Implementación de IOT para la detección de la Onda P, utilizando Redes Neuronales

datacite.rightshttp://purl.org/coar/access_right/c_16eceng
dc.contributor.authorAltamar Montero, Alfonso
dc.contributor.authorNúñez Vega, Edwin
dc.contributor.authorRúa Ríos, Luis
dc.contributor.authorRomero Altamar, Gineth
dc.contributor.authorQuintero Altamar, Alexander
dc.date.accessioned2022-07-15T19:18:09Z
dc.date.available2022-07-15T19:18:09Z
dc.date.issued2022
dc.description.abstractEl electrocardiograma fue reconocido como una herramienta para la deteccion de aritmias. La mas conocida es la fibrilacion auricular, que puede o no representar un problema para la salud. Este articulo tiene como objetivo la implementacion de redes neuronales y dispositivos IOT para la deteccion de la fibrilacion auricular. En busqueda de prevenir a quienes paceden de esta arrimita cardiaca. Los resultados encontrados se basaran en diferentes investigaciones estudiadas que han aplicado estos conocimientos. Se concluye una deteccion efectiva de la aritmia con los metodos implementadosspa
dc.description.abstractThe ECG was discovered to be a useful tool for detecting arrhythmias. Atrial fibrillation is the most well-known, and it may or may not be a health issue. The goal of this essay is to use neural networks and IoT devices to identify atrial fibrillation. In order to prevent people who suffer from cardiac arrhythmia. The findings will be based on many research studies that have used this information. The implemented methods result in an effective detection of arrhythmia.eng
dc.format.mimetypepdfspa
dc.identifier.urihttps://hdl.handle.net/20.500.12442/10269
dc.language.isospaspa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ingenieríasspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectFibrilación auricularspa
dc.subjectInteligencia artificialspa
dc.subjectRedes neuronalesspa
dc.subjectElectrocardiograma (ECG)spa
dc.subjectDataseteng
dc.titleImplementación de IOT para la detección de la Onda P, utilizando Redes Neuronalesspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesiseng
dc.type.spaTrabajo de grado - pregradospa
dcterms.referencesY. Sattar, «statpearls,» 22 05 2022. [En línea]. Available: Yasar Sattar.gdfgdfgdfg.eng
dcterms.referencesBabson College, Deloitte Consulting, «National Library of Medicine,» 06 06 2019. [En línea]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6616181/.eng
dcterms.references«NHS,» 17 05 2021. [En línea]. Available: 3. https://www.nhs.uk/conditions/atrial-fibrillation/#:~:text=Atrial%20fibrillation%20is%20a%20heart,in%20your%20wrist%20or%20neck.eng
dcterms.referencesMixue Deng; Lishen Qiu; Hongqing Wang; Wei Shi; Lirong Wang. Atrial Fibrillation Classification Using Convolutional Neural Networks and Time Domain Features of ECG Sequence. 2020.eng
dcterms.referencesVincenzo Randazzo; Jacopo Ferretti; Eros Pasero. ECG WATCH: a real time wireless wearable ECG. 2019.eng
dcterms.referencesM. Carrara, L. Carozzi, T.J. Moss, M. de Pasquale, S. Cerutti, M. Ferrario, et al. Heart rate dynamics distinguish among atrial fibrillation, normal sinus rhythm and sinus rhythm with frequent ectopy. 2022.eng
dcterms.referencesZhaohan Xionga. Martin K.Stiles. Anne M.Gillisc. Jichao Zhao. Enhancing the detection of atrial fibrillation from wearable sensors with neural style transfer and convolutional recurrent networks. 2018eng
dcterms.referencesNurul Huda. Sadia Khan. Ragib Abid. Samiul Based Shuvo. A Low-cost, Low-energy Wearable ECG System with Cloud-Based Arrhythmia Detection. 2020.eng
dcterms.referencesVincenzo Randazzo;Jacopo Ferretti;Eros Pasero. ECG WATCH: a real time wireless wearable ECG. 2018.eng
dcterms.referencesMovva Pavani;K. Kishore Kumar. Development of a Low-Cost ECG Device. 2018eng
dcterms.referencesMasaya Kisohara;Yuto Masuda;Emi. Atrial Fibrillation Detection Using a Feedforward Neural Network. 2022.eng
dcterms.referencesMona Alsaleem;Md Saiful Islam POSTER: Atrial Fibrillation Detection Using a Double-Layer Bi-Directional LSTM Neural. 2019eng
dcterms.referencesS.M Ahsanuzzaman;Toufiq Ahmed;Md. Atiqur Rahman. Low Cost, Portable ECG Monitoring and Alarming System Based on Deep Learning. 2020.eng
dcterms.referencesQingxue Zhang. ECG Based Biometric Human Identification Using Convolutional Neural Network in Smart Health Applications. 2020.eng
dcterms.referencesYu-Jin Lin;Chen-Wei Chuang;Chun-Yueh Yen;Sheng-Hsin Huang;Peng-Wei Huang;Ju-Yi Chen;Shuenn-Yuh Lee. Artificial Intelligence of Things Wearable System for Cardiac Disease Detection. 2020.eng
dcterms.referencesHao Dang;Muyi Sun;Guanhong Zhang;Xingqun Qi;Xiaoguang Zhou;Qing Chang. A Novel Deep Arrhythmia-Diagnosis Network for Atrial Fibrillation Classification Using Electrocardiogram Signals. 2019.eng
dcterms.referencesMasaya Kisohara;Yuto Masuda;Emi Yuda;Junichiro Hayano. A Real-Time IoT Based Arrhythmia Classifier Using Convolutional Neural NetworksNeural Network Detection of Atrial Fibrillation by Lorenz Plot Images of Interbeat Interval Variation. 2018.eng
dcterms.referencesZhaohan Xiong;Martin K. Stiles;Jichao Zhao. Robust ECG signal classification for detection of atrial fibrillation using a novel neural network. 2017.eng
dcterms.referencesRicardo Salinas-Martínez;Johannes De Bie;Nicoletta Marzocchi;Frida Sandberg. Automatic Detection of Atrial Fibrillation Using Electrocardiomatrix and Convolutional Neural Network. 2020.eng
dcterms.referencesS.T. Mathew, J. Patel and S. Joseph, "Atrial fibrillation: mechanistic insights and treatment options", European journal of internal medicine, vol. 20, no. 7, pp. 672-681, 2009.eng
dcterms.referencesS. Islam, N. Ammour and N. Alajlan, "Atrial fibrillation detection with multiparametric RR interval feature and machine learning technique", 2017 International Conference on Informatics Health & Technology (ICIHT), 2017.eng
dcterms.referencesJ. Farhadi et al., "Classification of atrial fibrillation using stacked auto encoders neural networks", 2018 Computing in Cardiology Conference (CinC), 2018.eng
dcterms.referencesY. Xia et al., "Detecting atrial fibrillation by deep convolutional neural networks", Computers in biology and medicine, vol. 93, pp. 84-92, 2018.eng
dcterms.referencesErratum to “Acid bake-leach process for the treatment of enargite concentrates”, Hydrometallurgy 119–120 (2012), pp. 30–39eng
dcterms.referencesV. Maknickas and A. Maknickas, "Atrial fibrillation classification using qrs complex features and lstm", 2017 Computing in Cardiology (CinC), 2017.eng
dcterms.referencesF. Andreotti et al., "Comparing feature-based classifiers and convolutional neural networks to detect arrhythmia from short segments of ECG", 2017 Computing in Cardiology (CinC), 2017.eng
dcterms.referencesJournal 31(2) (2014) 211{215. XIX. TsvetkovV. Ya. Logical analysis and variable scales. Slavic Forum 4(22) (2018) 103{109. XX. Wang S. et al. Transit traffic analysis zone delineating method based on Thiessen polygon. Sustainability 6(4) (2014) 1821{1832. Vieweng
dcterms.referencesRincón, J.A.; Guerra-Ojeda, S.; Carrascosa, C.; Julian, V. An IoT and Fog Computing-Based Monitoring System for Cardiovascular Patients with Automatic ECG Classification Using Deep Neural Networks. Sensors 2020, 20, 7353.eng
dcterms.referencesL. Sornmo, M. Stridth, D. Husser, A. Bollmann, and S.B. Olsson,“Analysis of atrial fibrillation: from electrocardiogram signal processing to clinical management,” Phil. Trans. Roy. Soc, vol. A367, pp. 235–253, October 2008.eng
dcterms.referencesJonathan Rubin; Saman Parvaneh; Asif Rahman; Bryan Conroy; Saeed Babaeizadeh. Densely connected convolutional networks and signal quality analysis to detect atrial fibrillation using short single-lead ECG recordings. 2017.eng
dcterms.referencesIsac N Lira;Pedro Marinho R de Oliveira;Walter Freitas;Vicente Zarzoso. Automated Atrial Fibrillation Source Detection Using Shallow Convolutional Neural Networks. 2020 Computing in Cardiology.eng
dcterms.referencesTrivikrama Bhat;Akanksha;Shrikara;Shreya Bhat;Manoj. A Real-Time IoT Based Arrhythmia Classifier Using Convolutional Neural Networks. 2020 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics.eng
dcterms.referencesK. G. Rani Roopha Devi;R. Mahendra Chozhan;R. Murugesan. Cognitive IoT Integration for Smart Healthcare: Case Study for Heart Disease Detection and Monitoring. 2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC).eng
dcterms.referencesMohammad Mahmudur Rahman Khan;Md. Abu Bakr Siddique;Shadman Sakib;Anas Aziz;Abyaz Kader Tanzeem;Ziad Hossain. Electrocardiogram Heartbeat Classification Using Convolutional Neural Networks for the Detection of Cardiac Arrhythmia. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC).eng
dcterms.referencesJ. McCarthy, «Stanford University,» 24 11 2004. [En línea]. Available: 4. https://borghese.di.unimi.it/Teaching/AdvancedIntelligentSystems/Old/IntelligentSystems_2008_2009/Old/IntelligentSystems_2005_2006/Documents/Symbolic/04_McCarthy_whatisai.pdf.eng
dcterms.referencesI. C. Education, «IBM,» 17 08 2020. [En línea]. Available: https://www.ibm.com/cloud/learn/neural-networks.spa
dcterms.references«Aprende Machine Learning,» 29 11 2018. [En línea]. Available: 11. https://www.aprendemachinelearning.com/como-funcionan-las-convolutional-neural-networks-vision-por-ordenador/.eng
dcterms.referencesR. M. George Moody, «PhysioNet,» 24 02 2005. [En línea]. Available: https://physionet.org/content/mitdb/1.0.0/.eng
oaire.versioninfo:eu-repo/semantics/acceptedVersioneng
sb.programaIngeniería de Sistemasspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
924.37 KB
Formato:
Adobe Portable Document Format