Non-albuminuric Diabetic Kidney Disease Phenotype: Beyond Albuminuria

datacite.rightshttp://purl.org/coar/access_right/c_abf2eng
dc.contributor.authorD’Marco, Luis
dc.contributor.authorGuerra-Torres, Xavier
dc.contributor.authorViejo, Iris
dc.contributor.authorLopez-Romero, Luis
dc.contributor.authorYugueros, Alejandra
dc.contributor.authorBermúdez, Valmore
dc.date.accessioned2023-09-04T14:38:54Z
dc.date.available2023-09-04T14:38:54Z
dc.date.issued2022
dc.description.abstractDiabetic kidney disease (DKD) is the leading cause of chronic and end-stage kidney disease worldwide. Its pathogenic mechanism is complex, and it can affect the entire structures of the kidneys such as the glomerulus, tubules and interstitium. Currently, the urinary albumin excretion rate and the estimated glomerular filtration rate are widely accepted as diagnostic criteria. However, some studies have reported a different or non-classical clinical course of DKD, with some patients showing declined kidney function with normal levels of albuminuria, known as the ‘non-albuminuric DKD’ phenotype. The pathogenesis of this phenotype remains unclear, but some clinical and pathological features have been postulated. This review explores the evidence regarding this topic.eng
dc.format.mimetypepdfspa
dc.identifier.doihttps://doi.org/10.17925/EE.2022.18.2.102
dc.identifier.issn27525457
dc.identifier.urihttps://hdl.handle.net/20.500.12442/13234
dc.language.isoengeng
dc.publisherTouch Medical Mediaeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcetouchREVIEWS in Endocrinologyeng
dc.sourceVol. 18 No. 2 (2022)
dc.subjectDiabetesspa
dc.subjectAlbuminuriaspa
dc.subjectChronic kidney diseaseeng
dc.subjectCardiovascular diseaseeng
dc.titleNon-albuminuric Diabetic Kidney Disease Phenotype: Beyond Albuminuriaeng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.spaArtículo científicospa
dcterms.referencesThomas MC, Cooper ME, Zimmet P. Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat Rev Nephrol.2016;12:73–81.eng
dcterms.referencesReutens AT. Epidemiology of diabetic kidney disease.Med Clin North Am. 2013;97:1–18.eng
dcterms.referencesDoshi SM, Friedman AN. Diagnosis and management of type 2 diabetic kidney disease. Clin J Am Soc Nephrol. 2017;12:1366–73.eng
dcterms.referencesLaranjinha I, Matias P, Mateus S, et al. Diabetic kidney disease: Is there a non-albuminuric phenotype in type 2 diabetic patients? Nefrologia. 2016;36:503–9.eng
dcterms.referencesKorbut AI, Klimontov VV, Vinogradov IV, Romanov VV. Risk factors and urinary biomarkers of non-albuminuric and albuminuric chronic kidney disease in patients with type 2 diabetes. World J Diabetes. 2019;10:517–33.eng
dcterms.referencesOshima M, Shimizu M, Yamanouchi M, et al. Trajectories of kidney function in diabetes: A clinicopathological update. Nat Rev Nephrol. 2021;17:740–50.eng
dcterms.referencesRetnakaran R, Cull CA, Thorne KI, et al. Risk factors for renal dysfunction in type 2 diabetes. Diabetes. 2006;55:1832–9.eng
dcterms.referencesPichaiwong W, Homsuwan W, Leelahavanichkul A. The prevalence of normoalbuminuria and renal impairment in type 2 diabetes mellitus. Clin Nephrol.2019;92:73–80.eng
dcterms.referencesKopel J, Pena-Hernandez C, Nugent K. Evolving spectrum of diabetic nephropathy. World J Diabetes.2019;10:269–79.eng
dcterms.referencesYamamoto Y, Hanai K, Mori T, et al. Kidney outcomes and all-cause mortality in people with type 2 diabetes exhibiting non-albuminuric kidney insufficiency. Diabetologia. 2022;65:234–45.eng
dcterms.referencesPenno G, Solini A, Orsi E, et al. Non-albuminuric renal impairment is a strong predictor of mortality in individuals with type 2 diabetes: The Renal Insufficiency And Cardiovascular Events (RIACE) Italian multicentre study. Diabetologia. 2018;61:2277–89.eng
dcterms.referencesKramer HJ. Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA. 2003;289:3273.eng
dcterms.referencesRetnakaran R, Cull CA, Thorne KI, et al. Risk factors for renal dysfunction in type 2 diabetes. Diabetes. 2006;55:1832–9.eng
dcterms.referencesYokoyama H, Sone H, Oishi M, et al. Prevalence of albuminuria and renal insufficiency and associated clinical factors in type 2 diabetes: The Japan Diabetes Clinical Data Management study (JDDM15). Nephrol Dial Transplant.2008;24:1212–9.eng
dcterms.referencesAn JH, Cho YM, Yu HG, et al. The clinical characteristics of normoalbuminuric renal insufficiency in Korean type 2 diabetic patients: A possible early stage renal complication.J Korean Med Sci. 2009;24(Suppl. 1):S75.eng
dcterms.referencesKlimontov VV, Korbut AI. Albuminuric and non-albuminuric patterns of chronic kidney disease in type 2 diabetes. Diabetes Metab Syndr. 2019;13:474–9.eng
dcterms.referencesJia X, Zang L, Pang P, et al. A study on the status of normoalbuminuric renal insufficiency among type 2 diabetes mellitus patients: A multicenter study based on a Chinese population.J Diabetes. 2022;14:15–25.eng
dcterms.referencesShi S, Ni L, Gao L, Wu X. Comparison of nonalbuminuric and albuminuric diabetic kidney disease among patients with type 2 diabetes: A systematic review and meta-analysis. Front Endocrinol.2022;13:871272.eng
dcterms.referencesViazzi F, Russo GT, Ceriello A, et al. Natural history and risk factors for diabetic kidney disease in patients with T2D: Lessons from the AMD-annals. J Nephrol.2019;32:517–25.eng
dcterms.referencesFraser SDS, Roderick PJ, McIntyre NJ, et al. Assessment of proteinuria in patients with chronic kidney disease stage 3: Albuminuria and non-albumin proteinuria. PLoS One. 2014;9:e9826eng
dcterms.referencesWarren B, Rebholz CM, Sang Y, et al. Diabetes and trajectories of estimated glomerular filtration rate: A prospective cohort analysis of the atherosclerosis risk in communities study. Diabetes Care. 2018;41:1646–53.eng
dcterms.referencesKrolewski AS, Niewczas MA, Skupien J, et al. Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria. Diabetes Care. 2014;37:226–34.eng
dcterms.referencesBermejo S, Pascual J, Soler MJ. The current role of renal biopsy in diabetic patients. Minerva Med. 2018;109:116–25.eng
dcterms.referencesBermejo S, García-Carro C, Soler MJ. Diabetes and renal disease—should we biopsy? Nephrol Dial Transplant. 2021;36:1384–6.eng
dcterms.referencesTong X, Yu Q, Ankawi G, et al. Insights into the role of renal biopsy in patients with T2DM: A literature review of global renal biopsy results. Diabetes Therapy. 2020;11:1983–99eng
dcterms.referencesGimenez-Civera E, Puchades Montesa MJ, Terrádez L, et al. Histological and clinical findings in adult autopsies of type 2 diabetes mellitus patients with or without diabetic kidney disease.Nephrol Dial Transplant. 2020;35(Suppl. 3).eng
dcterms.referencesBorder WA, Yamamoto T, Noble NA. Transforming growth factor beta in diabetic nephropathy. Diabetes Metab Rev.1996;12:309–39.eng
dcterms.referencesBader R, Bader H, Grund KE, et al. Structure and function of the kidney in diabetic glomerulosclerosis. Correlations between morphological and functional parameters. Pathol Res Pract.1980;167:204–16.eng
dcterms.referencesLane PH, Steffes MW, Fioretto P, Mauer SM. Renal interstitial expansion in insulin-dependent diabetes mellitus.Kidney Int. 1993;43:661–7.eng
dcterms.referencesTaft JL, Nolan CJ, Yeung SP, et al. Clinical and histological correlations of decline in renal function in diabetic patients with proteinuria. Diabetes. 1994;43:1046–51.eng
dcterms.referencesEkinci EI, Jerums G, Skene A, et al. Renal structure in normoalbuminuric and albuminuric patients with type 2 diabetes and impaired renal function. Diabetes Care. 2013;36:3620–6.eng
dcterms.referencesBhalla V, Zhao B, Azar KMJ, et al. Racial/ethnic differences in the prevalence of proteinuric and nonproteinuric diabetic kidney disease. Diabetes Care. 2013;36:1215–21.eng
dcterms.referencesKume S, Araki S, Ugi S, et al. Secular changes in clinical manifestations of kidney disease among Japanese adults with type 2 diabetes from 1996 to 2014. J Diabetes Investig. 2019;10:1032–40.eng
dcterms.referencesBash LD, Selvin E, Steffes M, et al. Poor glycemic control in diabetes and the risk of incident chronic kidney disease even in the absence of albuminuria and retinopathy. Arch Intern Med.2008;168:2440.eng
dcterms.referencesBae J, Won YJ, Lee BW. Non-albumin proteinuria (NAP) as a complementary marker for diabetic kidney disease (DKD). Life. 2021;11:224.eng
dcterms.referencesPapadopoulou-Marketou N, Kanaka-Gantenbein C, Marketos N, et al. Biomarkers of diabetic nephropathy: A 2017 update. Crit Rev Clin Lab Sci.2017;54:326–42.eng
dcterms.referencesWei T, Zhao L, Jia J, et al. Metabonomic analysis of potential biomarkers and drug targets involved in diabetic nephropathy mice. Sci Rep. 2015;5:11998.eng
dcterms.referencesZürbig P, Jerums G, Hovind P, et al. Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes. 2012;61:3304–13.eng
dcterms.referencesLeoncini G, Viazzi F, de Cosmo S, et al. Blood pressure reduction and RAAS inhibition in diabetic kidney disease: Therapeutic potentials and limitations.J Nephrol. 2020;33:949–63.eng
dcterms.referencesde Boer IH, Caramori ML, Chan JCN, et al. KDIGO 2020 Clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 2020;98:S1–S115.eng
dcterms.referencesChaturvedi N. Randomised placebo-controlled trial of lisinopril in normotensive patients with insulin-dependent diabetes and normoalbuminuria or microalbuminuria. Lancet. 1997;349:1787–92.eng
dcterms.referencesRavid M. Use of enalapril to attenuate decline in renal function in normotensive, normoalbuminuric patients with type 2 diabetes mellitus. Ann Intern Med. 1998;128:982.eng
dcterms.referencesWiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med.2019;380:347–57.eng
dcterms.referencesMosenzon O, Wiviott SD, Heerspink HJL, et al. The effect of dapagliflozin on albuminuria in DECLARE-TIMI 58. Diabetes Care. 2021;44:1805–15.eng
dcterms.referencesNeal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med.2017;377:644–57.eng
dcterms.referencesZinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.eng
dcterms.referencesBailey CJ, Day C, Bellary S. Renal protection with SGLT2 inhibitors: Effects in acute and chronic kidney disease. Curr Diab Rep. 2022;22:39–52.eng
dcterms.referencesWanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med.2016;375:323–34.eng
dcterms.referencesGórriz JL, Soler MJ, Navarro-González JF, et al. GLP-1 receptor agonists and diabetic kidney disease: A call of attention to nephrologists.J Clin Med. 2020;9:947.eng
dcterms.referencesLerma E, White WB, Bakris G. Effectiveness of nonsteroidal mineralocorticoid receptor antagonists in patients with diabetic kidney disease. Postgrad Med. 2022:1–10.eng
dcterms.referencesD’Marco L, Puchades MJ, Gandía L, et al. Finerenone: A potential treatment for patients with chronic kidney disease and type 2 diabetes mellitus. Eur Endocrinol. 2021;17:84.eng
dcterms.referencesWilliams DM, Evans M. Semaglutide: Charting new horizons in GLP-1 analogue outcome studies. Diabetes Ther. 2020;11:2221–35.eng
dcterms.referencesRodríguez-Morán M, González-González G, Bermúdez-Barba MV, et al. Effects of pentoxifylline on the urinary protein excretion profile of type 2 diabetic patients with microproteinuria; A double-blind, placebo-controlled randomized trial. Clin Nephrol.2006;66:3–10.eng
dcterms.referencesLeehey DJ. Targeting inflammation in diabetic kidney disease: Is there a role for pentoxifylline? Kidney360. 2020;1:292–9.eng
oaire.versioninfo:eu-repo/semantics/publishedVersioneng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
384.52 KB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones