Rol de la microbiota intestinal en el desarrollo del trastorno del espectro autista

dc.contributor.authorBonivento Ortiz, Jiseth Jurenis
dc.date.accessioned2020-01-21T19:52:27Z
dc.date.available2020-01-21T19:52:27Z
dc.date.issued2019
dc.description.abstractLa microbiota humana desempeña un papel importante en diferentes procesos fisiológicos del cuerpo humano como; la protección contra agentes patógenos, el metabolismo energético, la nutrición y el desarrollo del sistema inmune entre otras. Sin embargo, el desequilibrio de algunos de estos microorganismos ha sido involucrado en el desarrollo de algunas enfermedades en el hombre como; infecciones en la piel, en las vías respiratorias altas, en el aparato genitourinario y en los intestinos. Principalmente, la disbiosis de la microbiota intestinal ha sido relacionada con enfermedades asociadas a trastornos del desarrollo mental como lo es El Trastorno Del Espectro Autista. Esta enfermedad influye directamente en la calidad de vida de los pacientes, ya que afecta el correcto funcionamiento del cerebro generando problemas cognitivos, comunicación deteriorada, comportamiento repetitivo y dificultad para la interacción social. Los diferentes problemas asociados al trastorno impactan directamente en las familias y en la economía de la salud nacional, por lo que puede ser considerado como un problema de salud pública. Debido a lo anterior es de suma importancia mostrar el rol de la microbiota intestinal en el desarrollo del Trastorno Del Espectro Autista, de tal forma que esto permita una mejor comprensión del trastorno y así influir positivamente en su prevención y tratamiento. Para poder lograr este objetivo se realizó una búsqueda bibliográfica en las bases de datos NCBI, SciELO, Redalyc, Plos one y Science Direct. Los resultados demuestran que existe una relación entre los trastornos gastrointestinales y el Trastorno Del Espectro Autista la cual es regulada por el eje Intestino-cerebro de una manera bidireccional. Finalmente se puede concluir que la disbiosis intestinal hasta el momento no es considerada una causa del desarrollo de Trastorno Del Espectro Autista, sin embargo, es un factor que regula la sintomatología de esta enfermedad mental.spa
dc.description.abstractThe human microbiota plays an important role in different physiological processes of the human body, such as protection against pathogens, energy metabolism, nutrition and the development of the immune system, among others. However, the imbalance of some of these microorganisms has been involved in the development of some diseases in humans, such as infections in the skin, upper respiratory tract, genitourinary system and intestines. Mainly, the dysbiosis of the intestinal microbiota has been related to diseases associated with mental development disorders such as Autism Spectrum Disorder. This disease directly influences the quality of life of patients, as it affects the proper functioning of the brain generating cognitive problems, impaired communication, repetitive behavior and difficulty in social interaction. The different problems associated with the disorder directly impact families and the national health economy, so it can be considered a public health problem. Due to the above, it is very important to show the role of the intestinal microbiota in the development of the Autism Spectrum Disorder, in such a way that it allows a better understanding of the disorder and thus positively influence its prevention and treatment. In order to achieve this objective, a bibliographic search was carried out in the NCBI, SciELO, Redalyc, Plos one and Science Direct databases. The results show that there is a relationship between gastrointestinal disorders and Autism Spectrum Disorder which is regulated by the bowel-brain axis in a bidirectional manner. Finally it can be concluded that intestinal dysbiosis is not yet considered a cause of the development of Autism Spectrum Disorder, however, it is a factor that regulates the symptomatology of this mental illness.eng
dc.format.mimetypepdfspa
dc.identifier.urihttps://hdl.handle.net/20.500.12442/4548
dc.language.isospaspa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad Ciencias Básicas y Biomédicasspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectMicrobiota intestinalspa
dc.subjectTrastorno del espectro autistaspa
dc.subjectDisbiosisspa
dc.subjectEje intestino-cerebrospa
dc.subjectIntestinal microbiotaeng
dc.subjectAutism spectrum disordereng
dc.subjectDysbiosiseng
dc.subjectIntestine-brain axiseng
dc.titleRol de la microbiota intestinal en el desarrollo del trastorno del espectro autistaspa
dc.title.alternativeRole of the intestinal microbiota in the development of the autistic spectrum disordereng
dc.typeOtherspa
dcterms.referencesBermon P, Petriz B, Kajéniené A, Prestes J, Castell L, Franco O. the microbiota: an exercise immunology perspective stéphane. Microbiota Exerc Immunol. 2015;(22):70–9.eng
dcterms.referencesClapp M, Aurora N, Herrera L, Bhatia M, Wilen E, Wakefield S. Gut microbiota’s effect on mental health: the gut-brain axis. Clin Pract. 2017;7(4).eng
dcterms.referencesTinahones F. La importancia de la microbiota en la obesidad. Rev Esp Endocrinol Pediatr. 2017;8:15–20.spa
dcterms.referencesFarías M, Silva C, Rozowski J. MICROBIOTA INTESTINAL: ROL EN OBESIDAD. Rev Chil Nutr. 2011;38(2):228–33.spa
dcterms.referencesMuñoz A, Diaz C, Tinahones F. Microbiota y diabetes mellitus tipo 2. Endocrinol y Nutr. 2016;63(10):560–8.spa
dcterms.referencesFoster J, Rinaman L, Cryan J. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol Stress [Internet]. 2017;7:124–36. Available from: https://doi.org/10.1016/j.ynstr.2017.03.001eng
dcterms.referencesSherwin E, Dinan T, Cryan J. Recent developments in understanding the role of the gut microbiota in brain health and disease. Ann N Y Acad Sci. 2018;1420(1):5–25.eng
dcterms.referencesTreisman G. The Microbiota in Gastrointestinal Pathophysiology The Role of the Brain–Gut–Microbiome in Mental Health and Mental Disorders [Internet]. The Microbiota in Gastrointestinal Pathophysiology. Elsevier Inc.; 2017. 0 p. Available from: http://dx.doi.org/10.1016/B978-0-12-804024-9/00042-2eng
dcterms.referencesOzonoff S, Young GS, Carter A, Messinger D, Yirmiya N, Zwaigenbaum L, et al. Recurrence risk for autism spectrum disorders: A baby siblings research consortium study. Pediatrics. 2011;128(3).eng
dcterms.referencesAman M. Treatment planning for patients with autism spectrum disorders. J Clin Psychiatry. 2005;66:38–45.eng
dcterms.referencesRisch N, Hoffmann T, Anderson M, Croen L, Grether J, Windham G. Familial recurrence of autism spectrum disorder: Evaluating genetic and environmental contributions. Am J Psychiatry [Internet]. 2014;171(11):1206–13. Available from: http://ajp.psychiatryonline.org/doi/pdfplus/10.1176/appi.ajp.2014.13101359%5Cnhttp://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed12&NEWS=N&AN=2014905510eng
dcterms.referencesPulikkan J, Manzumder A, Grace T. Role of the Gut Microbiome in Autism Spectrum Disorders. Adv Exp Med Biol [Internet]. 2019;1118:253–69. Available from: http://link.springer.com/10.1007/978-3-030-05542-4eng
dcterms.referencesVuong H, Hsiao E. Emerging roles for the gut microbiome in autism spectrum disorder. Biol Psychiatry. 2017;81(5):411–23.eng
dcterms.referencesFattorusso A, Di Genova L, Dell’isola GB, Mencaroni E, Esposito S. Autism spectrum disorders and the gut microbiota. Nutrients. 2019;11(3).eng
dcterms.referencesTorrijo B, Gonzalez D. Influencia de la microbiota en pacientes con trastornos del comportamiento. 2017;1–34. Available from: https://repositorio.unican.es/xmlui/bitstream/handle/10902/12432/TorrijoBuenoBeatriz.pdf?sequence=4spa
dcterms.referencesKumar A, Chordia N. Role of Microbes in Human Health. Appl Microbiol Open Access. 2017;03(02):2–4.eng
dcterms.referencesCollado M, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep [Internet]. 2016;6(February):1–13. Available from: http://dx.doi.org/10.1038/srep23129eng
dcterms.referencesPrincipi N, Esposito S. Gut microbiota and central nervous system development. J Infect [Internet]. 2016;73(6):536–46. Available from: http://dx.doi.org/10.1016/j.jinf.2016.09.010eng
dcterms.referencesAdams JB, Johansen LJ, Powell LD, Quig D, Rubin RA. Gastrointestinal flora and gastrointestinal status in children with autism - comparisons to typical children and correlation with autism severity. BMC Gastroenterol [Internet]. 2011;11(1):22. Available from: http://www.biomedcentral.com/1471-230X/11/22eng
dcterms.referencesTomova A, Husarova V, Lakatosova S, Bakos J, Vlkova B, Babinska K, et al. Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav [Internet]. 2015;138:179–87. Available from: http://dx.doi.org/10.1016/j.physbeh.2014.10.033eng
dcterms.referencesXiang Q, Loke W, Venkatanarayanan N, Lim D, Yu A, Song W. A systematic review of the role of prebiotics and probiotics in autism spectrum disorders. Med. 2019;55(5):1–10.eng
dcterms.referencesMadigan M, Martinko J, Parker J, Brock T, Rodríguez C, Sánchez M. Biología de los microorganismos. 10th, reimpr ed. Pearson Educación, editor. 2004.eng
dcterms.referencesHug L, Baker B, Anantharaman K, Brown C, Probst A, Castelle C, et al. A new view of the tree of life. Nat Microbiol. 2016;1(5):1–6.eng
dcterms.referencesTortora G, Funke B, Case C. Introducción a la microbiología. novena edi. Buenos Aires; 2007. 283–292, 327–330, 345–370, 389-397. p.spa
dcterms.referencesYaeger R. Protozoa: Structure, Classification, Growth, and Development. In: Baron S, editor. Medical Microbiology. 4th editio. 1996.eng
dcterms.referencesSpencer L, Gómez A, Collovini E. Mecanismos de invasion del esporozoíto y merozoíto de Plasmodium. Bionatura. 2016;1(2):89–94.spa
dcterms.referencesMurray P, Rosenthal K, Pfaller M. Microbiología medica. 7 edicion. Elsevier Saunders; 2014.eng
dcterms.referencesManoharachary C, Sridhar K, Singh R, Adholeya A, Suryanarayanan T, Rawat S, et al. Fungal biodiversity: Distribution, conservation and prospecting of fungi from India. Curr Sci. 2005;89(1):58–71.eng
dcterms.referencesMukherjee D, Singh S, Kumar M, Kumar V. Fungal Biotechnology : Role and Aspects Current Perspectives. In: Fungi and their Role in Sustainable Development: Current Perspectives. 2018.eng
dcterms.referencesBeekman A, Barrow R. Fungal metabolites as pharmaceuticals. Aust J Chem. 2014;67(6):827–43.eng
dcterms.referencesEnyiukwu D, Ononuju C, Maranzu J. Plant Pathogenic Fungi ─ Novel Agents of Human Diseases: Implications for public Health. Greener J Epidemiol Public Heal. 2018;6(1):001–19.eng
dcterms.referencesNosanchuk J. Review of Human Pathogenic Fungi: Molecular Biology and Pathogenic Mechanisms. Front Microbiol. 2015;6(February):1–2.eng
dcterms.referencesGelderblom H. Structure and Classification of Viruses. Med Microbiol [Internet]. 1996;(May). Available from: http://www.ncbi.nlm.nih.gov/pubmed/21413309eng
dcterms.referencesFlores T, Villazante L. Clasificacion de los microoganismos. Rev Actual Clin [Internet]. 2014;44:2309–13. Available from: http://www.revistasbolivianas.org.bo/scielo.php?script=sci_arttext&pid=S2304-37682014000500002&lng=es&nrm=iso%3E. ISSN 2304-3768.eng
dcterms.referencesGupta P, Rajput M, Oza T, Trivedi U, Sanghvi G. Eminence of Microbial Products in Cosmetic Industry. Nat Products Bioprospect [Internet]. 2019;9(4):267–78. Available from: https://doi.org/10.1007/s13659-019-0215-0eng
dcterms.referencesDoyle M, Steenson L, Meng J. The prokaryotes: Applied bacteriology and biotechnology. In: The Prokaryotes: Applied Bacteriology and Biotechnology. 2013. p. 1–393.eng
dcterms.referencesRomero C, Castañeda D, Acosta G. Determinación de la calidad bacteriológica del aire en un laboratorio de microbiología en la Universidad Distrital Francisco José de Caldas en Bogotá, Colombia. NOVA [Internet]. 2016;57(1):103–11. Available from: http://www.scielo.org.co/pdf/nova/v14n26/v14n26a12.pdfspa
dcterms.referencesRestrepo G, Marulanda S, Fe Y de la, Diaz A, Baldani V, Hernandez A. Bacterias solubilizadoras de fosfato y sus potencialidades de uso en la promoción del crecimiento de cultivos de importancia económica. Rev CENIC Ciencias Biológicas. 2015;46(1):63–76.spa
dcterms.referencesCastro M, Cavalett A, Spinner A, Rosa D, Jasper R, Quecine M, et al. Phylogenetic identification of marine bacteria isolated from deep-sea sediments of the eastern South Atlantic Ocean. Springerplus. 2013;2(1):1–10.eng
dcterms.referencesRíos S, Agudelo R, Gutiérrez L. Patógenos e indicadores microbiológicos de calidad del agua para consumo humano. Rev Fac Nac Salud Pública. 2017;35(2):236–47.spa
dcterms.referencesCorrales L, Sánchez L, Quimbayo M. Microorganismos potencialmente fitopatógenos en aguas de riego proveniente de la cuenca media del rio Bogotá. Nova. 2018;16(29):71–89.spa
dcterms.referencesEl-Gayar K, Al Abboud M, Essa A. Characterization of thermophilic bacteria isolated from two hot springs in Jazan, Saudi Arabia. J Pure Appl Microbiol. 2017;11(2):743–52.eng
dcterms.referencesYing Y, Meng D, Chen X, Li F. An extremely thermophilic anaerobic bacterium Caldicellulosiruptor sp. F32 exhibits distinctive properties in growth and xylanases during xylan hydrolysis. Enzyme Microb Technol [Internet]. 2013;53(3):194–9. Available from: http://dx.doi.org/10.1016/j.enzmictec.2013.04.004eng
dcterms.referencesSingh P, Singh SM, Roy U. Taxonomic characterization and the bio-potential of bacteria isolated from glacier ice cores in the High Arctic. J Basic Microbiol. 2016;56(3):275–85.eng
dcterms.referencesMano H, Morisaki H. Endophytic Bacteria in the Rice Plant. Microbes Environ. 2008;23(2):109–17.eng
dcterms.referencesEtminani F, Harighi B. Isolation and identification of endophytic bacteria with plant growth promoting activity and biocontrol potential from wild pistachio trees. Plant Pathol J. 2018;34(3):208–17.eng
dcterms.referencesTsuyuki Y, Kurita G, Murata Y, Takahashi T. Bacteria isolated from companion animals in Japan (2014–2016) by blood culture. J Infect Chemother [Internet]. 2018;24(7):583–7. Available from: https://doi.org/10.1016/j.jiac.2018.01.014eng
dcterms.referencesReis N, Saraiva M, Duarte E, de Carvalho E, Vieira B, Evangelista N. Probiotic properties of lactic acid bacteria isolated from human milk. J Appl Microbiol. 2016;121(3):811–20.eng
dcterms.referencesMoreno M, Valladares J, Halabe J. Microbioma humano. Rev la Fac Med. 2018;61(6):7–19.spa
dcterms.referencesKumar A, Shakya A, Mohammed G, Emerald M, Kumar V. Gut-Microbiota and Mental Health: Current and Future Perspectives. J Pharmacol Clin Toxicol. 2014;2(1):1–15.eng
dcterms.referencesGuarner F. Papel de la flora intestinal en la salud y en la enfermedad. Nutr Hosp. 2007;22(SUPPL. 2):14–9.spa
dcterms.referencesLuz B, Luisa D, Martha C, Patricia DP, María Z. THE HUMAN MICROBIOTA: THE ROLE OF MICROBIAL COMMUNITIES IN HEALTH AND DISEASE. Acta Biológica Colomb. 2015;21(1):5–15.eng
dcterms.referencesGrice E, Segre J. The skin microbiome. Nat Rev Microbiol. 2011;9(4):244–53.eng
dcterms.referencesRudolf R, William J. Microbiology of the skin: Resident flora, ecology, infection. J Am Acad Dermatology [Internet]. 1989;20(3). Available from: http://ac.els-cdn.com.proxy-ub.rug.nl/S0190962289700487/1-s2.0-S0190962289700487-main.pdf?_tid=e8903b50-2f33-11e7-b39b-00000aab0f01&acdnat=1493728745_5cbaecb74957c0b8b7ee18c3d6a363eeeng
dcterms.referencesMcLaughlin J, Watterson S, Layton A, Bjourson A, Barnard E, McDowell A. Propionibacterium acnes and Acne Vulgaris: New Insights from the Integration of Population Genetic, Multi-Omic, Biochemical and Host-Microbe Studies. Microorganisms. 2019;7(5):128.eng
dcterms.referencesHernández F, Acosta J, Vázquez J, De Oca R. Identification and molecular characterization of Corynebacterium xerosis isolated from a sheep cutaneous abscess: First case report in Mexico. BMC Res Notes. 2016;9(1):11–3.eng
dcterms.referencesPathak R, Kasama N, Kumar R, Gautam H. Staphylococcus epidermidis in human skin microbiome associated with acne: A cause of disease or defence? Res J Biotechnol. 2013;8(12):78–82.eng
dcterms.referencesPatiño L, Morales C. Microbiota de la piel: el ecosistema cutáneo. Rev Colomb Dermatología y Cirugía Dermatológica [Internet]. 2013;21(2):147–58. Available from: www.revistasocolderma.comspa
dcterms.referencesPato C, Melo J, Ramirez M, Friães A. Streptococcus pyogenes Causing Skin and soft tissue infections are enriched in the recently emerged emm89 Clade 3 and are not associated with abrogation of CovRS. Front Microbiol. 2018;9:1–13.eng
dcterms.referencesMelican K, Michea Veloso P, Martin T, Bruneval P, Duménil G. Adhesion of Neisseria meningitidis to Dermal Vessels Leads to Local Vascular Damage and Purpura in a Humanized Mouse Model. PLoS Pathog. 2013;9:1–11.eng
dcterms.referencesSchleifer K, Kloos W. Isolation and characterization of Staphylococci from human skin. Int J Syst Bacteriol. 1975;25(1):50–61.eng
dcterms.referencesPinto M, Hundi G, Bhat R, Bala N, Dandekeri S, Martis J, et al. Clinical and epidemiological features of coryneform skin infections at a tertiary hospital. Indian Dermatol Online J. 2016;7(3):168–173.eng
dcterms.referencesZaura E, Keijser B, Huse S, Crielaard W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol. 2009;9:1–12.eng
dcterms.referencesNimish P, Deshmukh R. Oral microbiome: Unveiling the fundamentals. J Oral Maxillofac Pathol. 2019;23(1):122–8.eng
dcterms.referencesNetuschil N, Netuschil L. The Oral Microbiota. In: Microbiota of the Human Body. 2016. p. 45–60.eng
dcterms.referencesSerrano H, Sánchez M, Cardona N. Conocimiento de la microbiota de la cavidad oral a través de la metagenómica. CES Odontol. 2015;28(2):112–8.spa
dcterms.referencesWang H, Dai W, Feng X, Zhou Q, Wang H, Yang Y, et al. Microbiota Composition in Upper Respiratory Tracts of Healthy Children in Shenzhen, China, Differed with Respiratory Sites and Ages. Biomed Res Int. 2018;2018.eng
dcterms.referencesMorales P, Brignardello J, Gotteland M. La microbiota intestinal: Un nuevo actor en el desarrollo de la obesidad. Rev Med Chil. 2010;138(8):1020–7.spa
dcterms.referencesIcaza M. Microbiota intestinal en la salud y la enfermedad. Rev Gastroenterol México [Internet]. 2013;78(4):240–8. Available from: http://dx.doi.org/10.1016/j.rgmx.2013.04.004spa
dcterms.referencesFrazier T, DiBaise J, McClain C. Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. J Parenter Enter Nutr. 2011;35:14–20.eng
dcterms.referencesRutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants ’ life : a systematic review. BMC Gastroenterol [Internet]. 2016;1–12. Available from: http://dx.doi.org/10.1186/s12876-016-0498-0eng
dcterms.referencesGómez M, Ramón J, Peréz L, Blanco J. The microbiota-gut-brain axis and its great projections. Rev Neurol. 2019;68(3):111–7.eng
dcterms.referencesDieterich W, Schink M, Zopf Y. Microbiota in the Gastrointestinal Tract. Med Sci. 2018;6(4):116.eng
dcterms.referencesBellmann S, Carlander D, Fasano A, Momcilovic D, Scimeca J, Waldman J, et al. Mammalian gastrointestinal tract parameters modulating the integrity, surface properties, and absorption of food-relevant nanomaterials. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology. 2015;7(5):609–22.eng
dcterms.referencesWatari J, Chen N, Amenta P, Fukui H, Oshima T, Tomita T, et al. Helicobacter pylori associated chronic gastritis, clinical syndromes, precancerous lesions, and pathogenesis of gastric cancer development. World J Gastroenterol. 2014;20(18):5461–73.eng
dcterms.referencesOlveira G. Probióticos y prebióticos en la práctica clínica. Nutr Hosp. 2007;22(SUPPL. 2):26–34.spa
dcterms.referencesSartor B. Microbial Influences in Inflammatory Bowel Diseases. Gastroenterology. 2008;134(2):577–94.eng
dcterms.referencesOtero W, Gómez M. Síndrome de intestino irritable. Rev Cuba Med Mil. 1997;26(1):63–8.spa
dcterms.referencesRajilić M, Biagi E, Heilig H, Kajander K, Kekkonen R, Tims S, et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology. 2011;141(5):1792–801.eng
dcterms.referencesKassinen A, Krogius L, Mäkivuokko H, Rinttilä T, Paulin L, Corander J, et al. The Fecal Microbiota of Irritable Bowel Syndrome Patients Differs Significantly From That of Healthy Subjects. Gastroenterology. 2007;133(1):24–33.eng
dcterms.referencesSpiller R. Review article: Probiotics and prebiotics in irritable bowel syndrome. Aliment Pharmacol Ther. 2008;28(4):385–96.eng
dcterms.referencesMoscoso F, Quera R. Enfermedad celíaca. Revisión. Rev Med Chil. 2016;144:211–21.spa
dcterms.referencesSylvia L, Odio T, Córdova ZM. Base genética de la enfermedad celiaca en el diagnóstico. Rev Cubana Med. 2012;51(2):170–82.spa
dcterms.referencesGirón F, Tapia S, Moriñigo M, Navas V, Serrano J, Alonso B, et al. La composición de la microbiota duodenal en niños con enfermedad celíaca activa está influenciada por el grado de enteropatía. An Pediatr. 2016;84(4):224–30.spa
dcterms.referencesSjöberg V, Sandström O, Hedberg M, Hammarström S, Hernell O, Hammarström M. Intestinal T-cell Responses in Celiac Disease - Impact of Celiac Disease Associated Bacteria. PLoS One. 2013;8(1).eng
dcterms.referencesGuo Q, Wang Y, Xu D, Nossent J, Pavlos N, Xu J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res [Internet]. 2018;6(1). Available from: http://dx.doi.org/10.1038/s41413-018-0016-9eng
dcterms.referencesFirestein G. Evolving concepts of rheumatoid arthritis. Nature. 2003;423(6937):356–61.eng
dcterms.referencesZhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med [Internet]. 2015;21(8):895–905. Available from: http://dx.doi.org/10.1038/nm.3914eng
dcterms.referencesOmran Y Al, Aziz Q. The Brain-Gut Axis in Health and Disease. In: Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease [Internet]. Springer; 2014. p. 135–53. Available from: https://link.springer.com/chapter/10.1007%2F978-1-4939-0897-4_6eng
dcterms.referencesZhao L, Xiong Q, Stary C, Mahgoub O, Ye Y, Gu L, et al. Bidirectional gut-brain-microbiota axis as a potential link between inflammatory bowel disease and ischemic stroke. J Neuroinflammation. 2018;15(1):1–11.eng
dcterms.referencesSudo N. Role of gut microbiota in brain function and stress-related pathology. Biosci Microbiota, Food Heal. 2019;38(3):75–80.eng
dcterms.referencesHu X, Wang T, Jin F. Alzheimer’s disease and gut microbiota. Sci China Life Sci. 2016;59(10):1006–23.eng
dcterms.referencesKowalski K, Mulak A. Brain-Gut-Microbiota Axis in Alzheimer’s Disease. J Neurogastroenterol Motil. 2019;25(1):40–60.eng
dcterms.referencesValles M, Falony G, Darzi Y, Tigchelaar E, Wang J, Tito R, et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol [Internet]. 2019;4(4):623–32. Available from: http://dx.doi.org/10.1038/s41564-018-0337-xeng
dcterms.referencesYang B, Wei J, Ju P, Chen J. Effects of regulating intestinal microbiota on anxiety symptoms: A systematic review. Gen Psychiatry. 2019;32(2):1–9.eng
dcterms.referencesCritchfield JW, Van Hemert S, Ash M, Mulder L, Ashwood P. The potential role of probiotics in the management of childhood autism spectrum disorders. Gastroenterol Res Pract. 2011;2011.eng
dcterms.referencesI G, C H. Handbook of Depression. New York: The Guilford Press; 2009.eng
dcterms.referencesGrober G. Major depressive disorder. J Psychiatry. 2013;19:157–63.eng
dcterms.referencesCheung S, Goldenthal A, Uhlemann A, Mann J, Miller J, Sublette E. Systematic review of gut microbiota and major depression. Front Psychiatry. 2019;10(34):1–17.eng
dcterms.referencesSteenbergen L, Sellaro R, Hemert S Van, Bosch J, Colzato L. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun. 2015;48:258–64.eng
dcterms.referencesBandelow B, Michaelis S. Epidemiology of anxiety disorders in the 21st century. Dialogues Clin Neurosci. 2015;17(3):327–35.eng
dcterms.referencesMartínez M, López D. Trastornos de ansiedad. Rev Neurol Neurocir y Psiquiatr [Internet]. 2011;44(3):101–7. Available from: https://www.medigraphic.com/pdfs/revneuneupsi/nnp-2011/nnp113d.pdf%0Ahttp://www.medigraphic.com/pdfs/revneuneupsi/nnp-2011/nnp113d.pdfeng
dcterms.referencesKorolev I. Alzheimer’s Disease: A Clinical and Basic Science Review. Med Student Res J. 2014;4:24–33.eng
dcterms.referencesDonoso A. La enfermedad de Alzheimer. Rev Chil Neuropsiquiatr. 2003;41(2):13–22.spa
dcterms.referencesVogt N, Kerby R, Dill-McFarland K, Harding S, Merluzzi A, Johnson S, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep [Internet]. 2017;7(1):1–11. Available from: http://dx.doi.org/10.1038/s41598-017-13601-yeng
dcterms.referencesNaranjo M. Una revisión teórica sobre el estrés y algunos aspectos relevantes de este en el ámbito educativo. Rev Educ. 2009;33(2):171–90.spa
dcterms.referencesHerrera D, Coria G, Muñoz D, Graillet O, Aranda G, Rojas F, et al. Impacto del estrés psicosocial en la salud. Neurobiologia. 2017;8(17):1–23.spa
dcterms.referencesKarl P, Hatch A, Arcidiacono S, Pearce S, Pantoja I, Doherty L, et al. Effects of psychological, environmental and physical stressors on the gut microbiota. Front Microbiol. 2018;9:1–32.eng
dcterms.referencesMolina G, Rodriguez M, Roman P, Sanchez N, Cardona D. Stress and the gut microbiota-brain axis. Behav Pharmacol [Internet]. 2019;187–200. Available from: https://insights.ovid.com/pubmed?pmid=30844962eng
dcterms.referencesZijlmans M, Korpela K, Riksen M, de Vos W, de Weerth C. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology [Internet]. 2015;53:233–45. Available from: http://dx.doi.org/10.1016/j.psyneuen.2015.01.006eng
dcterms.referencesCarrascón C. Señales de alerta de los trastornos del espectroautista. Actual Pediatr [Internet]. 2016;3:95–8. Available from: https://www.aepap.org/sites/default/files/2em.2_senales_de_alerta_de_los_trastornos_del_espectro_autista.pdfspa
dcterms.referencesMannion A, Leader G, Healy O. An investigation of comorbid psychological disorders, sleep problems, gastrointestinal symptoms and epilepsy in children and adolescents with Autism Spectrum Disorder. Res Autism Spectr Disord. 2013;7(1):35–42.eng
dcterms.referencesBonilla M, Chaskel R. Trastorno del espectro autista. Trastor del espectro autista. 2016;15(1):19–29.spa
dcterms.referencesHeberling C, Dhurjati P, Sasser M. Hypothesis for a systems connectivity model of autism spectrum disorder pathogenesis : Links to gut bacteria , oxidative stress , and intestinal permeability. Med Hypotheses [Internet]. 2013;80(3):264–70. http://dx.doi.org/10.1016/j.mehy.2012.11.044eng
dcterms.referencesFinegold S, Molitoris D, Song Y, Liu C, Vaisanen M, Bolte E, et al. Gastrointestinal Microflora Studies in Late‐Onset Autism. Clin Infect Dis. 2002;35(s1):S6–16.eng
dcterms.referencesFinegold S, Dowd S, Gontcharova V, Liu C, Henley K, Wolcott R, et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe [Internet]. 2010;16(4):444–53. Available from: http://dx.doi.org/10.1016/j.anaerobe.2010.06.008eng
dcterms.referencesKang D, Park J, Ilhan Z, Wallstrom G, LaBaer J, Adams J, et al. Reduced Incidence of Prevotella and Other Fermenters in Intestinal Microflora of Autistic Children. PLoS One. 2013;8(7).eng
dcterms.referencesde Angelis M, Francavilla R, Piccolo M, De Giacomo A, Gobbetti M. Autism spectrum disorders and intestinal microbiota. Gut Microbes. 2015;6(3):207–13.eng
dcterms.referencesPulikkan J, Maji A, Dhakan DB, Saxena R, Mohan B, Anto MM, et al. Gut Microbial Dysbiosis in Indian Children with Autism Spectrum Disorders. Microb Ecol. 2018;76(4):1102–14.eng
dcterms.referencesMolloy C, Manning P. Prevalence of chronic gastrointestinal symptoms in children with autism and. Seage Journals. 2003;7(2):165–71.eng
dcterms.referencesMing X, Brimacombe M, Chaaban J, Zimmerman B, Wagner G. Autism Spectrum Disorders: Concurrent Clinical Disorders. J Child Neurol. 2008;23(1):6–13.eng
dcterms.referencesNikolov R, Bearss K, Lettinga J, Erickson C, Rodowski M, Aman M, et al. Gastrointestinal symptoms in a sample of children with pervasive developmental disorders. J Autism Dev Disord. 2009;39(3):405–13.eng
dcterms.referencesLi Q, Zhou JM. The microbiota-gut-brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience. 2016;324:131–9.eng
dcterms.referencesFinegold S. Desulfovibrio species are potentially important in regressive autism. Med Hypotheses [Internet]. 2011;77(2):270–4. Available from: http://dx.doi.org/10.1016/j.mehy.2011.04.032eng
dcterms.referencesMacFabe D. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microb Ecol Health Dis. 2012;23(1):1–24.eng
dcterms.referencesArgou I, Zeidán F. Clostridium Bacteria and Autism Spectrum Conditions: A Systematic Review and Hypothetical Contribution of Environmental Glyphosate Levels. Med Sci. 2018;6(2):1–11.eng
dcterms.referencesAl-Lahham S, Peppelenbosch M, Roelofsen H, Vonk R, Venema K. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim Biophys Acta - Mol Cell Biol Lipids [Internet]. 2010;1801(11):1175–83. Available from: http://dx.doi.org/10.1016/j.bbalip.2010.07.007eng
dcterms.referencesDeCastro M, Nankova B, Shah P, Patel P, Mally P, Mishra R, et al. Short chain fatty acids regulate tyrosine hydroxylase gene expression through a cAMP-dependent signaling pathway. Mol Brain Res. 2005;142(1):28–38.eng
dcterms.referencesMacFabe D, Cain N, Boon F, Ossenkopp K, Cain D. Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: Relevance to autism spectrum disorder. Behav Brain Res [Internet]. 2011;217(1):47–54. Available from: http://dx.doi.org/10.1016/j.bbr.2010.10.005eng
dcterms.referencesHong J, Jia Y, Pan S, Jia L, Li H, Han Z. Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice. Oncotarget. 2016;7(35):56071–82.eng
dcterms.referencesTakuma K, Hara Y, Kataoka S, Kawanai T, Maeda Y, Watanabe R, et al. Chronic treatment with valproic acid or sodium butyrate attenuates novel object recognition deficits and hippocampal dendritic spine loss in a mouse model of autism. Pharmacol Biochem Behav [Internet]. 2014;126:43–9. Available from: http://dx.doi.org/10.1016/j.pbb.2014.08.013eng
sb.programaMicrobiologíaspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
PDF_Resumen.pdf
Tamaño:
356.22 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
1002.85 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.93 KB
Formato:
Item-specific license agreed upon to submission
Descripción: