Diseño de un modelo de autenticación para fortalecer la seguridad a nivel de enrutamiento del protocolo OLSR en una MANET

dc.contributor.authorDíaz Jiménez, Femny Javier
dc.contributor.authorPalacio Velásquez, José Gregorio
dc.date.accessioned2019-10-23T14:27:09Z
dc.date.available2019-10-23T14:27:09Z
dc.date.issued2019
dc.description.abstractLas MANET (Mobile Adhoc Network) son redes sin infraestructura formadas por dispositivos móviles, estas redes se generan de forma espontánea, cuando los nodos, los cuales por lo general se encuentran en movimiento constante, se encuentran en el rango de distancia adecuado para poder unirse a la red, esta característica hace que la topología de la red sea muy variable y por lo tanto se requiere de algoritmos de enrutamiento que se adapten a dichos cambios, uno de estos algoritmos es el OLSR. Uno de los problemas a los que se enfrentan estas redes, es el hecho de, que debido a sus características específicas, se vuelve un poco complicada la implementación de seguridad, ya que es muy difícil controlar la conexión de nodos maliciosos, debido al dinamismo de la misma. Teniendo en cuenta que en este tipo de redes cualquier nodo puede funcionar como enrutador para los otros nodos, es posible que un nodo malicioso, que se encuentre conectado a la MANET, intente inyectar tablas de enrutamiento falsificadas al resto de nodos, lo que afectaría el funcionamiento de la red. La finalidad de este proyecto es definir un mecanismo que permita asegurar dichas tablas de enrutamiento, a través de una técnica de autenticación. Para dar solución a este problema, se realizó un diseño dividido en cuatro fases, la primera fase aborda el detalle de la conexión y autenticación del nodo, para lo cual se decidió por el uso de firma digital basada en algoritmos de cifrado asimétrico, para lo cual el nodo durante su fase de conexión a la red, le envíe su llave pública a todos sus vecinos, en la fase dos, se basa en un sistema de reputación, en el cual un nodo calcula la reputación de los diferentes nodos con los que ha tenido comunicación, definiendo si el mismo tiene mala o buena reputación, y generando un TLV de reputación, el cual es enviado al resto de nodos y calculando la misma según el esquema planteado basado en el Algoritmo de los generales bizantinos. La tercera fase se basa en la selección del nodo MPR, basado en la voluntad del mismo para convertirse en MPR y el cálculo de la reputación realizado en la fase 2. Como última fase, para implementar autenticación y validar la integridad de las tablas de enrutamiento, se hará uso de la firma digital, basada en el hash del mensaje, del nodo junto con la tabla de enrutamiento. Este diseño pretende disminuir en gran medida, no solo la conexión de nodos maliciosos a la red, sino que dado el caso, un nodo malicioso llegara a conectarse y se presentará pérdida de paquetes debido al mismo, el nodo terminaría siendo aislado de la red, ya que nunca haría parte del enrutamiento de paquetes, por su mala reputación. El alcance de este proyecto llega hasta el diseño de la solución, la cual se basa en una combinación de técnicas que han demostrado ser eficientes en este tipo de redes, a futuro se podría trabajar en la implementación de la solución para medir su efectividad, y buscar algún otro mecanismo de medición de reputación para compararlo con el propuesto.spa
dc.description.abstractThe MANET (Mobile Adhoc Network) are networks without infrastructure formed by mobile devices, these networks are generated spontaneously, when the nodes, which are usually in constant movement, are in the right distance range to be able to join to the network, this feature makes the topology of the network very variable and therefore requires routing algorithms that adapt to these changes, one of these algorithms is the OLSR. One of the problems faced by these networks is the fact that due to their specific characteristics, the implementation of security becomes a bit complicated, since it is very difficult to control the connection of malicious nodes, due to the dynamism of the same. Taking into account that in this type of networks any node can function as a router for the other nodes, it is possible that a malicious node, which is connected to the MANET, tries to inject falsified routing tables to the rest of the nodes, which would affect the operation of the network. The purpose of this project is to define a mechanism to ensure these routing tables, through an authentication technique. To solve this problem, a design was divided into four phases, the first phase addresses the detail of the connection and authentication of the node, for which it was decided to use a digital signature based on asymmetric encryption algorithms, specifically RSA , for which the node during its phase of connection to the network, sends its public key to all its neighbors, in phase two, it is based on a reputation system, in which a node calculates the reputation of the different nodes with which it has had communication, defining if it has bad or good reputation, and generating a TLV of reputation, which is sent to the rest of the nodes and calculating the same according to the proposed scheme based on the Algorithm of the Byzantine generals. The third phase is based on the selection of the MPR node, based on the will of the same to become MPR and the calculation of the reputation performed in phase 2. As a last phase, to implement authentication and validate the integrity of the routing tables, use will be made of the digital signature, based on the hash of the message, of the node together with the routing table. This design aims to reduce to a large extent, not only the connection of malicious nodes to the network, but if necessary, a malicious node will connect and there will be packet loss due to it, the node would end up being isolated from the network, since it would never be part of packet routing, because of its bad reputation. The scope of this project goes to the design of the solution, which is based on a combination of techniques that have proven to be efficient in this type of networks, in the future we could work on the implementation of the solution to measure its effectiveness, and look for some other mechanism of reputation measurement to compare it with the proposed one.eng
dc.identifier.urihttps://hdl.handle.net/20.500.12442/4216
dc.language.isospaspa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ingenieríasspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source.bibliographicCitationAdvanced Network Technologies Division Wireless Ad Hoc Network (s.f.) Recuperado 14 de julio de 2016, de http://www.antd.nist.gov/wahn_mahn.shtml.eng
dc.source.bibliographicCitationAhir, S. A., Marathe, N., & Padiya, P. (2014). IAMTT - New method for resisting network layer denial of service attack on MANET. Proceedings - 2014 4th International Conference on Communication Systems and Network Technologies, CSNT, 2016, 762–766. https://doi.org/10.1109/CSNT.2014.160eng
dc.source.bibliographicCitationAhmad, M., Chen, Q., Najam-Ul-Islam, M., Iqbal, M. A., & Hussain, S. (2018). On the secure optimized link state routing (SOLSR) protocol for MANETs. Proceedings of the 2017 12th International Conference on Intelligent Systems and Knowledge Engineering, ISKE 2017, 2018-Janua, 1–8. https://doi.org/10.1109/ISKE.2017.8258757eng
dc.source.bibliographicCitationAhmed, A., Abu Bakar, K., Channa, M. I., Haseeb, K., & Khan, A. W. (2015). A survey on trust based detection and isolation of malicious nodes in ad-hoc and sensor networks. Frontiers of Computer Science, 9(2), 280–296. https://doi.org/10.1007/s11704-014-4212-5eng
dc.source.bibliographicCitationÁlvarez, S., & Rios, M. (2013). Estudio Comparativo de las Soluciones Frente al Ataque Wormhole dentro de una MANET. Universidad SImón Bolívar.spa
dc.source.bibliographicCitationAmraoui, H., Habbani, A., Hajami, A., & Bilal, E. (2016). Security-Based Mechanism for Proactive Routing Schema Using Game Theory Model. Mobile Information Systems, 2016. https://doi.org/10.1155/2016/5653010eng
dc.source.bibliographicCitationAneiba, A., & Melad, M. (2016). Performance Evaluation of AODV, DSR, OLSR, and GRP MANET Routing Protocols Using OPNET. International Journal of Future Computer and Communication. https://doi.org/10.18178/ijfcc.2016.5.1.444eng
dc.source.bibliographicCitationBhuvaneswari, R., & Ramachandran, R. (2018a). Comparative Analysis of E-OLSR Algorithm in the Presence of Routing Attacks in MANET. International Journal of Sensors, Wireless Communications and Control, 8(1), 65–71. https://doi.org/10.2174/2210327908666180328163219eng
dc.source.bibliographicCitationBhuvaneswari, R., & Ramachandran, R. (2018b). Denial of service attack solution in OLSR based manet by varying number of fictitious nodes. Cluster Computing, 1–11. https://doi.org/10.1007/s10586-018-1723-0eng
dc.source.bibliographicCitationChang, J., Tsou, P., Woungang, I., Chao, H., & Lai, C. (2014). Defending Against Collaborative Attacks by Malicious Nodes in MANETs : A Cooperative Bait Detection Approach. IEEE Systems Journal, 9(1), 65–75. https://doi.org/10.1109/JSYST.2013.2296197eng
dc.source.bibliographicCitationChiejina, E., Xiao, H., & Christianson, B. (2015). A dynamic reputation management system for mobile ad hoc networks. 6th Computer Science and Electronic Engineering Conference, CEEC 2014 - Conference Proceedings, 133–138. https://doi.org/10.1109/CEEC.2014.6958568eng
dc.source.bibliographicCitationChowdari, R., & Srinivas, K. (2017). A Survey on Detection of Blackhole and Grayhole Attacks in Mobile Ad-hoc Networks. International Research Journal of Engineering and Technology (IRJET), 4(5), 1375–1378. https://doi.org/10.15680/IJIRCCE.2017.eng
dc.source.bibliographicCitationClausen, T., Dean, J., & Adjih, C. (2009). RFC 5444 - Generalized Mobile Ad Hoc Network (MANET) Packet/Message Format. Internet Engineering Task Force (IETF). Internet Engineering Task Force (IETF). https://doi.org/10.17487/RFC5444eng
dc.source.bibliographicCitationClausen, T., & Dearlove, C. (2009). RFC 5497 - Representing Multi-Value Time in Mobile Ad Hoc Networks (MANETs). Internet Engineering Task Force (IETF). https://doi.org/10.17487/RFC5497eng
dc.source.bibliographicCitationClausen, T., Dearlove, C., & Adamson, B. (2008). RFC 5148 - Jitter Considerations in Mobile Ad Hoc Networks. Internet Engineering Task Force (IETF). https://doi.org/10.17487/RFC5148eng
dc.source.bibliographicCitationClausen, T., Dearlove, C., & Dean, J. (2011). RFC 6130 - Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP). Internet Engineering Task Force (IETF). Internet Engineering Task Force (IETF). https://doi.org/10.17487/RFC6130eng
dc.source.bibliographicCitationClausen, T., Dearlove, C., Jacquet, P., & Herberg, U. (2014). RFC 7181 - The Optimized Link State Routing Protocol Version 2. Internet Engineering Task Force (IETF). Internet Engineering Task Force (IETF). https://doi.org/10.17487/RFC7181eng
dc.source.bibliographicCitationClausen, T., Herberg, U., & Yi, J. (2017). RFC 8116 - Security Threats to the Optimized Link State Routing Protocol Version 2 (OLSRv2). Internet Engineering Task Force (IETF). https://doi.org/10.17487/RFC8116eng
dc.source.bibliographicCitationClausen, T., & Jacquet, P. (2003). RFC 3626 - Optimized Link State Routing Protocol (OLSR). Internet Engineering Task Force (IETF). https://doi.org/10.17487/RFC3626eng
dc.source.bibliographicCitationDearlove, C., & Clausen, T. (2014). RFC 7188 - Optimized Link State Routing Protocol Version 2 (OLSRv2) and MANET Neighborhood Discovery Protocol (NHDP) Extension TLVs. Internet Engineering Task Force (IETF). https://doi.org/10.17487/RFC7188eng
dc.source.bibliographicCitationDearlove, C., & Clausen, T. (2015). RFC 7631 - TLV Naming in the Mobile Ad Hoc Network (MANET) Generalized Packet/Message Format. Internet Engineering Task Force (IETF). https://doi.org/10.17487/RFC7631eng
dc.source.bibliographicCitationEchchaachoui, A., Choukri, A., Habbani, A., & Elkoutbi, M. (2014). Asymmetric and dynamic encryption for routing security in MANETs. International Conference on Multimedia Computing and Systems -Proceedings, 0, 825–830. https://doi.org/10.1109/ICMCS.2014.6911237eng
dc.source.bibliographicCitationFernández-Bravo Peñuela, Francisco Javier; Bernabeu Aubán, J. M. (2018). Consenso Bizantino y Blockchain. Retrieved from https://riunet.upv.es/handle/10251/115369eng
dc.source.bibliographicCitationGadekar, M. S. (2017). Secure Optimized Link State Routing ( OLSR ) Protocol A gainst Node Isolation Attack. 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), 684–687.eng
dc.source.bibliographicCitationGharib, H., & Belloulata, K. (2014). AUTHENTICATION ARCHITECTURE USING THRESHOLD CRYPTOGRAPHY, 8(22), 12–18. https://doi.org/10.12913/22998624.1105141eng
dc.source.bibliographicCitationGodwin, J., & Srinivasan, R. (2014). A Survey on MANET Security Challenges,, Attacks and its Countermeasures. International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), 3(1), 274–279.eng
dc.source.bibliographicCitationHerberg, U. (Fujitsu L. of A., Clausen, T. (LIX, E. P., & Dearlove, C. (BAE S. A. (2014). RFC 7182 - Integrity Check Value and Timestamp TLV Definitions for Mobile Ad Hoc Networks (MANETs). Internet Engineering Task Force (IETF). Internet Engineering Task Force (IETF). https://doi.org/10.17487/RFC7182eng
dc.source.bibliographicCitationHerberg, U. (Fujitsu L. of A., Dearlove, C. (BAE S. A., & Clausen, T. (LIX, E. P. (2014). RFC 7183 - Integrity Protection for the Neighborhood Discovery Protocol (NHDP) and Optimized Link State Routing Protocol Version 2 (OLSRv2). Internet Engineering Task Force (IETF). https://doi.org/10.17487/RFC7183eng
dc.source.bibliographicCitationHonarbakhsh, S., Latif, L. B. A., Manaf, A. B. A., & Emami, B. (2014). Enhancing Security for Mobile Ad hoc Networks by Using Identity Based Cryptography. International Journal of Computer and Communication Engineering, 3(1), 41–45. https://doi.org/10.7763/IJCCE.2014.V3.289eng
dc.source.bibliographicCitationHurley-Smith, D., Wetherall, J., & Adekunle, A. (2017). SUPERMAN: Security Using Pre-Existing Routing for Mobile Ad hoc Networks. IEEE Transactions on Mobile Computing, 16(10), 2927–2940. https://doi.org/10.1109/TMC.2017.2649527eng
dc.source.bibliographicCitationJames, J. L., & Thomas, B. (2016). A Study on Preventing Node Isolation Attack in OLSR Protocol. Procedia Technology, 25(Raerest), 349–355. https://doi.org/10.1016/j.protcy.2016.08.117eng
dc.source.bibliographicCitationJaramillo, S. (2010). Servicios de Autenticación y Modelo de Seguridad en Redes Móviles Ad Hoc. La Universidad Católica de Loja.spa
dc.source.bibliographicCitationJubair, M. A., Khaleefah, S. H., Budiyono, A., Mostafa, S. A., & Mustapha, A. (2018). Performance Evaluation of AODV and OLSR Routing Protocols in MANET Environment, 8(4), 1277–1283.eng
dc.source.bibliographicCitationKaur, N., Joshi, M., & Nagar, Y. (2014). Implementing MANET Security using CBDS for Combating Sleep Deprivation & DOS Attack, 16(1), 6–11.eng
dc.source.bibliographicCitationKumar, Amit, & Singla, V. (2016). Detecting and Avoiding Sybil Attack in OLSR Protocol. International Journal of Control Theory and Applications, 5(5), 1905–1910.eng
dc.source.bibliographicCitationKumar, Ashish, Tokekar, V., & Shrivastava, S. (2016). Security Enhancement in MANETs Using Fuzzy-Based Trust Computation Against Black Hole Attacks. Information and Communication Technology, Proceeding of ICICT 2016, 625, 3–5. https://doi.org/10.1007/978-981-10-5508-9_4eng
dc.source.bibliographicCitationKumar Jha, R., & Kharga, P. (2015). A Comparative Performance Analysis of Routing Protocols in MANET using NS3 Simulator. International Journal of Computer Network and Information Security. https://doi.org/10.5815/ijcnis.2015.04.08eng
dc.source.bibliographicCitationKumar, N., & Tripathi, K. (2017). Analysis of Black Hole Attack in MANET Based on Simulation through NS3.26, 5(5), 194–205.eng
dc.source.bibliographicCitationLitvinov, G. A. (2018). Applying Static Mobility Model in Relaying Network Organization in Mini-UAVs Based FANET. 2018Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), 1–7.eng
dc.source.bibliographicCitationMishra, R., Kaur, I., & Sharma, S. (2010). New trust based security method for mobile ad-hoc networks Sanjeev sharma widely used in military and other scientific areas with nodes which can move. International Journal of Computer Science and Security, 4(3), 346–351.eng
dc.source.bibliographicCitationMohit, M., & Pal, S. (2015). Stable MPR Selection in OLSR for Mobile Ad-Hoc Networks. International Journal of Computer Science and Information Technologies, 6(6), 5121–5125.eng
dc.source.bibliographicCitationNajafpour, B., Mahdavi, B., Soleimani, P., & Rahmani, R. (2016). Optimizing Security Issue Of OLSR Routing Protocol Based On Trust Method in Wireless Sensor Networks. International Journal of Research in Computer Applications and Robotics, 4(3), 27–37.eng
dc.source.bibliographicCitationNarten, T., & Alvestrand, H. (2008). RFC 5226 - Guidelines for Writing an IANA Considerations Section in RFCs. Internet Engineering Task Force (IETF). https://doi.org/10.17487/RFC5226eng
dc.source.bibliographicCitationPatil, G. M., Kumar, A., & Shaligram, A. D. (n.d.). Performance Comparison of MANET Routing Protocols (OLSR, AODV, DSR, GRP and TORA) Considering Different Network Area Size. International Journal of Engineering and Management Research, (3). Retrieved from www.ijemr.neteng
dc.source.bibliographicCitationPérez-Solà, C., & Herrera-Joancomartí, J. (2014). Bitcoin y el problema de los generales bizantinos. Actas de La XIII Reunión Española de Criptología y Seguridad de La Información (RECSI 2014), 241–246. Retrieved from http://hdl.handle.net/10045/40444spa
dc.source.bibliographicCitationPouyan, A., & Yadollahzabeh, M. (2015). FPN-SAODV: using fuzzy petri nets for securing AODV routing protocol in mobile Ad hoc network. International Journal of Communication Systems, 31(2), 361–386. https://doi.org/10.1002/daceng
dc.source.bibliographicCitationRajaram, A., & Palaniswami, S. (2010). Detecting Malicious Node in MANET Using Trust Based Cross-Layer Security Protocol. International Journal of Computer Science Ans Information Technologies, 1(2), 130–137.eng
dc.source.bibliographicCitationRani, V. I., & Reddy, K. T. (2017). To Improve The Security Of OLSR Routing Protocol Based On Local Detection Of Link Spoofing, 5(6), 652–655.eng
dc.source.bibliographicCitationRaza, N., Umar Aftab, M., Qasim Akbar, M., Ashraf, O., & Irfan, M. (2016). Mobile Ad-Hoc Networks Applications and Its Challenges. Communications and Network, 08(03), 131–136. https://doi.org/10.4236/cn.2016.83013eng
dc.source.bibliographicCitationRocabado, S. (2013). Caso de estudio de comunicaciones seguras sobre redes móviles Ad Hoc. Universidad Nacional de la Plata. https://doi.org/10.13140/RG.2.1.3336.4963spa
dc.source.bibliographicCitationSallam, G., & Mahmoud, A. (2015). Performance Evaluation of OLSR and AODV in VANET Cloud Computing Using Fading Model with SUMO and NS3. 2015 International Conference on Cloud Computing, ICCC 2015, 1–5. https://doi.org/10.1109/CLOUDCOMP.2015.7149649eng
dc.source.bibliographicCitationSamreen, A., & Hyderv, S. I. (2015). Role of Threshold Cryptography in Securing MANETs, 15(1), 106–112.eng
dc.source.bibliographicCitationSantiago, E. (2005). Posibilidades de las MANET (Mobile Ad-Hoc Networks ) y Algunas otras Redes Inalámbricas. Prospectiva, 3(2), 44–46.spa
dc.source.bibliographicCitationSantiago, E., & Sánchez, J. (2017). Riesgos de Ciberseguridad en las Empresas. Revista Tecnologí@ y Desarrollo, XV. Retrieved from http://www.uax.es/publicacion/riesgos-de-ciberseguridad-en-las-empresas.pdfspa
dc.source.bibliographicCitationSari, A. (2014). Security Approaches in IEEE 802 . 11 MANET — Performance Evaluation of USM and RAS, (September), 365–372. https://doi.org/10.4236/ijcns.2014.79038eng
dc.source.bibliographicCitationSengathir, J. (2015). A Split Half Reliability Coefficient Based Mathematical Model for Miyigating Selfish Nodes in MANETs, (August).eng
dc.source.bibliographicCitationSengathir, J., & Manoharan, R. (2015). Exponential reliability factor based mitigation mechanism for selfish nodes in MANETs. Egyptian Informatics Journal, 4(1), 43–64. https://doi.org/10.7603/s40632-016-0003-5eng
dc.source.bibliographicCitationSharma, S., & Kumar, M. A. (2016). Performance Analysis of OLSR, AODV, DSR MANETs Routing Protocols. International Journal of Engineering Science and Computing. https://doi.org/10.4010/2016.1871eng
dc.source.bibliographicCitationShen, H., & Li, Z. (2015). A hierarchical account-aided reputation management system for MANETs. IEEE/ACM Transactions on Networking, 23(1), 70–84. https://doi.org/10.1109/TNET.2013.2290731eng
dc.source.bibliographicCitationSingh, K., & Verma, A. K. (2015). Applying OLSR routing in FANETs. Proceedings of 2014 IEEE International Conference on Advanced Communication, Control and Computing Technologies, ICACCCT 2014, (May 2015), 1212–1215. https://doi.org/10.1109/ICACCCT.2014.7019290eng
dc.source.bibliographicCitationSubba, B., Biswas, S., & Karmakar, S. (2016). Intrusion detection in Mobile Ad-hoc Networks: Bayesian game formulation. Engineering Science and Technology, an International Journal, 19(2), 782–799. https://doi.org/10.1016/j.jestch.2015.11.001eng
dc.source.bibliographicCitationTan, S., Li, X., & Dong, Q. (2015). Trust based routing mechanism for securing OSLR-based MANET. Ad Hoc Networks, 30(March), 84–98. https://doi.org/10.1016/j.adhoc.2015.03.004eng
dc.source.bibliographicCitationVellingiri, J., & Saravanan, K. (2017). Defending MANET Against Flooding Attack for Medical Application. 2nd International Conference on Comunication and Electronics Systems, (Icces), 486–489.eng
dc.source.bibliographicCitationWang, S., & Xia, H. (2018). A Reputation Management Framework for MANETs. 2018 IEEE Symposium on Privacy-Aware Computing (PAC), 119–120. https://doi.org/10.1109/PAC.2018.00019eng
dc.source.bibliographicCitationWei, Z., Tang, H., Yu, F. R., Wang, M., & Mason, P. (2014). Security enhancements for mobile ad hoc networks with trust management using uncertain reasoning. IEEE Transactions on Vehicular Technology, 63(9), 4647–4658. https://doi.org/10.1109/TVT.2014.2313865eng
dc.source.bibliographicCitationWu, Y., Xu, L., Lin, X., & Fang, J. (2017). A New Routing Protocol Based on OLSR Designed for UANET Maritime Search and Rescue. In S.-L. Peng, G.-L. Lee, R. Klette, & C.-H. Hsu (Eds.), Internet of Vehicles. Technologies and Services for Smart Cities (pp. 79–91). Cham: Springer International Publishing.eng
dc.subjectOLSRspa
dc.subjectMPRspa
dc.subjectCriptografíaspa
dc.subjectFirma Digitalspa
dc.subjectGenerales bizantinosspa
dc.subjectReputaciónspa
dc.subjectCryptographyeng
dc.subjectDigital signatureeng
dc.subjectByzantine generalseng
dc.subjectReputationeng
dc.titleDiseño de un modelo de autenticación para fortalecer la seguridad a nivel de enrutamiento del protocolo OLSR en una MANETspa
dc.typeOtherspa
sb.programaMaestría en Ingeniería de Sistemas y Computaciónspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
PDF_Resumen.pdf
Tamaño:
337.97 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
2.44 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones