Explorando el poder de los abordajes transcriptómicos para identificar biomarcadores asociados a daño renal en pacientes con lupus eritematoso sistémico

datacite.identifier.urihttps://revistanefrologia.org/index.php/rcn/article/view/492
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
dc.contributor.authorArrieta Bravo, Valentina
dc.contributor.authorRangel Gómez, Tiffany
dc.contributor.authorPacheco Lugo, Lisandro
dc.date.accessioned2022-01-26T16:26:23Z
dc.date.available2022-01-26T16:26:23Z
dc.date.issued2021-02-02
dc.description.abstractEl lupus eritematoso sistémico (LES) es una enfermedad compleja y altamente heterogénea que afecta múltiples órganos, incluyendo articulaciones, corazón, sistema hematopoyético, sistema nervioso y riñón, siendo este último el de peor pronóstico y el que conlleva a nefritis lúpica (NL). Aunque la etiopatogénesis del LES aún no se conoce con claridad, se cree que la susceptibilidad genética y las modificaciones epigenéticas aberrantes favorecen su desenlace. Para establecer una terapia precisa es necesario evaluar de manera eficiente y objetiva el compromiso de órganos y la actividad de la enfermedad, lo cual es muy difícil por las pocas pruebas de laboratorio clínico disponibles en la actualidad. En las últimas décadas la búsqueda de nuevos biomarcadores de LES ha sido una tendencia y se han identificado varios promisorios a nivel de genómica, metabolómica, proteómica y transcriptómica. En esta revisión se resume el estado del arte relacionado con estudios transcriptómicos que han identificado diversos transcritos potencialmente útiles como biomarcadores del LES y la NLspa
dc.description.abstractSystemic Lupus Erythematosus is a complex and highly heterogeneous disease affecting multiple organs such as joints, heart, hematopoietic system, nervous system and kidney, the latter being the worst prognosis and leading to lupus nephritis (LN). While the etiopathogenesis of SLE is still not completely clear, is believed that genetic susceptibility and aberrant epigenetic modifications favor the outcome of the disease. In order to establish an accurate therapy, it is necessary to efficiently and objectively assess organ involvement and disease activity, which is very dificult due to the clinical laboratory tests currently available. In recent decades, the search for new SLE biomarkers has been a trend and many promising biomarkers have been identified at the genomic, metabolomic, proteomic and transcriptomic levels. In this review we summarize the state of the art related to transcriptomic studies that have identified various potentially useful transcripts as biomarkers of SLE and NL.eng
dc.description.sponsorshipSystemic Lupus Erythematosus is a complex and highly heterogeneous disease affecting multiple organs such as joints, heart, hematopoietic system, nervous system and kidney, the latter being the worst prognosis and leading to lupus nephritis (LN). While the etiopathogenesis of SLE is still not completely clear, is believed that genetic susceptibility and aberrant epigenetic modifications favor the outcome of the disease. In order to establish an accurate therapy, it is necessary to efficiently and objectively assess organ involvement and disease activity, which is very dificult due to the clinical laboratory tests currently available. In recent decades, the search for new SLE biomarkers has been a trend and many promising biomarkers have been identified at the genomic, metabolomic, proteomic and transcriptomic levels. In this review we summarize the state of the art related to transcriptomic studies that have identified various potentially useful transcripts as biomarkers of SLE and NL.spa
dc.format.mimetypepdfspa
dc.identifier.doihttps://doi.org/10.22265/acnef.8.1.492
dc.identifier.issn25005006
dc.identifier.urihttps://hdl.handle.net/20.500.12442/9307
dc.language.isospaspa
dc.publisherAsociación Colombiana de Nefrología e hipertensión Arterialspa
dc.publisherFacultad de Ciencias de la Saludspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceVol. 8, Num. 1 (2021)spa
dc.sourceRevista Colombiana de Nefrología. Rev. Colomb. Nefrol.spa
dc.subjectLupus eritematoso sistémicospa
dc.subjectNefritis lúpicaspa
dc.subjectBiomarcadoresspa
dc.subjectMicroARNsspa
dc.subjectSystemic lupus erythematosuseng
dc.subjectLupus nephritiseng
dc.subjectBiomarkerseng
dc.subjectMicroRNAseng
dc.titleExplorando el poder de los abordajes transcriptómicos para identificar biomarcadores asociados a daño renal en pacientes con lupus eritematoso sistémicospa
dc.title.translatedExploring the power of transcriptomic approaches to identify biomarkers associated to renal damage in Systemic Lupus Erythematosus patientseng
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.spaArtículo científicospa
dcterms.referencesHonarpisheh M, Köhler P, von Rauchhaupt E, Lech M. The Involvement of MicroRNAs in Modulation of Innate and Adaptive Immunity in Systemic Lupus Erythematosus and Lupus Nephritis. J Immunol Res. 2018;2018:4123106. https://dx.doi.org/10.1155/2018/4126106eng
dcterms.referencesZhu H, Mi W, Luo H, Chen T, Liu S, Raman I, et al. Whole-genome transcription and DNA methylation analysis of peripheral blood mononuclear cells identified aberrant gene regulation pathways in systemic lupus erythematosus. Arthritis Res Ther. 2016;18(1):162. https://dx.doi.org/10.1186/s13075-016-1050-xeng
dcterms.referencesKoutsokeras T, Healy T. Systemic lupus erythematosus and lupus nephritis. Nat Rev Drug Discov. 2014;13(3):173-4. https://dx.doi.org/10.1038/nrd4227eng
dcterms.referencesArroyo AR, García R, Aroca G, Cadena A, Acosta J. Correlación clínica e inmunohistopatológica de la nefropatía lúpica en un centro de referencia del Caribe colombiano durante los años 2012 a 2013. Rev Colomb Nefrol. 2014;1(2):57-64. https://dx.doi.org/10.22265/ acnef.1.2.176spa
dcterms.referencesCoit P, Renauer P, Je ries MA, Merrill JT, McCune WJ, Maksimowicz- McKinnon K, et al. Renal involvement in lupus is characterized by unique DNA methylation changes in naïve CD4+ T cells. J Autoimmun. 2015;61:29-35. https://dx.doi.org/10.1016/j.jaut.2015.05.003eng
dcterms.referencesMeliambro K, Campbell KN, Chung M. Therapy for Proliferative Lupus Nephritis. Rheum Dis Clin North Am. 2018;44(4):545-60. https://dx.doi.org/10.1016/j.rdc.2018.06.002eng
dcterms.referencesSchwartz N, Goilav B, Putterman C. The pathogenesis, diagnosis and treatment of lupus nephritis. Curr Opin Rheumatol. 2014;26(5):502-9. https://dx.doi.org/10.1097/BOR. 0000000000000089eng
dcterms.referencesZumerle S, Alimonti A. In and out from senescence. Nat Cell Biol. 2020;22(7):753-4. https: //dx.doi.org/10.1038/s41556-020-0540-xeng
dcterms.referencesGuo Y, Zhao M, Lu Q. Transcription factor RFX1 is ubiquitinated by E3 ligase STUB1 in systemic lupus erythematosus. Clin Immunol. 2016;169:1-7. https://dx.doi.org/10.1016/j.clim. 2016.06.003eng
dcterms.referencesLuo J, Niu X, Liu H, Zhang M, Chen M, Deng S. Up-regulation of transcription factor Blimp1 in systemic lupus erythematosus. Mol Immunol. 2013;56(4):574-82. https://dx.doi.org/ 10.1016/j.molimm.2013.05.241eng
dcterms.referencesBan T, Sato GR, Tamura T. Regulation and role of the transcription factor IRF5 in innate immune responses and systemic lupus erythematosus. Int Immunol. 2018;30(11):529-36. https://dx.doi.org/10.1093/intimm/dxy032eng
dcterms.referencesJiang T, Tian F, Zheng H, Whitman SA, Lin Y, Zhang Z, et al. Nrf2 suppresses lupus nephritis through inhibition of oxidative injury and the NF-κB-mediated inflammatory response. Kidney Int. 2014;85(2):333-43. https://dx.doi.org/10.1038/ki.2013.343eng
dcterms.referencesMathenia J, Reyes-Cortes E, Williams S, Molano I, Ruiz P, Watson DK, et al. Impact of Fli1 transcription factor on autoantibody and lupus nephritis in NZM2410 mice: Effect of Fli-1 gene on lupus in NZM2410 mice. Clin Exp Immunol. 2010;162(2):362-71. https://dx.doi.org/ 10.1111/j1365-2249.2010.04245.xeng
dcterms.referencesSui W, Hou X, Che W, Yang M, Dai Y. The applied basic research of systemic lupus erythematosus based on the biological omics. Genes Immun. 2013;14(3):133- 46. https://dx.doi.org/ 10.1038/gene.2013.3eng
dcterms.referencesSui W, Lin H, Chen J, Ou M, Dai Y. Comprehensive analysis of transcription factor expression patterns in peripheral blood mononuclear cell of systemic lupus erythematosus. Int J Rheum Dis. 2012;15(2):212-9eng
dcterms.referencesKuo CC, Lin SC. Altered FOXO1 Transcript Levels in Peripheral Blood Mononuclear Cells of Systemic Lupus Erythematosus and Rheumatoid Arthritis Patients. Mol Med. 2007;13(11- 12):561-6. https://dx.doi.org/10.2119/2007-00021.Kuoeng
dcterms.referencesFrangou EA, Bertsias GK, Boumpas DT. Gene expression and regulation in systemic lupus erythematosus. Eur J Clin Invest. 2013;43(10):1084-96. https://dx.doi.org/10.1111/eci.12130eng
dcterms.referencesWu H, Zeng J, Yin J, Peng Q, Zhao M, Lu Q. Organ-speci c biomarkers in lupus. Autoimmun Rev. 2017;16(4):391-7eng
dcterms.referencesLi Y, Fang X, Li Q-Z. Biomarker Pro ling for Lupus Nephritis. Genomics Proteomics Bioinformatics. 2013;11(3):158-65. https://dx.doi.org/10.1016/j.gpb.2013.05.003eng
dcterms.referencesStagakis E, Bertsias G, Verginis P, Nakou M, Hatziapostolou M, Kritikos H, et al. Identi - cation of novel microRNA signatures linked to human lupus disease activity and pathogenesis: miR-21 regulates aberrant T cell responses through regulation of PDCD4 expression. Ann Rheum Dis. 2011;70(8):1496-506. https://dx.doi.org/10.1136/ard.2010.139857eng
dcterms.referencesNavarro-Quiroz E, Pacheco-Lugo L, Lorenzi H, Díaz-Olmos Y, Almendrales L, Rico E, et al. High-Throughput Sequencing Reveals Circulating miRNAs as Potential Biomarkers of Kidney Damage in Patients with Systemic Lupus Erythematosus. PLoS One. 2016;11(11):e0166202. https://dx.doi.org/10.1371/journal.pone.0166202eng
dcterms.referencesNavarro-Quiroz E, Navarro-Quiroz R, Pacheco-Lugo L, Aroca-Martínez G, GómezEscorcia L, González-Torres H, et al. Integrated analysis of microRNA regulation and its interaction with mechanisms of epigenetic regulation in the etiology of systemic lupus erythematosus. PLoS One. 2019;14(6):e0218116. https://dx.doi.org/10.1371/journal.pone.0218116eng
dcterms.referencesNavarro-Quiroz E, Pacheco-Lugo L, Navarro-Quiroz R, Lorenzi H, España- Puccini P, Díaz-Olmos Y, et al. Pro ling analysis of circulating microRNA in peripheral blood of patients with class IV lupus nephritis. PLoS One. 2017;12(11):e0187973. https://dx.doi.org/ 10.1371/journal.pone.0187973eng
dcterms.referencesMartínez-Ramos R, García-Lozano JR, Lucena JM, Castillo-Palma MJ, García- Hernández F, Rodríguez MC, et al. Di erential expression pattern of microRNAs in CD4+ and CD19+ cells from asymptomatic patients with systemic lupus erythematosus. Lupus. 2014;23(4):353-9. https://dx.doi.org/10.1177/0961203314522335eng
dcterms.referencesKusaoi M, Yamaji K, Ishibe Y, Murayama G, Nemoto T, Sekiya F, et al. Separation of Circulating MicroRNAs Using Apheresis in Patients With Systemic Lupus Erythematosus. Ther Apher Dial. 2016;20(4):348-53. https://dx.doi.org/10.1111/1744-9987.12471eng
dcterms.referencesJafari-Ghods F, Topal-Sarikaya A, Arda N, Hamuryudan V. MiRNA and mRNA Profling in Systemic Lupus Reveals a Novel Set of Cytokine - Related miRNAs and their Target Genes in Cases With and Without Renal Involvement. Kidney Blood Press Res. 2017;42(6):1322-37. https://dx.doi.org/10.1159/000485987eng
dcterms.referencesTe JL, Dozmorov IM, Guthridge JM, Nguyen KL, Cavett JW, Kelly JA, et al. Identification of unique microRNA signature associated with lupus nephritis. PloS One. 2010;5(5):e10344. https://dx.doi.org/10.1371/journal.pone.0010344eng
dcterms.referencesCarlsen AL, Schetter AJ, Nielsen CT, Lood C, Knudsen S, Voss A, et al. Circulating MicroRNA Expression Profles Associated With Systemic Lupus Erythematosus. Arthritis Rheum. 2013;65(5):1324-34. https://dx.doi.org/10.1002/art.37890eng
dcterms.referencesLu J, Kwan BC, Lai FM, Tam LS, Li EK, Chow K, et al. Glomerular and tubulointerstitial miR-638, miR-198 and miR-146a expression in lupus nephritis: miRNA in lupus nephritis. Nephrology (Carlton). 2012;17(4):346-51. https://dx.doi.org/10.1111/j.1440-1797.2012.01573.xeng
dcterms.referencesRudnicki M, Perco P, D’haene B, Leierer J, Heinzel A, Mühlberger I, et al. Renal microRNA- and RNA-profiles in progressive chronic kidney disease. Eur J Clin Invest. 2016;46(3):213-26. https://dx.doi.org/10.1111/eci.12585eng
dcterms.referencesTrionfini P, Benigni A, Remuzzi G. MicroRNAs in kidney physiology and disease. Nat Rev Nephrol. 2015;11(1):23-33. https://dx.doi.org/10.1038/nrneph.2014.202eng
dcterms.referencesKrasoudaki E, Stagakis E, Loupasakis K, Papagianni A, Alexopoulos E, Bertsias G, et al. SAT0006 Microrna analysis of human lupus nephritis: Evidence for modulation of kallikrein 4 by MIR-422A. Ann Rheum Dis. 2013;71(Suppl 3):472- 3. https://dx.doi.org/10.1136/ annrheumdis-2012-eular.2954eng
dcterms.referencesRai R, Chauhan SK, Singh VV, Rai M, Rai G. RNA-seq Analysis Reveals Unique Transcriptome Signatures in Systemic Lupus Erythematosus Patients with Distinct Autoantibody Specificities. PLoS One. 2016;11(11):e0166312. https://dx.doi.org/10.1371/journal.pone. 0166312eng
dcterms.referencesChauhan SK, Singh VV, Rai R, Rai M, Rai G. Distinct Autoantibody Pro les in Systemic Lupus Erythematosus Patients are Selectively Associated with TLR7 and TLR9 Upregulation. J Clin Immunol. 2013;33(5):954-64. https://dx.doi.org/10.1007/s10875-013-9887-0eng
dcterms.referencesChauhan SK, Singh VV, Rai R, Rai M, Rai G. Di erential microRNA Profile and PostTranscriptional Regulation Exist in Systemic Lupus Erythematosus Patients with Distinct Autoantibody Specificities. J Clin Immunol. 2014;34(4):491-503. https://dx.doi.org/10.1007/ s10875-014-0008-5eng
dcterms.referencesRai R, Chauhan SK, Singh VV, Rai M, Rai G. Heat shock protein 27 and its regulatory molecules express differentially in SLE patients with distinct autoantibody profiles. Immunol Lett. 2015;164(1):25-32. https://dx.doi.org/10.1016/j.imlet.2015.01.007eng
dcterms.referencesBramham K, Mistry HD, Poston L, Chappell LC, Thompson AJ. The non- invasive biopsy– will urinary proteomics make the renal tissue biopsy redundant? QJM. 2009;102(8):523-38. https://dx.doi.org/10.1093/qjmed/hcp071eng
dcterms.referencesMagalhães P, Pejchinovski M, Markoska K, Banasik M, Klinger M, Švec-Billá D, et al. Association of kidney fibrosis with urinary peptides: a path towards non- invasive liquid biopsies? Sci Rep. 2017;7(1):16915. https://dx.doi.org/10.1038/s41598-017-17083-weng
dcterms.referencesPacheco-Lugo L, Díaz-Olmos Y, Aroca-Martínez G. Biomarcadores en fuídos biológicos y su potencial uso como indicadores de nefritis lúpica en individuos con lupus eritematoso sistémico. Rev Colomb Nefrol. 2014;1(1):39-47. https://dx.doi.org/10.22265/acnef.1.1.171spa
dcterms.referencesCárdenas-González M, Srivastava A, Pavkovic M, Bijol V, Rennke HG, Stillman IE, et al. Identification, Con rmation, and Replication of Novel Urinary MicroRNA Biomarkers in Lupus Nephritis and Diabetic Nephropathy. Clin Chem. 2017;63(9):1515-26. https://dx.doi. org/10.1373/clinchem.2017.274175eng
dcterms.referencesAbulaban KM, Fall N, Nunna R, Ying J, Devarajan P, Grom A, et al. Relationship of cell-free urine MicroRNA with lupus nephritis in children. Pediatr Rheumatol Online J. 2016;14(1):4. https://dx.doi.org/10.1186/s12969-016-0064-xeng
dcterms.referencesSantiago-Dieppa DR, Steinberg J, Gonda D, Cheung VJ, Carter BS, Chen CC. Extracellular vesicles as a platform for ‘liquid biopsy’ in glioblastoma patients. Expert Rev Mol Diagn. 2014;14(7):819-25. https://dx.doi.org/10.1586/14737159.2014.943193eng
dcterms.referencesChun-Yan L, Zi-Yi Z, Tian-Lin Y, Yi-Li W, Bao L, Jiao L, et al. Liquid biopsy biomarkers of renal interstitial fibrosis based on urinary exosome. Exp Mol Pathol. 2018;105(2):223-8. https://dx.doi.org/10.1016/j.yexmp.2018.08.004eng
dcterms.referencesSolé C, Cortés-Hernández J, Felip ML, Vidal M, Ordi-Ros J. miR-29c in urinary exosomes as predictor of early renal fibrosis in lupus nephritis. Nephrol Dial Transplant. 2015;30(9):1488-96. https://dx.doi.org/10.1093/ndt/gfv128eng
dcterms.referencesGarcia-Vives E, Solé C, Moliné T, Vidal M, Agraz I, Ordi-Ros J, et al. The Urinary Exosomal miRNA Expression Profile is Predictive of Clinical Response in Lupus Nephritis. Int J Mol Sci. 2020;21(4):1372. https://dx.doi.org/10.3390/ijms21041372eng
dcterms.referencesSolé C, Moliné T, Vidal M, Ordi-Ros J, Cortés-Hernández J. An Exosomal Urinary miRNA Signature for Early Diagnosis of Renal Fibrosis in Lupus Nephritis. Cells. 2019;8(8):773. https://dx.doi.org/10.3390/cells8080773eng
dcterms.referencesLi Y, Xu X, Tang X, Bian X, Shen B, Zhao H, et al. MicroRNA expression pro le of urinary exosomes in Type IV lupus nephritis complicated by cellular crescent. J Biol Res (Thessalon). 2018;25(1):16. https://dx.doi.org/10.1186/s40709-018-0088-0eng
dcterms.referencesGuan J, Wang G, Tam LS, Kwan BCH, Li EKM, Chow KM, et al. Urinary sediment ICAM-1 level in lupus nephritis. Lupus. 2012;21(11):1190-5. https://dx.doi.org/10.1177/ 0961203312451334eng
dcterms.referencesJakiela B, Kosałka J, Plutecka H, Węgrzyn AS, Bazan-Socha S, Sanak M, et al. Urinary cytokines and mRNA expression as biomarkers of disease activity in lupus nephritis. Lupus. 2018;27(8):1259-70. https://dx.doi.org/10.1177/0961203318770006eng
dcterms.referencesPerez-Hernandez J, Forner MJ, Pinto C, Chaves FJ, Cortes R, Redon J. Increased Urinary Exosomal MicroRNAs in Patients with Systemic Lupus Erythematosus. PLoS One. 2015;10(9):e0138618. https://dx.doi.org/10.1371/journal.pone.0138618eng
oaire.versioninfo:eu-repo/semantics/publishedVersionspa
sb.programaMedicinaspa
sb.sedeSede Barranquillaspa

Archivos