Molecular Mechanisms of Diabetic Kidney Disease
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
dc.contributor.author | Rico-Fontalvo, Jorge | |
dc.contributor.author | Aroca, Gustavo | |
dc.contributor.author | Cabrales, José | |
dc.contributor.author | Daza-Arnedo, Rodrigo | |
dc.contributor.author | Yánez-Rodríguez, Tomas | |
dc.contributor.author | Martínez-Ávila, María Cristina | |
dc.contributor.author | Uparella-Gulfo, Isabella | |
dc.contributor.author | Raad-Sarabia, María | |
dc.date.accessioned | 2022-08-04T20:46:33Z | |
dc.date.available | 2022-08-04T20:46:33Z | |
dc.date.issued | 2022 | |
dc.description.abstract | The inflammatory component of diabetic kidney disease has become of great interest in recent years, with genetic and epigenetic variants playing a fundamental role in the initiation and progression of the disease. Cells of the innate immune system play a major role in the pathogenesis of diabetic kidney disease, with a lesser contribution from the adaptive immune cells. Other components such as the complement system also play a role, as well as specific cytokines and chemokines. The inflammatory component of diabetic kidney disease is of great interest and is an active research field, with the hope to find potential innovative therapeutic targets. | eng |
dc.format.mimetype | spa | |
dc.identifier.doi | https://doi.org/10.3390/ijms23158668 | |
dc.identifier.issn | 14220067 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/10501 | |
dc.identifier.url | https://www.mdpi.com/1422-0067/23/15/8668 | |
dc.language.iso | eng | eng |
dc.publisher | MDPI | eng |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | International Journal of Molecular Sciences | eng |
dc.source | Int. J. Mol. Sci. | eng |
dc.source | Vol. 23 No. 15 (2022) | |
dc.subject | Genetics | eng |
dc.subject | Epigenetic | eng |
dc.subject | Inflammatory | eng |
dc.subject | Innate | eng |
dc.subject | Adaptive | eng |
dc.subject | Cytokines | eng |
dc.subject | Innovation | eng |
dc.title | Molecular Mechanisms of Diabetic Kidney Disease | eng |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.spa | Artículo científico | spa |
dcterms.references | Turkmen, K. Inflammation, oxidative stress, apoptosis, and autophagy in diabetes mellitus and diabetic kidney disease: The Four Horsemen of the Apocalypse. Int. Urol. Nephrol. 2017, 49, 837–844.[CrossRef] | eng |
dcterms.references | Samsu, N. Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. BioMed. Res. Int. 2021, 2021, 1497449.[CrossRef] [PubMed] | eng |
dcterms.references | Tang, S.C.W.; Yiu,W.H. Innate immunity in diabetic kidney disease. Nat. Rev. Nephrol. 2020, 16, 206–222.[CrossRef] [PubMed] | eng |
dcterms.references | Jung, S.W.; Moon, J.Y. The role of inflammation in diabetic kidney disease. Korean J. Intern. Med. 2021, 36, 753–766.[CrossRef] | eng |
dcterms.references | Woroniecka, K.I.; Park, A.S.D.; Mohtat, D.; Thomas, D.B.; Pullman, J.M.; Susztak, K. Transcriptome analysis of human diabetic kidney disease. Diabetes 2011, 60, 2354–2369.[CrossRef] [PubMed] | eng |
dcterms.references | Kiritoshi, S.; Nishikawa, T.; Sonoda, K.; Kukidome, D.; Senokuchi, T.; Matsuo, T.; Matsumura, T.; Tokunaga, H.; Brownlee, M.; Araki, E. Reactive oxygen species from mitochondria induce cyclooxygenase-2 gene expression in human mesangial cells: Potential role in diabetic nephropathy. Diabetes 2003, 52, 2570–2577.[CrossRef] [PubMed] | eng |
dcterms.references | Reidy, K.; Kang, H.M.; Hostetter, T.; Susztak, K. Molecular mechanisms of diabetic kidney disease. J. Clin. Investig. 2014, 124, 2333–2340.[CrossRef] | eng |
dcterms.references | Fontalvo, J.E.R. Guía de práctica clínica para la enfermedad renal diabética. Rev. Colomb. Nefrol. 2021, 8.[CrossRef] | spa |
dcterms.references | Dubin, R.F.; Rhee, E.P. Proteomics and Metabolomics in Kidney Disease, including Insights into Etiology, Treatment, and Prevention. Clin. J. Am. Soc. Nephrol. 2020, 15, 404–411.[CrossRef] [PubMed] | eng |
dcterms.references | Gu, H.F. Genetic and Epigenetic Studies in Diabetic Kidney Disease. Front. Genet. 2019, 10, 507.[CrossRef] | eng |
dcterms.references | Rico Fontalvo, J. Enfermedad renal diabética: De cara a la prevención, diagnóstico e intervención temprana. Rev. Colomb. Nefrol. 2020, 7, 15–16.[CrossRef] | eng |
dcterms.references | Shao, B.-Y.; Zhang, S.-F.; Li, H.-D.; Meng, X.-M.; Chen, H.-Y. Epigenetics and Inflammation in Diabetic Nephropathy. Front. Physiol. 2021, 12, 607.[CrossRef] [PubMed] | eng |
dcterms.references | Van Zuydam, N.R.; Ahlqvist, E.; Sandholm, N.; Deshmukh, H.; Rayner, N.W.; Abdalla, M.; Ladenvall, C.; Ziemek, D.; Fauman, E.; Robertson, N.R.; et al. A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects with Type 2 Diabetes. Diabetes 2018, 67, 1414–1427.[CrossRef] [PubMed] | eng |
dcterms.references | Lopera Vargas, J.M.; Rico Fontalvo, J.E.; Melgarejo, R.E.; Castillo Barrios, G.A.; Ramírez Rincón, A.; Gomez, A.M.; Martínez Rojas, S.; Ibatá Bernal, L. Effect of pharmacological therapies for glycemic control in patients with type 2 diabetes mellitus on vascular outcomes. Rev. Colomb. Nefrol. 2020, 7, 44–59.[CrossRef] | eng |
dcterms.references | Pérez-López, L.; Boronat, M.; Melián, C.; Brito-Casillas, Y.; Wägner, A.M. Animal Models and Renal Biomarkers of Diabetic Nephropathy. In Diabetes: From Research to Clinical Practice; Springer: Berlin/Heidelberg, Germany, 2020; pp. 521–551. | eng |
dcterms.references | Hall, J.A.; Yerramilli, M.; Obare, E.; Li, J.; Yerramilli, M.; Jewell, D.E. Serum concentrations of symmetric dimethylarginine and creatinine in cats with kidney stones. PLoS ONE 2017, 12, e0174854.[CrossRef] [PubMed] | eng |
dcterms.references | Hall, J.; Yerramilli, M.; Obare, E.; Yu, S.; Jewell, D. Comparison of serum concentrations of symmetric dimethylarginine and creatinine as kidney function biomarkers in healthy geriatric cats fed reduced protein foods enriched with fish oil, L-carnitine, and medium-chain triglycerides. Veter-J. 2014, 202, 588–596. [CrossRef] | eng |
dcterms.references | Hall, J.; Yerramilli, M.; Obare, E.; Yu, S.; Jewell, D. Comparison of serum concentrations of symmetric dimethylarginine and creatinine as kidney function biomarkers in healthy geriatric cats fed reduced protein foods enriched with fish oil, L-carnitine, and medium-chain triglycerides. Veter-J. 2014, 202, 588–596. [CrossRef] | eng |
dcterms.references | Togashi, Y.; Miyamoto, Y. Urinary cystatin C as a biomarker for diabetic nephropathy and its immunohistochemical localization in kidney in Zucker diabetic fatty (ZDF) rats. Exp. Toxicol. Pathol. 2013, 65, 615–622. [CrossRef] | eng |
dcterms.references | van Hoek, I.; Daminet, S.; Notebaert, S.; Janssens, I.; Meyer, E. Immunoassay of urinary retinol binding protein as a putative renal marker in cats. J. Immunol. Methods 2008, 329, 208–213. [CrossRef] | eng |
dcterms.references | Steinbach, S.;Weis, J.; Schweighauser, A.; Francey, T.; Neiger, R. Plasma and Urine Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Dogs with Acute Kidney Injury or Chronic Kidney Disease. J. Veter-Intern. Med. 2014, 28, 264–269. [CrossRef] | eng |
dcterms.references | Hosohata, K.; Ando, H.; Takeshita, Y.; Misu, H.; Takamura, T.; Kaneko, S.; Fujimura, A. Urinary Kim-1 is a sensitive biomarker for the early stage of diabetic nephropathy in Otsuka Long-Evans Tokushima Fatty rats. Diabetes Vasc. Dis. Res. 2014, 11, 243–250. [CrossRef] [PubMed] | eng |
dcterms.references | Colhoun, H.M.; Marcovecchio, M.L. Biomarkers of diabetic kidney disease. Diabetologia 2018, 61, 996–1011. [CrossRef] [PubMed] | eng |
dcterms.references | Carlsson, A.; Östgren, C.; Länne, T.; Larsson, A.; Nystrom, F.; Ärnlöv, J. The association between endostatin and kidney disease and mortality in patients with type 2 diabetes. Diabetes Metab. 2016, 42, 351–357. [CrossRef] [PubMed] | eng |
dcterms.references | Dieter, B.P.; McPherson, S.M.; Afkarian, M.; de Boer, I.H.; Mehrotra, R.; Short, R.; Barbosa-Leiker, C.; Alicic, R.Z.; Meek, R.L.; Tuttle, K.R. Serum amyloid a and risk of death and end-stage renal disease in diabetic kidney disease. J. Diabetes Complicat. 2016, 30, 1467–1472. [CrossRef] | eng |
dcterms.references | Garg, V.; Kumar, M.; Mahapatra, H.S.; Chitkara, A.; Gadpayle, A.K.; Sekhar, V. Novel urinary biomarkers in pre-diabetic nephropathy. Clin. Exp. Nephrol. 2015, 19, 895–900. [CrossRef] [PubMed] | eng |
dcterms.references | Fufaa, G.D.; Weil, E.J.; Nelson, R.G.; Hanson, R.L.; Bonventre, J.V.; Sabbisetti, V.; Waikar, S.S.; Mifflin, T.E.; Zhang, X.; Xie, D.; et al. Association of urinary KIM-1, L-FABP, NAG and NGAL with incident end-stage renal disease and mortality in American Indians with type 2 diabetes mellitus. Diabetologia 2014, 58, 188–198. [CrossRef] | eng |
dcterms.references | Lopes-Virella, M.F.; Baker, N.L.; Hunt, K.J.; Cleary, P.A.; Klein, R.; Virella, G. The DCCT/EDIC Research Group Baseline Markers of Inflammation Are Associated with Progression to Macroalbuminuria in Type 1 Diabetic Subjects. Diabetes Care 2013, 36, 2317–2323. [CrossRef] | eng |
dcterms.references | Araki, S.-I.; Haneda, M.; Koya, D.; Sugaya, T.; Isshiki, K.; Kume, S.; Kashiwagi, A.; Uzu, T.; Maegawa, H. Predictive Effects of Urinary Liver-Type Fatty Acid–Binding Protein for Deteriorating Renal Function and Incidence of Cardiovascular Disease in Type 2 Diabetic Patients without Advanced Nephropathy. Diabetes Care 2013, 36, 1248–1253. [CrossRef] | eng |
dcterms.references | Niewczas, M.A.; Gohda, T.; Skupien, J.; Smiles, A.M.; Walker, W.H.; Rosetti, F.; Cullere, X.; Eckfeldt, J.H.; Doria, A.; Mayadas, T.N.; et al. Circulating TNF Receptors 1 and 2 Predict ESRD in Type 2 Diabetes. J. Am. Soc. Nephrol. 2012, 23, 507–515. [CrossRef] | eng |
dcterms.references | Fu, W.-J.; Li, B.-L.; Wang, S.-B.; Chen, M.-L.; Deng, R.-T.; Ye, C.-Q.; Liu, L.; Fang, A.-J.; Xiong, S.-L.; Wen, S.; et al. Changes of the tubular markers in type 2 diabetes mellitus with glomerular hyperfiltration. Diabetes Res. Clin. Pr. 2012, 95, 105–109. [CrossRef] | eng |
dcterms.references | Foster, M.C.; Inker, L.A.; Hsu, C.-Y.; Eckfeldt, J.H.; Levey, A.S.; Pavkov, M.E.; Myers, B.D.; Bennett, P.H.; Kimmel, P.L.; Vasan, R.S.; et al. Filtration Markers as Predictors of ESRD and Mortality in Southwestern American Indians with Type 2 Diabetes. Am. J. Kidney Dis. 2015, 66, 75–83. [CrossRef] [PubMed] | eng |
dcterms.references | Vaidya, V.S.; Niewczas, M.A.; Ficociello, L.H.; Johnson, A.C.; Collings, F.B.; Warram, J.H.; Krolewski, A.S.; Bonventre, J.V. Regression of microalbuminuria in type 1 diabetes is associated with lower levels of urinary tubular injury biomarkers, kidney injury molecule-1, and N-acetyl- -D-glucosaminidase. Kidney Int. 2011, 79, 464–470. [CrossRef] [PubMed] | eng |
dcterms.references | Liu, P.; Zhang, Z.; Li, Y. Relevance of the Pyroptosis-Related Inflammasome Pathway in the Pathogenesis of Diabetic Kidney Disease. Front. Immunol. 2021, 12, 603416. [CrossRef] | eng |
dcterms.references | Pereira, P.R.; Carrageta, D.F.; Oliveira, P.F.; Rodrigues, A.; Alves, M.G.; Monteiro, M.P. Metabolomics as a tool for the early diagnosis and prognosis of diabetic kidney disease. Med. Res. Rev. 2022, 42, 1518–1544. [CrossRef] [PubMed] | eng |
dcterms.references | Devaraj, S.; Dasu, M.R.; Rockwood, J.; Winter, W.; Griffen, S.C.; Jialal, I. Increased toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: Further evidence of a proinflammatory state. J. Clin. Endocrinol. Metab. 2008, 93, 578–583. [CrossRef] [PubMed] | eng |
dcterms.references | Dasu, M.R.; Devaraj, S.; Park, S.; Jialal, I. Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care 2010, 33, 861–868. [CrossRef] [PubMed] | eng |
dcterms.references | Mulay, S.R. Multifactorial functions of the inflammasome component NLRP3 in pathogenesis of chronic kidney diseases. Kidney Int. 2019, 96, 58–66. [CrossRef] [PubMed] | eng |
dcterms.references | Moossavi, M.; Parsamanesh, N.; Bahrami, A.; Atkin, S.L.; Sahebkar, A. Role of the NLRP3 inflammasome in cancer. Mol. Cancer 2018, 17, 158. [CrossRef] | eng |
dcterms.references | Susztak, K.; Raff, A.C.; Schiffer, M.; Böttinger, E.P. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 2006, 55, 225–233. [CrossRef] | eng |
dcterms.references | Har, R.; Scholey, J.W.; Daneman, D.; Mahmud, F.H.; Dekker, R.; Lai, V.; Elia, Y.; Fritzler, M.L.; Sochett, E.B.; Reich, H.N.; et al. The effect of renal hyperfiltration on urinary inflammatory cytokines/chemokines in patients with uncomplicated type 1 diabetes mellitus. Diabetologia 2013, 56, 1166–1173. [CrossRef] | eng |
dcterms.references | Chow, F.Y.; Nikolic-Paterson, D.J.; Ma, F.Y.; Ozols, E.; Rollins, B.J.; Tesch, G.H. Monocyte chemoattractant protein-1-induced tissue inflammation is critical for the development of renal injury but not type 2 diabetes in obese db/db mice. Diabetologia 2007, 50, 471–480. [CrossRef] [PubMed] | eng |
dcterms.references | Chow, F.Y.; Nikolic-Paterson, D.J.; Ozols, E.; Atkins, R.C.; Rollin, B.J.; Tesch, G.H. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int. 2006, 69, 73–80. [CrossRef] [PubMed] | eng |
dcterms.references | Navarro-González, J.F.; Mora-Fernández, C.; Muros de Fuentes, M.; García-Pérez, J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat. Rev. Nephrol. 2011, 7, 327–340. [CrossRef] | eng |
dcterms.references | Pickup, J.C.; Chusney, G.D.; Thomas, S.M.; Burt, D. Plasma interleukin-6, tumour necrosis factor alpha and blood cytokine production in type 2 diabetes. Life Sci. 2000, 67, 291–300. [CrossRef] | eng |
dcterms.references | Sangoi, M.B.; de Carvalho, J.A.M.; Tatsch, E.; Hausen, B.S.; Bollick, Y.S.; Londero, S.W.K.; Duarte, T.; Scolari, R.; Duarte, M.M.M.F.; Premaor, M.O.; et al. Urinary inflammatory cytokines as indicators of kidney damage in type 2 diabetic patients. Clin. Chim. Acta Int. J. Clin. Chem. 2016, 460, 178–183. [CrossRef] | eng |
dcterms.references | Tuttle, K.R.; Agarwal, R.; Alpers, C.E.; Bakris, G.L.; Brosius, F.C.; Kolkhof, P.; Uribarri, J. Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int. 2022, 102, 248–260. [CrossRef] | eng |
dcterms.references | Park, J.; Guan, Y.; Sheng, X.; Gluck, C.; Seasock, M.J.; Hakimi, A.A.; Qiu, C.; Pullman, J.; Verma, A.; Li, H.; et al. Functional methylome analysis of human diabetic kidney disease. JCI Insight 2019, 4, e128886. [CrossRef] [PubMed] | eng |
dcterms.references | Niewczas, M.A.; Ficociello, L.H.; Johnson, A.C.;Walker,W.; Rosolowsky, E.T.; Roshan, B.;Warram, J.H.; Krolewski, A.S. Serum concentrations of markers of TNFalpha and Fas-mediated pathways and renal function in nonproteinuric patients with type 1 diabetes. Clin. J. Am. Soc. Nephrol. 2009, 4, 62–70. [CrossRef] [PubMed] | eng |
dcterms.references | Coca, S.G.; Nadkarni, G.N.; Huang, Y.; Moledina, D.G.; Rao, V.; Zhang, J.; Ferket, B.; Crowley, S.T.; Fried, L.F.; Parikh, C.R. Plasma Biomarkers and Kidney Function Decline in Early and Established Diabetic Kidney Disease. J. Am. Soc. Nephrol. 2017, 28, 2786–2793. [CrossRef] [PubMed] | eng |
dcterms.references | Ruster, C.;Wolf, G. The role of chemokines and chemokine receptors in diabetic nephropathy. Front. Biosci. J. Virtual Libr. 2008, 13, 944–955. [CrossRef] | eng |
dcterms.references | Tesch, G.H. MCP-1/CCL2: A new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am. J. Physiol. Renal. Physiol. 2008, 294, F697–F701. [CrossRef] [PubMed] | eng |
dcterms.references | Herder, C.; Peltonen, M.; Koenig, W.; Kräft, I.; Müller-Scholze, S.; Martin, S.; Lakka, T.; Ilanne-Parikka, P.; Eriksson, J.G.; Hämäläinen, H.; et al. Systemic immune mediators and lifestyle changes in the prevention of type 2 diabetes: Results from the Finnish Diabetes Prevention Study. Diabetes 2006, 55, 2340–2346. [CrossRef] [PubMed] | eng |
dcterms.references | Flyvbjerg, A. The role of the complement system in diabetic nephropathy. Nat. Rev. Nephrol. 2017, 13, 311–318. [CrossRef] [PubMed] | eng |
dcterms.references | Hajishengallis, G.; Reis, E.S.; Mastellos, D.C.; Ricklin, D.; Lambris, J.D. Novel mechanisms and functions of complement. Nat. Immunol. 2017, 18, 1288–1298. [CrossRef] | eng |
dcterms.references | Tang, S.; Zhou,W.; Sheerin, N.S.; Vaughan, R.W.; Sacks, S.H. Contribution of renal secreted complement C3 to the circulating pool in humans. J Immunol 1999, 162, 4336–4341. | eng |
dcterms.references | Budge, K.; Dellepiane, S.; Yu, S.M.W.; Cravedi, P. Complement, a Therapeutic Target in Diabetic Kidney Disease. Front. Med. 2020, 7, 599236. [CrossRef] [PubMed] | eng |
dcterms.references | Rasmussen, K.L.; Nordestgaard, B.G.; Nielsen, S.F. Complement C3 and Risk of Diabetic Microvascular Disease: A Cohort Study of 95202 Individuals from the General Population. Clin. Chem. 2018, 64, 1113–1124. [CrossRef] [PubMed] | eng |
dcterms.references | Hansen, T.K.; Gall, M.A.; Tarnow, L.; Thiel, S.; Stehouwer, C.D.; Schalkwijk, C.G.; Parving, H.-H.; Flyvbjerg, A. Mannose-binding lectin and mortality in type 2 diabetes. Arch. Intern. Med. 2006, 166, 2007–2013. [CrossRef] | eng |
dcterms.references | Yiu, W.H.; Li, R.X.; Wong, D.W.L.; Wu, H.J.; Chan, K.W.; Chan, L.Y.Y.; Leung, J.C.K.; Lai, K.N.; Sacks, S.H.; Zhou, W.; et al. Complement C5a inhibition moderates lipid metabolism and reduces tubulointerstitial fibrosis in diabetic nephropathy. Nephrol. Dial. Transpl. 2018, 33, 1323–1332. [CrossRef] | eng |
dcterms.references | Anand, G.; Vasanthakumar, R.; Mohan, V.; Babu, S.; Aravindhan, V. Increased IL-12 and decreased IL-33 serum levels are associated with increased Th1 and suppressed Th2 cytokine profile in patients with diabetic nephropathy (CURES-134). Int. J. Clin. Exp. Pathol. 2014, 7, 8008–8015. | eng |
dcterms.references | Zeng, C.; Shi, X.; Zhang, B.; Liu, H.; Zhang, L.; Ding, W.; Zhao, Y. The imbalance of Th17/Th1/Tregs in patients with type 2 diabetes: Relationship with metabolic factors and complications. J. Mol. Med. 2012, 90, 175–186. [CrossRef] [PubMed] | eng |
dcterms.references | Moon, J.Y.; Jeong, K.H.; Lee, T.W.; Ihm, C.G.; Lim, S.J.; Lee, S.H. Aberrant recruitment and activation of T cells in diabetic nephropathy. Am. J. Nephrol. 2012, 35, 164–174. [CrossRef] [PubMed] | eng |
dcterms.references | Selye, H. Production of Nephrosclerosis by Overdosage with Desoxycorticosterone Acetate. Can. Med. Assoc. J. 1942, 47, 515–519. [PubMed] | eng |
dcterms.references | Kang, Y.S.; Cha, D.R. Aldosterone and diabetic kidney disease. Curr. Diab. Rep. 2009, 9, 453–459. [CrossRef] [PubMed] | eng |
dcterms.references | Tuttle, K.R.; Brosius, F.C.; Adler, S.G.; Kretzler, M.; Mehta, R.L.; Tumlin, J.A.; Tanaka, Y.; Haneda, M.; Liu, J.; Silk, M.E.; et al. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: Results from a Phase 2 randomized controlled clinical trial. Nephrol. Dial. Transplant. 2018, 33, 1950–1959. [CrossRef] | eng |
dcterms.references | Härma, M.-A.; on behalf of the FinnDiane Study Group; Dahlström, E.H.; Sandholm, N.; Forsblom, C.; Groop, P.-H.; Lehto, M. Decreased plasma kallikrein activity is associated with reduced kidney function in individuals with type 1 diabetes. Diabetologia 2020, 63, 1349–1354. [CrossRef] | eng |
dcterms.references | Cefalu, W.T.; A Leiter, L.; Yoon, K.-H.; Arias, P.; Niskanen, L.; Xie, J.; A Balis, D.; Canovatchel, W.; Meininger, G. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATASU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 2013, 382, 941–950. [CrossRef] | eng |
dcterms.references | Bakris, G.L.; Agarwal, R.; Anker, S.D.; Pitt, B.; Ruilope, L.M.; Rossing, P.; Kolkhof, P.; Nowack, C.; Schloemer, P.; Joseph, A.; et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 2219–2229. [CrossRef] | eng |
dcterms.references | Pitt, B.; Filippatos, G.; Agarwal, R.; Anker, S.D.; Bakris, G.L.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Schloemer, P.; et al. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 2252–2263. [CrossRef] | eng |
dcterms.references | Zhang, Y.; Jin, D.; Kang, X.; Zhou, R.; Sun, Y.; Lian, F.; Tong, X. Signaling Pathways Involved in Diabetic Renal Fibrosis. Front. Cell Dev. Biol. 2021, 9, 696542. [CrossRef] [PubMed] | eng |
dcterms.references | Fontalvo, J.E.R.; Anedo, R.D.; Sarabia, M.R.; Galvis, N.P.; Espinosa, A.B.; Gulfo, I.U.; Calvo, C.P.; Lara, A.P.; Almeida, Z.M.; Serpa, O.V.; et al. Proteoma urinario en la enfermedad renal diabética. Rev. Colomb. Nefrol. 2021, 8, e546. | eng |
dcterms.references | Aghadavoud, E.; Nasri, H.; Amiri, M. Molecular signaling pathways of diabetic kidney disease; new concepts. J. Prev. Epidemiol. 2017, 2, e03. | eng |
oaire.version | info:eu-repo/semantics/publishedVersion | spa |