Liouvillian solutions for second order linear diferential equations with polynomial coefcients

Cargando...
Miniatura

Fecha

2020-09-10

Autores

Acosta‑Humánez, Primitivo B.
Blázquez‑Sanz, David
Venegas‑Gómez, Henock

Título de la revista

ISSN de la revista

Título del volumen

Editor

Springer

Resumen

In this paper we present an algebraic study concerning the general second order linear diferential equation with polynomial coefcients. By means of Kovacic’s algorithm and asymptotic iteration method we fnd a degree independent algebraic description of the spectral set: the subset, in the parameter space, of Liouville integrable diferential equations. For each fxed degree, we prove that the spectral set is a countable union of non accumulating algebraic varieties. This algebraic description of the spectral set allow us to bound the number of eigenvalues for algebraically quasi-solvable potentials in the Schrödinger equation.

Descripción

Palabras clave

Anharmonic oscillators, Asymptotic iteration method, Kovacic algorithm, Liouvillian solutions, Parameter space, Quasi-solvable model, Schrödinger equation, Spectral varieties

Citación

Colecciones