Prototipo de un sistema portátil de monitoreo continuo de frecuencia respiratoria y saturación de oxígeno en sangre para el soporte de diagnóstico temprano y seguimiento de la enfermedad pulmonar obstructiva crónica
datacite.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.contributor.advisor | Paredes Méndez, Virginia Nathaly | |
dc.contributor.author | Púa Pantoja, Miguel Enrique | |
dc.contributor.author | Salas Montoya, Helmunt Junior | |
dc.contributor.author | Torres Gutiérrez, María Del Carmen | |
dc.date | 2050-12-30 | |
dc.date.accessioned | 2024-09-19T19:59:43Z | |
dc.date.available | 2024-09-19T19:59:43Z | |
dc.date.issued | 2024 | |
dc.description.abstract | La EPOC es una enfermedad pulmonar progresiva caracterizada por la limitación del flujo aéreo. Se produce cuando los pulmones se dañan de forma permanente y el flujo de aire se ve obstaculizado. Los fumadores o exfumadores y las personas expuestas a humo de segunda mano corren mayor riesgo de desarrollar EPOC. Los síntomas principales son la tos crónica, expectoración y dificultad para respirar. Esta se caracteriza por una progresión lenta e, inicialmente, escasa sintomatología. Esto conlleva un riesgo elevado de diagnósticos tardíos en etapas avanzadas, empeorando el pronóstico y morbimortalidad. Por ello, la detección temprana y monitoreo continuo son fundamentales para aplicar intervenciones tempranas que puedan modular la historia natural de la enfermedad mediante cambios conductuales en los pacientes y tratamientos broncodilatadores y antiinflamatorios. Se diseña y valida funcionalmente una plataforma portátil de telemonitoreo fisiológico continuo, destinada a optimizar el manejo clínico de pacientes con EPOC. El dispositivo desarrollado integra un sensor de fotopletismografia (MAX30102) para adquisición no invasiva de saturación de oxígeno y frecuencia respiratoria en entornos ambulatorios. Los datos capturados son transmitidos de manera inalámbrica a una plataforma cloud, habilitando su supervisión remota en tiempo real a través de una interfaz web. Esta estrategia de "medicina a distancia" maximiza las chances de consecución oportuna de ajustes terapéuticos clínicamente relevantes, se busca una validación funcional que demuestre precisión y exactitud satisfactorias del dispositivo para la evaluación extrahospitalaria de estos parámetros en población EPOC. | spa |
dc.description.abstract | COPD is a progressive lung disease characterized by airflow limitation. It occurs when the lungs are permanently damaged, and airflow is impeded. Smokers or former smokers and people exposed to secondhand smoke are at increased risk of developing COPD. The main symptoms are chronic cough, expectoration, and difficulty breathing. This is characterized by a slow progression and, initially, few symptoms. This carries a high risk of late diagnoses in advanced stages, worsening the prognosis and morbidity and mortality. Therefore, early detection and continuous monitoring are essential to apply early interventions that can modulate the natural history of the disease through behavioral changes in patients and bronchodilator and anti-inflammatory treatments. A portable continuous physiological telemonitoring platform is designed and functionally validated, aimed at optimizing the clinical management of patients with COPD. The developed device integrates a photoplethysmography sensor (MAX30102) for non-invasive acquisition of oxygen saturation and respiratory rate in ambulatory environments. The captured data is transmitted wirelessly to a cloud platform, enabling remote monitoring in real time through a web interface. This "remote medicine" strategy maximizes the chances of timely achievement of clinically relevant therapeutic adjustments. A functional validation is sought that demonstrates satisfactory precision and accuracy of the device for the out-of-hospital evaluation of these parameters in the COPD population. | eng |
dc.format.mimetype | ||
dc.identifier.uri | https://hdl.handle.net/20.500.12442/15666 | |
dc.language.iso | spa | |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ingenierías | spa |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | eng |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | |
dc.subject | EPOC | spa |
dc.subject | Monitoreo continuo | spa |
dc.subject | Dispositivo portátil | spa |
dc.subject | Frecuencia respiratoria | spa |
dc.subject | Saturación de oxígeno | spa |
dc.subject.keywords | COPD | eng |
dc.subject.keywords | Continuous monitoring | eng |
dc.subject.keywords | Wearable device | eng |
dc.subject.keywords | Respiratory rate | eng |
dc.subject.keywords | Oxygen saturation | eng |
dc.title | Prototipo de un sistema portátil de monitoreo continuo de frecuencia respiratoria y saturación de oxígeno en sangre para el soporte de diagnóstico temprano y seguimiento de la enfermedad pulmonar obstructiva crónica | spa |
dc.type.driver | info:eu-repo/semantics/other | |
dc.type.spa | Trabajo de grado - pregrado | |
dcterms.references | Organización Mundial de la Salud, "Enfermedad pulmonar obstructiva crónica (EPOC)," 2021. [Online]. Available: https://www.who.int/es/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd) | spa |
dcterms.references | J. G. Zabaleta et al., "Prevalencia y factores de riesgo asociados con la enfermedad pulmonar obstructiva crónica en Colombia," Rev. Panam. Salud Publica, vol. 45, p. e11, 2021, doi: 10.26633/RPSP.2021.11. | spa |
dcterms.references | M. Miravitlles et al., "Guía española de la enfermedad pulmonar obstructiva crónica (GesEPOC) 2021. Tratamiento farmacológico en fase estable," Arch. Bronconeumol., vol. 57, no. Supl 1, pp. 22–50, 2021, doi: 10.1016/j.arbres.2021.03.015. | spa |
dcterms.references | R. A. Rabinovich et al., "Guía de práctica clínica de la enfermedad pulmonar obstructiva crónica (EPOC) - Actualización 2022," Arch. Bronconeumol., vol. 58, no. Supl 1, pp. 1–92, 2022, doi: 10.1016/j.arbres.2022.03.005. | spa |
dcterms.references | M. V. Aryal, V. S. Thapaliya, and P. S. Shrestha, "A portable device for continuous monitoring of oxygen saturation and respiratory rate using pulse oximeter and accelerometer sensor," IEEE Access, vol. 9, pp. 150847–150856, 2021, doi: 10.1109/ACCESS.2021.3125315. | eng |
dcterms.references | J. M. Fernández-Sánchez et al., "Telemedicina, monitorización remota y aplicaciones móviles en pacientes con enfermedad pulmonar obstructiva crónica (EPOC) y otros trastornos respiratorios: Revisión de la literatura," Arch. Bronconeumol., vol. 58, no. 8, pp. 551–561, 2022, doi: 10.1016/j.arbres.2022.03.012. | spa |
dcterms.references | S. Del Campo and G. M. E. Chacón, "Diseño y construcción de un monitor multiparamétrico para la medición de constantes vitales," Rev. Ing. Biomédica, vol. 15, no. 29, pp. 76–90, 2021, doi: 10.24050/19099762.n29.2021.1438. | spa |
dcterms.references | J. W. Weenink, T. Engelen, T. J. M. Veldhuis, and H. J. Wesseling, "A Wearable Approach for Remote Monitoring of Respiratory Parameters in COPD Patients," IEEE Access, vol. 9, pp. 107092–107108, 2021, doi: 10.1109/ACCESS.2021.3100614. | spa |
dcterms.references | P. Vargas-Valencia, D. Rodríguez-Fonseca, and J. D. Pineda-Zapata, "Evaluación de dispositivos comerciales para telemedicina en pacientes con enfermedad pulmonar obstructiva crónica," TecnoLógicas, vol. 24, no. 51, pp. 105–123, 2021, doi: 10.22430/22565337.1874. | spa |
dcterms.references | A. O. Adewuya et al., "Prevalence and risk factors of COPD in Cali, Colombia: A cross-sectional study," J. Bras. Pneumol., vol. 48, no. 1, 2022, doi: 10.36416/1806-3756/e20210097. | eng |
dcterms.references | J. A. Orozco-Levi and M. J. Rodríguez-Ruiz, "Telemedicina y enfermedad pulmonar obstructiva crónica: retos y oportunidades," Arch. Bronconeumol., vol. 58, no. 8, pp. 541–542, 2022, doi: 10.1016/j.arbres.2022.04.012. | spa |
dcterms.references | Y. Liang, C. Zheng, J. Ma, and W. Chen, "A Portable Real-Time Respiratory Rate Monitor Based on Wearable Sensors," IEEE Access, vol. 9, pp. 26704–26716, 2021, doi: 10.1109/ACCESS.2021.3057993. | eng |
dcterms.references | M. C. Dumitrescu et al., "Telemonitoring systems for COPD patients with mobile application," Sensors, vol. 22, no. 7, p. 2495, 2022, doi: 10.3390/s22072495. | eng |
dcterms.references | A. C. Mendes, C. Guimarães, R. Santos, P. Alarcão, and J. Alarcão, "Home telemonitoring for COPD patients in the era of COVID-19," Front. Rehabil. Sci., vol. 2, p. 727743, 2021, doi: 10.3389/fresc.2021.727743. | eng |
dcterms.references | J. Villegas-Paredes, Y. Y. Espinoza-Ortiz, and C. D. Morales-Gomez, "Remote monitoring system for patients with chronic obstructive pulmonary disease," Sensors, vol. 22, no. 17, p. 6589, 2022, doi: 10.3390/s22176589. | eng |
dcterms.references | M. A. Raza et al., "Fully integrated PPG and ECG analytics engine for wearable health monitoring system," IEEE Trans. Biomed. Circuits Syst., vol. 16, no. 2, pp. 298–313, 2022, doi: 10.1109/TBCAS.2022.3152164. | eng |
dcterms.references | B. H. Shin et al., "A feasibility study of 24-hour respiratory rate and pulse oximetry monitoring in patients with chronic obstructive pulmonary disease in a home environment," Sensors, vol. 22, no. 8, p. 2874, 2022, doi: 10.3390/s22082874. | eng |
dcterms.references | S. Elfeky et al., "Design and development of a low-cost wearable monitoring device for early detection of COPD exacerbations," Sensors, vol. 22, no. 1, p. 226, 2022, doi: 10.3390/s22010226. | eng |
dcterms.references | L. Rubio-Chavarro, J. C. González-Cardona, A. F. Bohórquez-Borda, and J. D. Ropero-Ballen, "An embedded system for continuous remote monitoring of RR and SPO2 in COPD patients," in VII Latin American Congress on Biomedical Engineering CLAIB 2022, Springer, 2022, pp. 307–313. | eng |
dcterms.references | L. Rubio-Chavarro, J. C. González-Cardona, A. F. Bohórquez-Borda, and J. D. Ropero-Ballen, "An embedded and portable oximeter for continuous monitoring of RR, SPO2 and FVT in COPD patients," in 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2022, pp. 1–6. | eng |
dcterms.references | S. M. Castillo-Rojas, J. L. Frías-Alarcón, J. L. Castillo-Jaimes, and A. J. Guerra-Lozano, "Oxygen saturation and respiratory rate monitoring system using a wearable device for people with chronic obstructive pulmonary disease," Sensors, vol. 23, no | eng |
dcterms.references | D. Leal-Junior et al., "Respiratory inductive plethysmography for the evaluation of respiratory pattern and thoraco-abdominal asynchrony in COPD patients: A systematic review and meta-analysis," PLoS One, vol. 16, no. 3 March, pp. 1–21, 2021, doi: 10.1371/journal.pone.0248686. | eng |
dcterms.references | K. Chen y Z. Ding, "Lithium-ion battery lifespan estimation for hybrid electric vehicle," en The 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, China, 2015, pp. 5602-5605. https://doi.org/10.1109/CCDC.2015.7161797. | eng |
dcterms.references | B. O. I. de Pesas Y Medidas Iec, C. E. I. I. F. I. de Química Clínica Y, L. M. I. C. I. de Acreditación, y I. de Laboratorios, “Edición del VIM 2008 con inclusión de pequeñas correcciones”, Cem.es. [En línea]. Disponible en: https://www.cem.es/sites/default/files/vim-cem-2012web.pdf. | spa |
oaire.version | info:eu-repo/semantics/acceptedVersion | |
sb.programa | Ingeniería Biomédica | spa |
sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: