Integrated analysis of microRNA regulation and its interaction with mechanisms of epigenetic regulation in the etiology of systemic lupus erythematosus

Cargando...
Miniatura

Fecha

2019

Autores

Navarro Quiroz, Elkin
Navarro Quiroz, Roberto
Pacheco Lugo, Lisandro
Aroca Martínez, Gustavo
Gómez Escorcia, Lorena
Gonzalez Torres, Henry
Cadena Bonfanti, Andres
Marmolejo, Maria del Carmen
Sanchez, Eduardo
Villarreal Camacho, Jose Luis

Título de la revista

ISSN de la revista

Título del volumen

Editor

Public Library of Science
Facultad de Ciencias Básicas y Biomédicas

Resumen

The aim of this study was to identity in silico the relationships among microRNAs (miRNAs) and genes encoding transcription factors, ubiquitylation, DNA methylation, and histone modifications in systemic lupus erythematosus (SLE). To identify miRNA dysregulation in SLE, we used miR2Disease and PhenomiR for information about miRNAs exhibiting differential regulation in disease and other biological processes, and HMDD for information about experimentally supported human miRNA–disease association data from genetics, epigenetics, circulating miRNAs, and miRNA–target interactions. This information was incorporated into the miRNA analysis. High-throughput sequencing revealed circulating miRNAs associated with kidney damage in patients with SLE. As the main finding of our in silico analysis of miRNAs differentially expressed in SLE and their interactions with disease-susceptibility genes, post-translational modifications, and transcription factors; we highlight 226 miRNAs associated with genes and processes. Moreover, we highlight that alterations of miRNAs such as hsa-miR-30a-5p, hsa-miR-16-5p, hsa-miR-142-5p, and hsa-miR-324-3p are most commonly associated with post-translational modifications. In addition, altered miRNAs that are most frequently associated with susceptibility-related genes are hsa-miR-16-5p, hsamiR- 374a-5p, hsa-miR-34a-5p, hsa-miR-31-5p, and hsa-miR-1-3p.

Descripción

Palabras clave

MicroRNAs, Systemic lupus erythematosus, DNA methylation, Post-translational modification, Epigenetics, Transcription factors, Gene regulation

Citación

Enlace DOI

Enlace URL externo