Hyponatremia and malnutrition: a comprehensive review

datacite.rightshttp://purl.org/coar/access_right/c_abf2
dc.contributor.authorBaez, German
dc.contributor.authorChirio, Martin
dc.contributor.authorPisula, Pedro
dc.contributor.authorSeminario, Enrique
dc.contributor.authorCarasa, Natalia
dc.contributor.authorPhilippi, Romina
dc.contributor.authorAroca-Martinez, Gustavo
dc.contributor.authorMusso, Carlos
dc.date.accessioned2024-10-24T15:08:21Z
dc.date.available2024-10-24T15:08:21Z
dc.date.issued2024
dc.description.abstractBackground Hyponatremia (serum sodium lower than 135 mmol/L) is the most frequent electrolyte alteration diagnosed in medical practice. It has deleterious clinical effects, being an independent predictor of mortality. Malnutrition encompasses pathological states caused by both nutrients excess and deficiency, being frequently documented in chronic kidney disease patients. In addition, chronic hyponatremia promotes adiposity loss and sarcopenia, while malnutrition can induce hyponatremia. This pathological interaction is mediated by four main mechanisms: altered electrolyte body composition (low sodium, low potassium, low phosphorus, or high-water body content), systemic inflammation (cytokines increase), hormonal mechanisms (renin–angiotensin–aldosterone system activation, vasopressin release), and anorexia (primary or secondary). Conclusion Malnutrition can induce hyponatremia through hydro-electrolytic, hormonal, inflammatory, or nutritional behavior changes; while hyponatremia per se can induce malnutrition, so there is a pathophysiological feedback between both conditions.eng
dc.format.mimetypepdf
dc.identifier.citationBaez, G., Chirio, M., Pisula, P. et al. Hyponatremia and malnutrition: a comprehensive review. Ir J Med Sci 193, 1043–1046 (2024). https://doi.org/10.1007/s11845-023-03490-8eng
dc.identifier.doihttps://doi.org/10.1007/s11845-023-03490-8
dc.identifier.issn00211265 (Impreso)
dc.identifier.issn18634362 (Electrónico)
dc.identifier.urihttps://hdl.handle.net/20.500.12442/15890
dc.identifier.urlhttps://link.springer.com/article/10.1007/s11845-023-03490-8#citeas
dc.language.isoeng
dc.publisherSpringereng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United Stateseng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.sourceIrish Journal of Medical Scienceeng
dc.sourceIr J Med Scieng
dc.sourceVol.193 No.2 Año 2024spa
dc.subjectHyponatremiaeng
dc.subjectMalnutritioneng
dc.subjectPathophysiologyeng
dc.titleHyponatremia and malnutrition: a comprehensive revieweng
dc.type.driverinfo:eu-repo/semantics/article
dc.type.spaArtículo científico
dcterms.referencesMusso CG, Vilas M (2019) Water, electrolyte, and acid-base disorders in the elderly. In: Nephrogeriatrics Clinical (ed) Clinical Nephrogeriatrics. An Evidence-Based Guide. Springer, Cham, pp 43–62eng
dcterms.referencesKovesdy CP, Kopple JD, Kalantar-Zadeh K (2013) Management of protein-energy wasting in non-dialysis-dependent chronic kidney disease: reconciling low protein intake with nutritional therapy. Am J Clin Nutr 97(6):1163–1177eng
dcterms.referencesHanna RM, Ghobry L, Wassef O et al (2020) A practical approach to nutrition, protein-energy wasting, sarcopenia, and cachexia in patients with chronic kidney disease. Blood Purif 49(1–2):202–211eng
dcterms.referencesFouque D, Kalantar-Zadeh K, Kopple J et al (2008) A proposed nomenclature and diagnostic criteria for protein–energy wasting in acute and chronic kidney disease. Kidney Int 73(4):391–398eng
dcterms.referencesCarrero JJ, Thomas F, Nagy K et al (2018) Global prevalence of protein-energy wasting in kidney disease: a meta-analysis of contemporary observational studies from the International Society of Renal Nutrition and Metabolism. J Ren Nutr 28(6):380–392. https://doi.org/10.1053/j.jrn.2018.08.006. (PMID: 30348259)eng
dcterms.referencesGracia-Iguacel C et al (2014) Defining protein-energy wasting syndrome in chronic kidney disease: prevalence and clinical implications. Nefrologia 34:507–519eng
dcterms.referencesGómez-Hoyos E, Buigues AO, Ballesteros Pomar MD et al (2019) Development of hyponatremia in non-critical patients receiving total parenteral nutrition: a prospective, multicenter study. Clin Nutr 38(6):2639–2644. https://doi.org/10.1016/j.clnu.2018.11.014eng
dcterms.referencesDekker MJE, Marcelli D, Canaud B et al (2019) Unraveling the relationship between mortality, hyponatremia, inflammation and malnutrition in hemodialysis patients: results from the international MONDO initiative. Eur J Clin Nutr 70(7):779–784. https://doi.org/10.1038/ejcn.2016.49eng
dcterms.referencesRhee CM, Ayus JC, Kalantar-Zadeh K (2019) Hyponatremia in the dialysis population. Kidney Int 4(6):769–780eng
dcterms.referencesBertini V, Nicoletti C, Beker BM, Musso CG (2019) Sarcopenia as a potential cause of chronic hyponatremia in the elderly Med Hypotheses 127:46–48. https://doi.org/10.1016/j.mehy.2019.03.029eng
dcterms.referencesFeder J, Gomez JM, Serra-Aguirre F, Musso CG (2019) Reset osmostat: facts and controversies. Indian J Nephrol 29(4):232–234eng
dcterms.referencesMusso CG, Jauregui JR (2016) Hyponatremia secondary to reset osmostat in a very old individual: a case report and pathophysiologic proposal. Electron J Biomed 3:49–51eng
dcterms.referencesPoulikakos D, Marks V, Lelos N, Banerjee D (2014) Low serum sodium is associated with protein energy wasting and increased interdialytic weight gain in haemodialysis patients. Clin Kidney J 7(2):156–160. https://doi.org/10.1093/ckj/sft170eng
dcterms.referencesCaksen H, Odabaş D, Sar S et al (2001) Hyponatremic dehydration: an analysis of 78 cases. Int Urol Nephrol 33(3):445–448. https://doi.org/10.1023/a:1019563222488eng
dcterms.referencesBarsony J, Manigrasso MB, Xu Q et al (2013) Chronic hyponatremia exacerbates multiple manifestations of senescence in male rats. Age (Dordr) 35(2):271–288. https://doi.org/10.1007/s11357-011-9347-9eng
dcterms.referencesMusso CG, Juarez R, Glassock RJ (2018) Water, electrolyte, acid-base, and trace elements alterations in cirrhotic patients. Int Urol Nephrol 50(1):81–89. https://doi.org/10.1007/s11255-017-1614-yeng
dcterms.referencesMusso CG, Belloso WH, Glassock RJ (2016) Water, electrolytes, and acid-base alterations in human immunodeficiency virus infected patients. World J Nephrol 5(1):33–42. https://doi.org/10.5527/wjn.v5.i1.33eng
dcterms.referencesFujisawa C, Umegaki H, Sugimoto T et al (2021) Mild hyponatremia is associated with low skeletal muscle mass, physical function impairment, and depressive mood in the elderly. BMC Geriatr 21(1):15. https://doi.org/10.1186/s12877-020-01955-4eng
dcterms.referencesZevallos G, Oreopoulos DG, Halperin ML (2001) Hyponatremia in patients undergoing CAPD: role of water gain and/or malnutrition. Perit Dial Int 21(1):72–6eng
dcterms.referencesDe Arteaga J (2019) Hyponatremia in peritoneal dialysis: free water overload hyperosmolarity or malnutrition? Bull Dial Domic 2(4):201–206. https://doi.org/10.25796/bdd.v2i4.21303eng
dcterms.referencesKashiji A, Tajiri M, Chikugo M et al (2021) Hyponatremia is a prognostic factor in patients receiving nutrition support. Am J Med Sci 361(6):744–50. https://doi.org/10.1016/j.amjms.2020.11.025eng
dcterms.referencesDekker MJE, van der Sande FM, van den Berghe F et al (2018) Fluid overload and inflammation axis. Blood Purif 45(1–3):159–165. https://doi.org/10.1159/000485153eng
dcterms.referencesCaregaro L, Di Pascoli L, Favaro A et al (2005) Sodium depletion and hemoconcentration: overlooked complications in patients with anorexia nervosa? Nutrition 21(4):438–445. https://doi.org/10.1016/j.nut.2004.08.022eng
oaire.versioninfo:eu-repo/semantics/publishedVersion
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
588.64 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones