)	 The degree of �d in the variable b is small or equal to d+1
2

.
(b)	 The degree of rd in the variable b is small or equal to d+2

2
.

The degree of �0 = −2a in the variable b is 0 an the degree of r0 = b − a� in the vari-
able b is 1. Therefore (a) and (b) hold for d = 0 . Now, from the recurrence law (21) 
we have that the degree in b of �j+1 is at most that of rj and that the degree in b of 
rj+1 is at most a unit bigger that the degree of �j . This proves (a) and (b). The degree 
of �d is at most the maximum between the sum of the degrees of �d and rd−1 and the 
sum of the degrees of �d−1 and rd ; which is at most d + 1 . 	�  ◻

Theorem  5.2  Let U(x) be an algebraically quasi-solvable polynomial potential, 
and let d be its arithmetic condition. The number of values of the energy parameter � 
such that Eq. (37) has a Liouvillian solution is at most d + 1.

Proof  Generically, we may consider that U(x) has no independent term. Then 
the condition on � for the existence of a Liouvillian solution is the vanishing of 
Δd(A(x),B(x) + �) which is a polynomial in x of � . The number of values of � for 
which this polynomial vanish can not be greater than its degree in � . Clearly, the 
degree in � of Δd(A(x),B(x) + �) can not exceed the degree in b of Δd(a, b) which is 
bounded by d + 1 by Lemma 5.1. 	�  ◻

Example 5.3  In order to illustrate the procedures developed here let us consider the 
non-singular Turbiner potential

Table 4   Spectral system of 
Schrödinger equation associated 
to (38)

d �
d

1
{

J = 1

� = 0

3
{

J = 2

�2 − 24 = 0

5
{

J = 3

�3 − 128� = 0

7
{

J = 4

�4 − 400�2 + 12096 = 0

9
{

J = 5

− �5 + 960�3 − 129024� = 0

11
{

J = 6

�6 − 1960�4 + 729280�2 − 26611200 = 0

13
{

J = 7

− �7 + 3584�5 − 2934784�3 + 438829056� = 0
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where J is a non-negative integer. This potential has been studied in several papers, 
including [5]. Let �d ⊂ �′

6,d
 be the set consisting of all possible values for J and 

� with polynomial hyperexponential solutions of polynomial degree d. In virtue of 
Theorem 4.3 it is a subvariety of V(2J − d − 1) . So, d shall only take non-negative 
odd values (Table 4).

On the other hand, we can easily compute the equations of �d through the univer-
sal differential polynomial Δd(x

3,−(4J + 1)x2 − �) for the auxiliary equation

For the case d = 1 we get the following equations

Taking into account above consideration we compute the first seven equations for �d

6 � Final remarks

In this paper we developed a technique to obtain Liouvillian solutions for parameter-
ized second order linear differential equations with polynomial coefficients. In par-
ticular case, we study the set of possible values of energy to get Liouvillian solutions 
of Schrödinger equations with anharmonic potentials. We adapted asymptotic itera-
tion method, Kovacic’s Algorithm and previous results provided in [1–4] in terms 
of algebraic varieties extending slightly the known results about polynomial quasi-
solvable potentials.
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