Molecular Mechanisms of Diabetic Kidney Disease

datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
dc.contributor.authorRico-Fontalvo, Jorge
dc.contributor.authorAroca, Gustavo
dc.contributor.authorCabrales, José
dc.contributor.authorDaza-Arnedo, Rodrigo
dc.contributor.authorYánez-Rodríguez, Tomas
dc.contributor.authorMartínez-Ávila, María Cristina
dc.contributor.authorUparella-Gulfo, Isabella
dc.contributor.authorRaad-Sarabia, María
dc.date.accessioned2022-08-04T20:46:33Z
dc.date.available2022-08-04T20:46:33Z
dc.date.issued2022
dc.description.abstractThe inflammatory component of diabetic kidney disease has become of great interest in recent years, with genetic and epigenetic variants playing a fundamental role in the initiation and progression of the disease. Cells of the innate immune system play a major role in the pathogenesis of diabetic kidney disease, with a lesser contribution from the adaptive immune cells. Other components such as the complement system also play a role, as well as specific cytokines and chemokines. The inflammatory component of diabetic kidney disease is of great interest and is an active research field, with the hope to find potential innovative therapeutic targets.eng
dc.format.mimetypepdfspa
dc.identifier.doihttps://doi.org/10.3390/ijms23158668
dc.identifier.issn14220067
dc.identifier.urihttps://hdl.handle.net/20.500.12442/10501
dc.identifier.urlhttps://www.mdpi.com/1422-0067/23/15/8668
dc.language.isoengeng
dc.publisherMDPIeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceInternational Journal of Molecular Scienceseng
dc.sourceInt. J. Mol. Sci.eng
dc.sourceVol. 23 No. 15 (2022)
dc.subjectGeneticseng
dc.subjectEpigeneticeng
dc.subjectInflammatoryeng
dc.subjectInnateeng
dc.subjectAdaptiveeng
dc.subjectCytokineseng
dc.subjectInnovationeng
dc.titleMolecular Mechanisms of Diabetic Kidney Diseaseeng
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.spaArtículo científicospa
dcterms.referencesTurkmen, K. Inflammation, oxidative stress, apoptosis, and autophagy in diabetes mellitus and diabetic kidney disease: The Four Horsemen of the Apocalypse. Int. Urol. Nephrol. 2017, 49, 837–844.[CrossRef]eng
dcterms.referencesSamsu, N. Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. BioMed. Res. Int. 2021, 2021, 1497449.[CrossRef] [PubMed]eng
dcterms.referencesTang, S.C.W.; Yiu,W.H. Innate immunity in diabetic kidney disease. Nat. Rev. Nephrol. 2020, 16, 206–222.[CrossRef] [PubMed]eng
dcterms.referencesJung, S.W.; Moon, J.Y. The role of inflammation in diabetic kidney disease. Korean J. Intern. Med. 2021, 36, 753–766.[CrossRef]eng
dcterms.referencesWoroniecka, K.I.; Park, A.S.D.; Mohtat, D.; Thomas, D.B.; Pullman, J.M.; Susztak, K. Transcriptome analysis of human diabetic kidney disease. Diabetes 2011, 60, 2354–2369.[CrossRef] [PubMed]eng
dcterms.referencesKiritoshi, S.; Nishikawa, T.; Sonoda, K.; Kukidome, D.; Senokuchi, T.; Matsuo, T.; Matsumura, T.; Tokunaga, H.; Brownlee, M.; Araki, E. Reactive oxygen species from mitochondria induce cyclooxygenase-2 gene expression in human mesangial cells: Potential role in diabetic nephropathy. Diabetes 2003, 52, 2570–2577.[CrossRef] [PubMed]eng
dcterms.referencesReidy, K.; Kang, H.M.; Hostetter, T.; Susztak, K. Molecular mechanisms of diabetic kidney disease. J. Clin. Investig. 2014, 124, 2333–2340.[CrossRef]eng
dcterms.referencesFontalvo, J.E.R. Guía de práctica clínica para la enfermedad renal diabética. Rev. Colomb. Nefrol. 2021, 8.[CrossRef]spa
dcterms.referencesDubin, R.F.; Rhee, E.P. Proteomics and Metabolomics in Kidney Disease, including Insights into Etiology, Treatment, and Prevention. Clin. J. Am. Soc. Nephrol. 2020, 15, 404–411.[CrossRef] [PubMed]eng
dcterms.referencesGu, H.F. Genetic and Epigenetic Studies in Diabetic Kidney Disease. Front. Genet. 2019, 10, 507.[CrossRef]eng
dcterms.referencesRico Fontalvo, J. Enfermedad renal diabética: De cara a la prevención, diagnóstico e intervención temprana. Rev. Colomb. Nefrol. 2020, 7, 15–16.[CrossRef]eng
dcterms.referencesShao, B.-Y.; Zhang, S.-F.; Li, H.-D.; Meng, X.-M.; Chen, H.-Y. Epigenetics and Inflammation in Diabetic Nephropathy. Front. Physiol. 2021, 12, 607.[CrossRef] [PubMed]eng
dcterms.referencesVan Zuydam, N.R.; Ahlqvist, E.; Sandholm, N.; Deshmukh, H.; Rayner, N.W.; Abdalla, M.; Ladenvall, C.; Ziemek, D.; Fauman, E.; Robertson, N.R.; et al. A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects with Type 2 Diabetes. Diabetes 2018, 67, 1414–1427.[CrossRef] [PubMed]eng
dcterms.referencesLopera Vargas, J.M.; Rico Fontalvo, J.E.; Melgarejo, R.E.; Castillo Barrios, G.A.; Ramírez Rincón, A.; Gomez, A.M.; Martínez Rojas, S.; Ibatá Bernal, L. Effect of pharmacological therapies for glycemic control in patients with type 2 diabetes mellitus on vascular outcomes. Rev. Colomb. Nefrol. 2020, 7, 44–59.[CrossRef]eng
dcterms.referencesPérez-López, L.; Boronat, M.; Melián, C.; Brito-Casillas, Y.; Wägner, A.M. Animal Models and Renal Biomarkers of Diabetic Nephropathy. In Diabetes: From Research to Clinical Practice; Springer: Berlin/Heidelberg, Germany, 2020; pp. 521–551.eng
dcterms.referencesHall, J.A.; Yerramilli, M.; Obare, E.; Li, J.; Yerramilli, M.; Jewell, D.E. Serum concentrations of symmetric dimethylarginine and creatinine in cats with kidney stones. PLoS ONE 2017, 12, e0174854.[CrossRef] [PubMed]eng
dcterms.referencesHall, J.; Yerramilli, M.; Obare, E.; Yu, S.; Jewell, D. Comparison of serum concentrations of symmetric dimethylarginine and creatinine as kidney function biomarkers in healthy geriatric cats fed reduced protein foods enriched with fish oil, L-carnitine, and medium-chain triglycerides. Veter-J. 2014, 202, 588–596. [CrossRef]eng
dcterms.referencesHall, J.; Yerramilli, M.; Obare, E.; Yu, S.; Jewell, D. Comparison of serum concentrations of symmetric dimethylarginine and creatinine as kidney function biomarkers in healthy geriatric cats fed reduced protein foods enriched with fish oil, L-carnitine, and medium-chain triglycerides. Veter-J. 2014, 202, 588–596. [CrossRef]eng
dcterms.referencesTogashi, Y.; Miyamoto, Y. Urinary cystatin C as a biomarker for diabetic nephropathy and its immunohistochemical localization in kidney in Zucker diabetic fatty (ZDF) rats. Exp. Toxicol. Pathol. 2013, 65, 615–622. [CrossRef]eng
dcterms.referencesvan Hoek, I.; Daminet, S.; Notebaert, S.; Janssens, I.; Meyer, E. Immunoassay of urinary retinol binding protein as a putative renal marker in cats. J. Immunol. Methods 2008, 329, 208–213. [CrossRef]eng
dcterms.referencesSteinbach, S.;Weis, J.; Schweighauser, A.; Francey, T.; Neiger, R. Plasma and Urine Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Dogs with Acute Kidney Injury or Chronic Kidney Disease. J. Veter-Intern. Med. 2014, 28, 264–269. [CrossRef]eng
dcterms.referencesHosohata, K.; Ando, H.; Takeshita, Y.; Misu, H.; Takamura, T.; Kaneko, S.; Fujimura, A. Urinary Kim-1 is a sensitive biomarker for the early stage of diabetic nephropathy in Otsuka Long-Evans Tokushima Fatty rats. Diabetes Vasc. Dis. Res. 2014, 11, 243–250. [CrossRef] [PubMed]eng
dcterms.referencesColhoun, H.M.; Marcovecchio, M.L. Biomarkers of diabetic kidney disease. Diabetologia 2018, 61, 996–1011. [CrossRef] [PubMed]eng
dcterms.referencesCarlsson, A.; Östgren, C.; Länne, T.; Larsson, A.; Nystrom, F.; Ärnlöv, J. The association between endostatin and kidney disease and mortality in patients with type 2 diabetes. Diabetes Metab. 2016, 42, 351–357. [CrossRef] [PubMed]eng
dcterms.referencesDieter, B.P.; McPherson, S.M.; Afkarian, M.; de Boer, I.H.; Mehrotra, R.; Short, R.; Barbosa-Leiker, C.; Alicic, R.Z.; Meek, R.L.; Tuttle, K.R. Serum amyloid a and risk of death and end-stage renal disease in diabetic kidney disease. J. Diabetes Complicat. 2016, 30, 1467–1472. [CrossRef]eng
dcterms.referencesGarg, V.; Kumar, M.; Mahapatra, H.S.; Chitkara, A.; Gadpayle, A.K.; Sekhar, V. Novel urinary biomarkers in pre-diabetic nephropathy. Clin. Exp. Nephrol. 2015, 19, 895–900. [CrossRef] [PubMed]eng
dcterms.referencesFufaa, G.D.; Weil, E.J.; Nelson, R.G.; Hanson, R.L.; Bonventre, J.V.; Sabbisetti, V.; Waikar, S.S.; Mifflin, T.E.; Zhang, X.; Xie, D.; et al. Association of urinary KIM-1, L-FABP, NAG and NGAL with incident end-stage renal disease and mortality in American Indians with type 2 diabetes mellitus. Diabetologia 2014, 58, 188–198. [CrossRef]eng
dcterms.referencesLopes-Virella, M.F.; Baker, N.L.; Hunt, K.J.; Cleary, P.A.; Klein, R.; Virella, G. The DCCT/EDIC Research Group Baseline Markers of Inflammation Are Associated with Progression to Macroalbuminuria in Type 1 Diabetic Subjects. Diabetes Care 2013, 36, 2317–2323. [CrossRef]eng
dcterms.referencesAraki, S.-I.; Haneda, M.; Koya, D.; Sugaya, T.; Isshiki, K.; Kume, S.; Kashiwagi, A.; Uzu, T.; Maegawa, H. Predictive Effects of Urinary Liver-Type Fatty Acid–Binding Protein for Deteriorating Renal Function and Incidence of Cardiovascular Disease in Type 2 Diabetic Patients without Advanced Nephropathy. Diabetes Care 2013, 36, 1248–1253. [CrossRef]eng
dcterms.referencesNiewczas, M.A.; Gohda, T.; Skupien, J.; Smiles, A.M.; Walker, W.H.; Rosetti, F.; Cullere, X.; Eckfeldt, J.H.; Doria, A.; Mayadas, T.N.; et al. Circulating TNF Receptors 1 and 2 Predict ESRD in Type 2 Diabetes. J. Am. Soc. Nephrol. 2012, 23, 507–515. [CrossRef]eng
dcterms.referencesFu, W.-J.; Li, B.-L.; Wang, S.-B.; Chen, M.-L.; Deng, R.-T.; Ye, C.-Q.; Liu, L.; Fang, A.-J.; Xiong, S.-L.; Wen, S.; et al. Changes of the tubular markers in type 2 diabetes mellitus with glomerular hyperfiltration. Diabetes Res. Clin. Pr. 2012, 95, 105–109. [CrossRef]eng
dcterms.referencesFoster, M.C.; Inker, L.A.; Hsu, C.-Y.; Eckfeldt, J.H.; Levey, A.S.; Pavkov, M.E.; Myers, B.D.; Bennett, P.H.; Kimmel, P.L.; Vasan, R.S.; et al. Filtration Markers as Predictors of ESRD and Mortality in Southwestern American Indians with Type 2 Diabetes. Am. J. Kidney Dis. 2015, 66, 75–83. [CrossRef] [PubMed]eng
dcterms.referencesVaidya, V.S.; Niewczas, M.A.; Ficociello, L.H.; Johnson, A.C.; Collings, F.B.; Warram, J.H.; Krolewski, A.S.; Bonventre, J.V. Regression of microalbuminuria in type 1 diabetes is associated with lower levels of urinary tubular injury biomarkers, kidney injury molecule-1, and N-acetyl- -D-glucosaminidase. Kidney Int. 2011, 79, 464–470. [CrossRef] [PubMed]eng
dcterms.referencesLiu, P.; Zhang, Z.; Li, Y. Relevance of the Pyroptosis-Related Inflammasome Pathway in the Pathogenesis of Diabetic Kidney Disease. Front. Immunol. 2021, 12, 603416. [CrossRef]eng
dcterms.referencesPereira, P.R.; Carrageta, D.F.; Oliveira, P.F.; Rodrigues, A.; Alves, M.G.; Monteiro, M.P. Metabolomics as a tool for the early diagnosis and prognosis of diabetic kidney disease. Med. Res. Rev. 2022, 42, 1518–1544. [CrossRef] [PubMed]eng
dcterms.referencesDevaraj, S.; Dasu, M.R.; Rockwood, J.; Winter, W.; Griffen, S.C.; Jialal, I. Increased toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: Further evidence of a proinflammatory state. J. Clin. Endocrinol. Metab. 2008, 93, 578–583. [CrossRef] [PubMed]eng
dcterms.referencesDasu, M.R.; Devaraj, S.; Park, S.; Jialal, I. Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care 2010, 33, 861–868. [CrossRef] [PubMed]eng
dcterms.referencesMulay, S.R. Multifactorial functions of the inflammasome component NLRP3 in pathogenesis of chronic kidney diseases. Kidney Int. 2019, 96, 58–66. [CrossRef] [PubMed]eng
dcterms.referencesMoossavi, M.; Parsamanesh, N.; Bahrami, A.; Atkin, S.L.; Sahebkar, A. Role of the NLRP3 inflammasome in cancer. Mol. Cancer 2018, 17, 158. [CrossRef]eng
dcterms.referencesSusztak, K.; Raff, A.C.; Schiffer, M.; Böttinger, E.P. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 2006, 55, 225–233. [CrossRef]eng
dcterms.referencesHar, R.; Scholey, J.W.; Daneman, D.; Mahmud, F.H.; Dekker, R.; Lai, V.; Elia, Y.; Fritzler, M.L.; Sochett, E.B.; Reich, H.N.; et al. The effect of renal hyperfiltration on urinary inflammatory cytokines/chemokines in patients with uncomplicated type 1 diabetes mellitus. Diabetologia 2013, 56, 1166–1173. [CrossRef]eng
dcterms.referencesChow, F.Y.; Nikolic-Paterson, D.J.; Ma, F.Y.; Ozols, E.; Rollins, B.J.; Tesch, G.H. Monocyte chemoattractant protein-1-induced tissue inflammation is critical for the development of renal injury but not type 2 diabetes in obese db/db mice. Diabetologia 2007, 50, 471–480. [CrossRef] [PubMed]eng
dcterms.referencesChow, F.Y.; Nikolic-Paterson, D.J.; Ozols, E.; Atkins, R.C.; Rollin, B.J.; Tesch, G.H. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int. 2006, 69, 73–80. [CrossRef] [PubMed]eng
dcterms.referencesNavarro-González, J.F.; Mora-Fernández, C.; Muros de Fuentes, M.; García-Pérez, J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat. Rev. Nephrol. 2011, 7, 327–340. [CrossRef]eng
dcterms.referencesPickup, J.C.; Chusney, G.D.; Thomas, S.M.; Burt, D. Plasma interleukin-6, tumour necrosis factor alpha and blood cytokine production in type 2 diabetes. Life Sci. 2000, 67, 291–300. [CrossRef]eng
dcterms.referencesSangoi, M.B.; de Carvalho, J.A.M.; Tatsch, E.; Hausen, B.S.; Bollick, Y.S.; Londero, S.W.K.; Duarte, T.; Scolari, R.; Duarte, M.M.M.F.; Premaor, M.O.; et al. Urinary inflammatory cytokines as indicators of kidney damage in type 2 diabetic patients. Clin. Chim. Acta Int. J. Clin. Chem. 2016, 460, 178–183. [CrossRef]eng
dcterms.referencesTuttle, K.R.; Agarwal, R.; Alpers, C.E.; Bakris, G.L.; Brosius, F.C.; Kolkhof, P.; Uribarri, J. Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int. 2022, 102, 248–260. [CrossRef]eng
dcterms.referencesPark, J.; Guan, Y.; Sheng, X.; Gluck, C.; Seasock, M.J.; Hakimi, A.A.; Qiu, C.; Pullman, J.; Verma, A.; Li, H.; et al. Functional methylome analysis of human diabetic kidney disease. JCI Insight 2019, 4, e128886. [CrossRef] [PubMed]eng
dcterms.referencesNiewczas, M.A.; Ficociello, L.H.; Johnson, A.C.;Walker,W.; Rosolowsky, E.T.; Roshan, B.;Warram, J.H.; Krolewski, A.S. Serum concentrations of markers of TNFalpha and Fas-mediated pathways and renal function in nonproteinuric patients with type 1 diabetes. Clin. J. Am. Soc. Nephrol. 2009, 4, 62–70. [CrossRef] [PubMed]eng
dcterms.referencesCoca, S.G.; Nadkarni, G.N.; Huang, Y.; Moledina, D.G.; Rao, V.; Zhang, J.; Ferket, B.; Crowley, S.T.; Fried, L.F.; Parikh, C.R. Plasma Biomarkers and Kidney Function Decline in Early and Established Diabetic Kidney Disease. J. Am. Soc. Nephrol. 2017, 28, 2786–2793. [CrossRef] [PubMed]eng
dcterms.referencesRuster, C.;Wolf, G. The role of chemokines and chemokine receptors in diabetic nephropathy. Front. Biosci. J. Virtual Libr. 2008, 13, 944–955. [CrossRef]eng
dcterms.referencesTesch, G.H. MCP-1/CCL2: A new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am. J. Physiol. Renal. Physiol. 2008, 294, F697–F701. [CrossRef] [PubMed]eng
dcterms.referencesHerder, C.; Peltonen, M.; Koenig, W.; Kräft, I.; Müller-Scholze, S.; Martin, S.; Lakka, T.; Ilanne-Parikka, P.; Eriksson, J.G.; Hämäläinen, H.; et al. Systemic immune mediators and lifestyle changes in the prevention of type 2 diabetes: Results from the Finnish Diabetes Prevention Study. Diabetes 2006, 55, 2340–2346. [CrossRef] [PubMed]eng
dcterms.referencesFlyvbjerg, A. The role of the complement system in diabetic nephropathy. Nat. Rev. Nephrol. 2017, 13, 311–318. [CrossRef] [PubMed]eng
dcterms.referencesHajishengallis, G.; Reis, E.S.; Mastellos, D.C.; Ricklin, D.; Lambris, J.D. Novel mechanisms and functions of complement. Nat. Immunol. 2017, 18, 1288–1298. [CrossRef]eng
dcterms.referencesTang, S.; Zhou,W.; Sheerin, N.S.; Vaughan, R.W.; Sacks, S.H. Contribution of renal secreted complement C3 to the circulating pool in humans. J Immunol 1999, 162, 4336–4341.eng
dcterms.referencesBudge, K.; Dellepiane, S.; Yu, S.M.W.; Cravedi, P. Complement, a Therapeutic Target in Diabetic Kidney Disease. Front. Med. 2020, 7, 599236. [CrossRef] [PubMed]eng
dcterms.referencesRasmussen, K.L.; Nordestgaard, B.G.; Nielsen, S.F. Complement C3 and Risk of Diabetic Microvascular Disease: A Cohort Study of 95202 Individuals from the General Population. Clin. Chem. 2018, 64, 1113–1124. [CrossRef] [PubMed]eng
dcterms.referencesHansen, T.K.; Gall, M.A.; Tarnow, L.; Thiel, S.; Stehouwer, C.D.; Schalkwijk, C.G.; Parving, H.-H.; Flyvbjerg, A. Mannose-binding lectin and mortality in type 2 diabetes. Arch. Intern. Med. 2006, 166, 2007–2013. [CrossRef]eng
dcterms.referencesYiu, W.H.; Li, R.X.; Wong, D.W.L.; Wu, H.J.; Chan, K.W.; Chan, L.Y.Y.; Leung, J.C.K.; Lai, K.N.; Sacks, S.H.; Zhou, W.; et al. Complement C5a inhibition moderates lipid metabolism and reduces tubulointerstitial fibrosis in diabetic nephropathy. Nephrol. Dial. Transpl. 2018, 33, 1323–1332. [CrossRef]eng
dcterms.referencesAnand, G.; Vasanthakumar, R.; Mohan, V.; Babu, S.; Aravindhan, V. Increased IL-12 and decreased IL-33 serum levels are associated with increased Th1 and suppressed Th2 cytokine profile in patients with diabetic nephropathy (CURES-134). Int. J. Clin. Exp. Pathol. 2014, 7, 8008–8015.eng
dcterms.referencesZeng, C.; Shi, X.; Zhang, B.; Liu, H.; Zhang, L.; Ding, W.; Zhao, Y. The imbalance of Th17/Th1/Tregs in patients with type 2 diabetes: Relationship with metabolic factors and complications. J. Mol. Med. 2012, 90, 175–186. [CrossRef] [PubMed]eng
dcterms.referencesMoon, J.Y.; Jeong, K.H.; Lee, T.W.; Ihm, C.G.; Lim, S.J.; Lee, S.H. Aberrant recruitment and activation of T cells in diabetic nephropathy. Am. J. Nephrol. 2012, 35, 164–174. [CrossRef] [PubMed]eng
dcterms.referencesSelye, H. Production of Nephrosclerosis by Overdosage with Desoxycorticosterone Acetate. Can. Med. Assoc. J. 1942, 47, 515–519. [PubMed]eng
dcterms.referencesKang, Y.S.; Cha, D.R. Aldosterone and diabetic kidney disease. Curr. Diab. Rep. 2009, 9, 453–459. [CrossRef] [PubMed]eng
dcterms.referencesTuttle, K.R.; Brosius, F.C.; Adler, S.G.; Kretzler, M.; Mehta, R.L.; Tumlin, J.A.; Tanaka, Y.; Haneda, M.; Liu, J.; Silk, M.E.; et al. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: Results from a Phase 2 randomized controlled clinical trial. Nephrol. Dial. Transplant. 2018, 33, 1950–1959. [CrossRef]eng
dcterms.referencesHärma, M.-A.; on behalf of the FinnDiane Study Group; Dahlström, E.H.; Sandholm, N.; Forsblom, C.; Groop, P.-H.; Lehto, M. Decreased plasma kallikrein activity is associated with reduced kidney function in individuals with type 1 diabetes. Diabetologia 2020, 63, 1349–1354. [CrossRef]eng
dcterms.referencesCefalu, W.T.; A Leiter, L.; Yoon, K.-H.; Arias, P.; Niskanen, L.; Xie, J.; A Balis, D.; Canovatchel, W.; Meininger, G. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATASU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 2013, 382, 941–950. [CrossRef]eng
dcterms.referencesBakris, G.L.; Agarwal, R.; Anker, S.D.; Pitt, B.; Ruilope, L.M.; Rossing, P.; Kolkhof, P.; Nowack, C.; Schloemer, P.; Joseph, A.; et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 2219–2229. [CrossRef]eng
dcterms.referencesPitt, B.; Filippatos, G.; Agarwal, R.; Anker, S.D.; Bakris, G.L.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Schloemer, P.; et al. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 2252–2263. [CrossRef]eng
dcterms.referencesZhang, Y.; Jin, D.; Kang, X.; Zhou, R.; Sun, Y.; Lian, F.; Tong, X. Signaling Pathways Involved in Diabetic Renal Fibrosis. Front. Cell Dev. Biol. 2021, 9, 696542. [CrossRef] [PubMed]eng
dcterms.referencesFontalvo, J.E.R.; Anedo, R.D.; Sarabia, M.R.; Galvis, N.P.; Espinosa, A.B.; Gulfo, I.U.; Calvo, C.P.; Lara, A.P.; Almeida, Z.M.; Serpa, O.V.; et al. Proteoma urinario en la enfermedad renal diabética. Rev. Colomb. Nefrol. 2021, 8, e546.eng
dcterms.referencesAghadavoud, E.; Nasri, H.; Amiri, M. Molecular signaling pathways of diabetic kidney disease; new concepts. J. Prev. Epidemiol. 2017, 2, e03.eng
oaire.versioninfo:eu-repo/semantics/publishedVersionspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
1.37 MB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones