Liouvillian solutions for second order linear diferential equations with polynomial coefcients
Cargando...
Archivos
Fecha
2020-09-10
Autores
Acosta‑Humánez, Primitivo B.
Blázquez‑Sanz, David
Venegas‑Gómez, Henock
Título de la revista
ISSN de la revista
Título del volumen
Editor
Springer
Resumen
In this paper we present an algebraic study concerning the general second order
linear diferential equation with polynomial coefcients. By means of Kovacic’s
algorithm and asymptotic iteration method we fnd a degree independent algebraic
description of the spectral set: the subset, in the parameter space, of Liouville integrable diferential equations. For each fxed degree, we prove that the spectral set is
a countable union of non accumulating algebraic varieties. This algebraic description of the spectral set allow us to bound the number of eigenvalues for algebraically
quasi-solvable potentials in the Schrödinger equation.
Descripción
Palabras clave
Anharmonic oscillators, Asymptotic iteration method, Kovacic algorithm, Liouvillian solutions, Parameter space, Quasi-solvable model, Schrödinger equation, Spectral varieties