Determinantes de éxito y de fracaso en el desempeño innovador para la creación de empresas de base tecnológica en territorios de baja intensidad de I+D

datacite.rightshttp://purl.org/coar/access_right/c_f1cf
dc.contributor.advisorAmar Sepúlveda, Paola Andrea
dc.contributor.advisorManjarrés Henríquez, Liney
dc.contributor.authorJiménez Celín, Yazmín Patricia
dc.date.accessioned2025-05-15T22:38:13Z
dc.date.available2025-05-15T22:38:13Z
dc.date.issued2025
dc.description.abstractEl desempeño en innovación de las empresas de base tecnológica (EBT) es crucial para el desarrollo económico, especialmente en regiones con baja intensidad en investigación y desarrollo (I+D). Este estudio analiza los determinantes del éxito y el fracaso de estas empresas, centrándose en variables como el acceso al capital de riesgo, las redes de contactos, la infraestructura tecnológica, el apoyo político, el talento humano y las capacidades de investigación a partir de la percepción de las empresas de base tecnológica que fueron muestra de la investigación. En este sentido, utilizando un enfoque cuantitativo y un modelo de ecuaciones estructurales (SEM), se valida un modelo que identifica las relaciones causales entre estos factores y el desempeño de innovación de las EBT. Los resultados revelan que el acceso al capital riesgo, las redes de contacto y la capacidad de investigación son los principales determinantes del éxito de la innovación. Estos hallazgos tienen implicaciones importantes para las políticas públicas y el diseño de estrategias que promuevan el emprendimiento innovador en regiones con recursos limitados de I+D.spa
dc.description.abstractThe innovation performance of technology-based firms (TBFs) is crucial for economic development, especially in regions with low research and development (R&D) intensity. This study analyzes the determinants of success and failure in these firms, focusing on variables such as access to venture capital, contact networks, technological infrastructure, political support, human talent, and research capabilities. Using a quantitative approach and structural equation modeling (SEM), a model is validated that identifies the causal relationships between these factors and the innovation performance of TBFs. The results reveal that access to venture capital, contact networks, and research capacity are the main determinants of innovation success. These findings have important implications for public policies and the design of strategies that promote innovative entrepreneurship in regions with limited R&D resources.eng
dc.format.mimetypepdf
dc.identifier.urihttps://hdl.handle.net/20.500.12442/16575
dc.language.isospa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Administración y Negociosspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationaleng
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectEmpresas de base tecnológica (EBT)spa
dc.subjectDeterminantes del éxito de la innovaciónspa
dc.subjectBaja intensidad de I+Dspa
dc.subject.keywordsTechnology-Based Firms (TBFs)eng
dc.subject.keywordsDeterminants of innovation successeng
dc.subject.keywordsLow R&D Intensityeng
dc.titleDeterminantes de éxito y de fracaso en el desempeño innovador para la creación de empresas de base tecnológica en territorios de baja intensidad de I+Dspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.spaTesis de doctorado
dcterms.referencesAcs, Z. J., Braunerhjelm, P., Audretsch, D. B., & Carlsson, B. (2009). The knowledge spillover theory of entrepreneurship. Small Business Economics, 32(1), 15–30. https://doi.org/10.1007/s11187-008-9157-3eng
dcterms.referencesÁlvarez, X. (2012). Factores de éxito de las pymes “caso comparativo entre Seimalsa y Calzado Confort.” Res Non Verba, 61–92.spa
dcterms.referencesAminullah, E., Fizzanty, T., Indraprahasta, G. S., & Asmara, I. J. (2015). Technological convergence in Indonesian firms: cases of biobased chemical product innovation. Asian Journal of Technology Innovation, 23(August 2015), 9– 25. https://doi.org/10.1080/19761597.2015.1011259eng
dcterms.referencesAhn, S.; Kim, K.-S.; Lee, K.-H. Technological Capabilities, Entrepreneurship and Innovation of Technology-Based Start-Ups: The Resource-Based View. J. Open Innov. Technol. Mark. Complex. 2022, 8, 156. https://doi.org/10.3390/joitmc8030156eng
dcterms.referencesAudretsch, David & Belitski, Maksim. (2021). Towards an entrepreneurial ecosystem typology for regional economic development: the role of creative class and entrepreneurship. Regional Studies. 55. 1-22. 10.1080/00343404.2020.1854711.eng
dcterms.referencesAudretsch, D., Colombelli, A., Grilli, L., Minola, T., & Rasmussen, E. (2020). Innovative start-ups and policy initiatives. Research Policy, 49(10), 104027. https://doi.org/10.1016/j.respol.2020.104027eng
dcterms.referencesBarclay, D., Higgins, C., & Thompson, R. (1995). The partial least squares (PLS) approach to causal modeling: Personal computer adoption and use as an ilustration. Technology Studies, 2(2), 285–309.eng
dcterms.referencesBentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246. https://doi.org/10.1037/0033-2909.107.2.238eng
dcterms.referencesBull, I., & Willard, G. E. (1993). Towards a theory of entrepreneurship. Journal of Business Venturing, 8(3), 183–195. https://doi.org/10.1016/0883- 9026(93)90026-2eng
dcterms.referencesChin, W. W. (1998). The Partial Least Squares Approach to Structural Equation Modeling. In Modern methods for business research (Vol. 1, pp. 295–334).eng
dcterms.referencesCity, Q., Amara, N., City, Q., Rherrad, I., & Laciak, B. (n.d.). Paper ID : A 067 The determinants of university spin-offs : evidence from Canadian universities Key Words : University Spin-offs , Entrepreneurial vs . traditional university , Determinants of university spin-offs creation Abstract The aim of this paper i.eng
dcterms.referencesCocorullo, A. (2017). University Fourth Mission . Spin-offs and Academic Entrepreneurship : a theoretical review through the variety of definitions. April, 30–31.eng
dcterms.referencesComrey, A. L., & Lee, H. B. (1992). A First Course in Factor Analysis. In A First Course in Factor Analysis (2nd ed., Vol. 1). Psychology Press. https://doi.org/10.4324/9781315827506eng
dcterms.referencesCronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555/METRICSeng
dcterms.referencesDash, G., & Paul, J. (2021). CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting. Technological Forecasting and Social Change, 173, 121092. https://doi.org/10.1016/J.TECHFORE.2021.121092eng
dcterms.referencesDi Gregorio, D., & Shane, S. (2003). Why do some universities generate more start-ups than others? Research Policy, 32(2 SPEC.), 209–227. https://doi.org/10.1016/S0048-7333(02)00097-5eng
dcterms.referencesDiamantopoulos, A., Sarstedt, M., Fuchs, C., Wilczynski, P., & Kaiser, S. (2012). Guidelines for choosing between multi-item and single-item scales for construct measurement: A predictive validity perspective. Journal of the Academy of Marketing Science, 40(3), 434–449. https://doi.org/10.1007/S11747-011-0300- 3/FIGURES/4eng
dcterms.referencesDiamantopoulos, A., & Winklhofer, H. (2001). Index construction with formative indicators: an alternative to scale development. Market Res, 38(2), 269–277eng
dcterms.referencesDijkstra, T. K. (2010). Latent Variables and Indices: Herman Wold’s Basic Design and Partial Least Squares. Handbook of Partial Least Squares, 23–46. https://doi.org/10.1007/978-3-540-32827-8_2eng
dcterms.referencesDijkstra, T. K., & Henseler, J. (2015). Consistent partial least squares path modeling. MIS Quarterly = Management Information Systems Quarterly, 39(2), 297–316.eng
dcterms.referencesFabrigar, L. R., MacCallum, R. C., Wegener, D. T., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272–299. https://doi.org/10.1037/1082- 989X.4.3.272eng
dcterms.referencesFornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39. https://doi.org/10.2307/3151312eng
dcterms.referencesFuster, E., Padilla-Meléndez, A., Lockett, N., & del-Águila-Obra, A. R. (2019). The emerging role of university spin-off companies in developing regional entrepreneurial university ecosystems: The case of Andalusia. Technological Forecasting and Social Change, 141(July 2017), 219–231. https://doi.org/10.1016/j.techfore.2018.10.020eng
dcterms.referencesGarcía, M. J. M., & Castro, A. M. P. (2017). La investigación en educación. Notas Teórico-Metodológicas de Pesquisas Em Educação: Concepções e Trajetórias, 13–40. https://doi.org/10.7476/9788574554938.001spa
dcterms.referencesHair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis. 1998. Upper Saddle River.eng
dcterms.referencesHair, J. F., Black, W., Babin, B. J., & Anderson, R. E. (2014). Multivariate Data Analysis (7th ed.).eng
dcterms.referencesHair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Thousand Oaks. Sage, 165.eng
dcterms.referencesHair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R. https://doi.org/10.1007/978-3-030-80519-7eng
dcterms.referencesHair, J. F., Sarstedt, M., & Ringle, C. M. (2019). Rethinking some of the rethinking of partial least squares. European Journal of Marketing, 53(4), 566–584. https://doi.org/10.1108/EJM-10-2018-0665/FULL/XMLeng
dcterms.referencesHenseler, J. (2010). On the convergence of the partial least squares path modeling algorithm. Springer, 25, 107–120. https://doi.org/10.1007/s00180-009- 0164-xeng
dcterms.referencesHenseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management and Data Systems, 116(1), 2–20. https://doi.org/10.1108/IMDS-09-2015-0382eng
dcterms.referencesHenseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/S11747-014-0403-8/FIGURES/8eng
dcterms.referencesHoffmann, A. F., Stover, J. B., & Liporace, M. F. (n.d.). CORRELACIONES POLICÓRICAS Y TETRACÓRICAS EN ESTUDIOS FACTORIALES EXPLORATORIOS Y CONFIRMATORIOS POLYCHORIC AND TETRACHORIC CORRELATIONS IN EXPLORATORY AND CONFIRMATORY FACTORIAL STUDIES.spa
dcterms.referencesIshibuchi, H., & Tanaka, H. (1990). Multiobjective programming in optimization of the interval objective function. European Journal of Operational Research, 48(2), 219–225. https://doi.org/10.1016/0377-2217(90)90375-Leng
dcterms.referencesJöreskog, K. G. (1971). Simultaneous factor analysis in several populations. Psychometrika, 36(4), 409–426. https://doi.org/10.1007/BF02291366/METRICSeng
dcterms.referencesKaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31–36 https://doi.org/10.1007/BF02291575/METRICSeng
dcterms.referencesKhojasteh, J. (2022). Review of An Introduction to Modern Modeling Methods. Https://Doi.Org/10.1080/10705511.2022.2087078, 1–2. https://doi.org/10.1080/10705511.2022.2087078eng
dcterms.referencesKlofsten, M., & Jones, D. (2000). Comparing Academic Entrepreneurship in Europe. Small Business Economics, 14(4), 199–309.eng
dcterms.referencesLeonard, W. N. (1973). Research and Development in Industrial Growth: Reply. Journal of Political Economy, 81(5), 1249–1252. https://doi.org/10.1086/260120eng
dcterms.referencesLohmöller, J.-B. (1989). Latent Variable Path Modeling with Partial Least Squares. Latent Variable Path Modeling with Partial Least Squares. https://doi.org/10.1007/978-3-642-52512-4eng
dcterms.referencesMathisen, M. T., & Rasmussen, E. (2019). The development, growth, and performance of university spin-offs: a critical review. Journal of Technology Transfer, 44(6), 1891–1938. https://doi.org/10.1007/s10961-018-09714-9eng
dcterms.referencesMcDonald, R. P. (1999). Test theory: A unified treatment. In Test Theory: A Unified Treatment (1st Edition, Vol. 1). Taylor and Francis. https://doi.org/10.4324/9781410601087/TEST-THEORY-RODERICK- MCDONALDeng
dcterms.referencesMerino Moreno, C., & Villar Mártil, L. (2007). Factores de éxito en los procesos de creación de empresas de base tecnológica. Economía Industrial, 366, 147– 167.spa
dcterms.referencesMooi, E., & Sarstedt, M. (2011). A Concise Guide to Market Research. A Concise Guide to Market Research. https://doi.org/10.1007/978-3-642-12541-6eng
dcterms.referencesMustapha, N., & Kondlo, L. (2019). A new approach to R&D intensity classes illustrated on manufacturing industries in South Africa. International Journal of Technological Learning, Innovation and Development, 11(2), 97–118. https://doi.org/10.1504/IJTLID.2019.099224eng
dcterms.referencesNavarro, J. C., Crespi, G., & Zuñiga, P. (2010). Ciencia, Tecnología e Innovación en América Latina y el Caribe. Un compendio estadístico de indicadores División. 115.spa
dcterms.referencesNewsom, J. T., Hachem, Z. A., Granger, A. M., & Denning, E. C. (2022). Where Did I Go Wrong with My Model? Ten Tips for Getting Results in SEM. Https://Doi.Org/10.1080/10705511.2022.2101113, 1–10. https://doi.org/10.1080/10705511.2022.2101113eng
dcterms.referencesNunnally, J. (1978). Psychometric theory (2nd ed.).eng
dcterms.referencesPark, H., Park, J. H., Lee, S., & Hahn, H. (2021). A study on the impact of r&d intensity on business performance: evidence from south korea. Journal of Open Innovation: Technology, Market, and Complexity, 7(2). https://doi.org/10.3390/joitmc7020135eng
dcterms.referencesRamos, M., & Plata, W. (2015). Correlación policórica en el análisis de factores con variables ordinales. Matemática, 13(1), 27–42.spa
dcterms.referencesRamos-Galarza, C. (2015). Investigación científica - Scientific research paradigms. Av.Psicol., 23(1), 9–17spa
dcterms.referencesRoberts, E. B., & Malone, D. E. (1996). Policies and structures for spinning off new companies from research and development organizations. R and D Management, 26(1), 17–48. https://doi.org/10.1111/j.1467-9310.1996.tb00927.xeng
dcterms.referencesRosseel, Y. (2012). Lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48. https://doi.org/10.18637/JSS.V048.I02eng
dcterms.referencesRotundo, G. J. Z. (2009). Modelo Teórico Conceptual De La Estructura Organizativa. 618–640.spa
dcterms.referencesSánchez, A. R., Charry, G. P., & Burbano-Vallejo, E. L. (2024). Exploring the entrepreneurial landscape of university-industry collaboration on public university spin-off creation: A systematic literature review. Heliyon, 10(February), e27258. https://doi.org/10.1016/j.heliyon.2024.e27258eng
dcterms.referencesShane, S., & Venkataraman, S. (2012). Reading for Lecture 2: Note As a the Promise of Entrepreneurship. The Academy of Management Review, 25(1), 217– 226.eng
dcterms.referencesShmueli, G., & Koppius, O. R. (2011). Predictive analytics in information systems research. MIS Quarterly: Management Information Systems, 35(3), 553–572. https://doi.org/10.2307/23042796eng
dcterms.referencesSmith, A., Ricardo, D., Weber, M., & Suárez, O. M. (2004). Schumpeter, innovación y determinismo tecnológico. 25, 209–213.eng
dcterms.referencesSong, M., Podoynitsyna, K., Bij, H., & Halman, J. I. M. (2008). Success Factors in New Ventures. A MEta-Analzsis, 25, 7–27. https://doi.org/10.1111/j.1540- 5885.2007.00280.xeng
dcterms.referencesSpigel, B. (2017). The Relational Organization of Entrepreneurial Ecosystems. Entrepreneurship: Theory and Practice, 41(1), 49–72. https://doi.org/10.1111/etap.12167eng
dcterms.referencesStreiner, D. L. (2010). Starting at the Beginning: An Introduction to Coefficient Alpha and Internal Consistency. Https://Doi.Org/10.1207/S15327752JPA8001_18, 80(1), 99–103. https://doi.org/10.1207/S15327752JPA8001_18eng
dcterms.referencesStreukens, S., & Leroi-Werelds, S. (2016). Bootstrapping and PLS-SEM: A step- by-step guide to get more out of your bootstrap results. European Management Journal, 34(6), 618–632. https://doi.org/10.1016/J.EMJ.2016.06.003eng
dcterms.referencesSzerb, László & Lafuente, Esteban & Horváth, Krisztina & Páger, Balázs. (2019). The relevance of quantity and quality entrepreneurship for regional performance: the moderating role of the entrepreneurial ecosystem. Regional Studies. 53. 1308-1320. 10.1080/00343404.2018.1510481eng
dcterms.referencesTalero. J. (2020). Análisis de Causas del Éxito de Empresas de Base Tecnológica en Colombia. Monografía de Análisis de Experiencias. Escuela de Ciencias Administrativas, Contables, Económicas y de Negocios ECACEN. Universidad Nacional Abierta y a Distanciaspa
dcterms.referencesTomy, S., & Pardede, E. (2018). From uncertainties to successful start ups: A data analytic approach to predict success in technological entrepreneurship. Sustainability (Switzerland), 10(3). https://doi.org/10.3390/su10030602eng
dcterms.referencesTriono et al. (2021). Factors Affecting Start-up Performance: A Literature Review. Conference: 6th Global Conference on Business, Management, and Entrepreneurship (GCBME 2021). Enero 2022. DOI: 10.2991/aebmr.k.220701.097eng
dcterms.referencesUllman, J. B. (1996). Structural Equation Modeling. In Using Multivariate Statistics (3rd ed., pp. 709–819). Scientific Research Publishing.eng
dcterms.referencesVesga, R. (n.d.). 2012 Emprendimiento e innovación en Colombia Qué nos está haciendo falta. 1–16.spa
dcterms.referencesVos Saz, A. (2013). Creación, crecimiento y expansión internacional de las nuevas empresas: influencia del emprendedor y del equipo de emprendedoresspa
dcterms.referencesWetzels, M., Odekerken-Schröder, G., & Van Oppen, C. (2009). Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration. MIS Quarterly: Management Information Systems, 33(1), 177–196. https://doi.org/10.2307/20650284eng
dcterms.referencesWilliams, L. J., Vandenberg, R. J., & Edwards, J. R. (2009). 12 structural equation modeling in management research: a guide for improved analysis. Academy of Management Annals, 3(1), 543–604.eng
dcterms.referencesWold, H. (1980). Model construction and evaluation when theoretical knowledge is scarce: Theory and application of partial least squares. In Evaluation of econometric models (pp. 47–74). Elseviereng
dcterms.referencesRosa M. Yagüe‑Perales., Isidre March‑Chorda., Héctor López‑Paredes (2024). Assessing the impact of seed accelerators in start‑ups from emerging entrepreneurial ecosystems. International Entrepreneurship and Management Journal, 20:1323–1345, https://doi.org/10.1007/s11365-024-00956-8eng
dcterms.referencesZemplinerová, A., & Hromádková, E. (2012). Determinants of Firm´s Innovation. Prague Economic Papers, 21(4), 487–503. https://doi.org/10.18267/j.pep.436eng
dcterms.referencesZiaee Bigdeli, A., Li, F., & Shi, X. (2016). Sustainability and scalability of university spinouts: A business model perspective. R and D Management, 46(3), 504–518. https://doi.org/10.1111/radm.12167eng
dcterms.referencesZumbo, B. D., Gadermann, A. M., & Zeisser, C. (2007). Ordinal Versions of Coefficients Alpha and Theta for Likert Rating Scales. Journal of Modern Applied Statistical Methods, 6(1), 4. https://doi.org/10.22237/jmasm/1177992180eng
oaire.versioninfo:eu-repo/semantics/acceptedVersion
sb.investigacionAdministración y organizacionesspa
sb.programaDoctorado en Administraciónspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
PDF_RESUMEN.pdf
Tamaño:
225.61 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
3.32 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.93 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones