Brain volumetric analysis using artificial intelligence software in premanifest huntington’s disease individuals from a Colombian Caribbean population
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.contributor.author | Ríos Anillo, Margarita Rosa | |
dc.contributor.author | Ahmad, Mostapha | |
dc.contributor.author | Acosta-Lopez, Johan E. | |
dc.contributor.author | Cervantes-Henríquez, Martha L. | |
dc.contributor.author | Henao-Castaño, Maria C. | |
dc.contributor.author | Morales-Moreno, Maria T. | |
dc.contributor.author | Espitia-Almeida, Fabian | |
dc.contributor.author | VARGAS MANOTAS, JOSE | |
dc.contributor.author | Sánchez Barros, Cristian Manuel | |
dc.contributor.author | Pineda, David A | |
dc.contributor.author | Sánchez Rojas, Manuel | |
dc.date.accessioned | 2024-11-26T17:08:19Z | |
dc.date.available | 2024-11-26T17:08:19Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Background and objectives: The premanifest phase of Huntington’s disease (HD) is characterized by the absence of motor symptoms and exhibits structural changes in imaging that precede clinical manifestation. This study aimed to analyze volumetric changes identified through brain magnetic resonance imaging (MRI) processed using artificial intelligence (AI) software in premanifest HD individuals, focusing on the relationship between CAG triplet expansion and structural biomarkers. Methods: The study included 36 individuals descending from families affected by HD in the Department of Atlántico. Sociodemographic data were collected, followed by peripheral blood sampling to extract genomic DNA for quantifying CAG trinucleotide repeats in the Huntingtin gene. Brain volumes were evaluated using AI software (Entelai/IMEXHS, v4.3.4) based on MRI volumetric images. Correlations between brain volumes and variables such as age, sex, and disease status were determined. All analyses were conducted using SPSS (v. IBM SPSS Statistics 26), with significance set at p < 0.05. Results: The analysis of brain volumes according to CAG repeat expansion shows that individuals with ≥40 repeats evidence significant increases in cerebrospinal fluid (CSF) volume and subcortical structures such as the amygdalae and left caudate nucleus, along with marked reductions in cerebral white matter, the cerebellum, brainstem, and left pallidum. In contrast, those with <40 repeats show minimal or moderate volumetric changes, primarily in white matter and CSF. Conclusions: These findings suggest that CAG expansion selectively impacts key brain regions, potentially influencing the progression of Huntington’s disease, and that AI in neuroimaging could identify structural biomarkers long before clinical symptoms appear. | eng |
dc.format.mimetype | ||
dc.identifier.citation | Ríos-Anillo, M.R.; Ahmad, M.; Acosta-López, J.E.; Cervantes-Henríquez, M.L.; Henao-Castaño,M.C.; Morales-Moreno, M.T.; Espitia-Almeida, F.; Vargas-Manotas, J.; Sánchez-Barros, C.; Pineda, D.A.; et al. Brain Volumetric Analysis Using Artificial Intelligence Software in Premanifest Huntington’s Disease Individuals from a Colombian Caribbean Population. Biomedicines 2024, 12, 2166. https://doi.org/10.3390/biomedicines12102166 | |
dc.identifier.doi | https://doi.org/10.3390/biomedicines12102166 | |
dc.identifier.issn | 22279059 (Electrónico) | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/15983 | |
dc.identifier.url | https://www.mdpi.com/2227-9059/12/10/2166 | |
dc.language.iso | eng | |
dc.publisher | MDPI | spa |
dc.publisher | Facultad de Ciencias de la Salud | spa |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | |
dc.subject.keywords | Artificial intelligence | eng |
dc.subject.keywords | Huntington’s disease | eng |
dc.subject.keywords | Magnetic resonance imaging | eng |
dc.subject.keywords | Neuroimaging | eng |
dc.subject.keywords | Structural MRI | eng |
dc.title | Brain volumetric analysis using artificial intelligence software in premanifest huntington’s disease individuals from a Colombian Caribbean population | eng |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.spa | Artículo científico | |
dcterms.references | Stoker, T.B.; Mason, S.L.; Greenland, J.C.; Holden, S.T.; Santini, H.; Barker, R.A. Huntington’s disease: Diagnosis and management. Pract. Neurol. 2022, 22, 32–41. [CrossRef] [PubMed] | eng |
dcterms.references | National Center for Biotechnology Information. HTT Huntingtin [Homo Sapiens (Human)]—Gene—NCBI. 2021. Available online: https://www.ncbi.nlm.nih.gov/gene/3064 (accessed on 12 February 2024). | eng |
dcterms.references | Barnat, M.; Capizzi, M.; Aparicio, E.; Boluda, S.; Wennagel, D.; Kacher, R.; Kassem, R.; Lenoir, S.; Agasse, F.; Braz, B.Y.; et al. Huntington’s disease alters human neurodevelopment. Science 2020, 369, 787–793. [CrossRef] [PubMed] | eng |
dcterms.references | Aviner, R.; Lee, T.-T.; Masto, V.B.; Li, K.H.; Andino, R.; Frydman, J. Polyglutamine-mediated ribotoxicity disrupts proteostasis and stress responses in Huntington’s disease. Nat. Cell Biol. 2024, 26, 892–902. [CrossRef] | eng |
dcterms.references | Abeyasinghe, P.M.; Long, J.D.; Razi, A.; Pustina, D.; Paulsen, J.S.; Tabrizi, S.J.; Poudel, G.R.; Georgiou-Karistianis, N. Tracking Huntington’s Disease Progression Using Motor, Functional, Cognitive, and Imaging Markers. Mov. Disord. 2021, 36, 2282–2292. [CrossRef] | eng |
dcterms.references | Gusella, J.F.; MacDonald, M.E. Huntington’s disease: The case for genetic modifiers. Genome Med. 2009, 1, 80. [CrossRef] | eng |
dcterms.references | NIH. Enfermedad de Huntington|NINDS Español. INstituto Nacional de Trastornos Neurológicos y Accidentes Cerebrovasculares. 2022. Available online: https://espanol.ninds.nih.gov/es/trastornos/enfermedad-de-huntington (accessed on 12 February 2024). | spa |
dcterms.references | Waldvogel, H.J.; Kim, E.H.; Thu, D.C.V.; Tippett, L.J.; Faull, R.L.M. New Perspectives on the Neuropathology in Huntington’s Disease in the Human Brain and its Relation to Symptom Variation. J. Huntingt. Dis. 2012, 1, 143–153. [CrossRef] [PubMed] | eng |
dcterms.references | Pringsheim, T.; Wiltshire, K.; Day, L.; Dykeman, J.; Steeves, T.; Jette, N. The incidence and prevalence of Huntington’s disease: A systematic review and meta-analysis. Mov. Disord. 2012, 27, 1083–1091. [CrossRef] | eng |
dcterms.references | Daza, B.; Caiaffa, R.H.; Arteta, B.J.; Echeverría, R.V.; Ladrón de Guevara, Z.; Escamilla, M. Estudio neuroepidemiológico en Juan de Acosta, Atlántico, Colombia. ActaMédCoI 1991, 17, 324. | spa |
dcterms.references | Ganesh, S.; Chithambaram, T.; Krishnan, N.R.; Vincent, D.R.; Kaliappan, J.; Srinivasan, K. Exploring Huntington’s Disease Diagnosis via Artificial Intelligence Models: A Comprehensive Review. Diagnostics 2023, 13, 3592. [CrossRef] | eng |
dcterms.references | Rüb, U.; Seidel, K.; Heinsen, H.; Vonsattel, J.P.; den Dunnen, W.F.; Korf, H.W. Huntington’s disease (HD): The neuropathology of a multisystem neurodegenerative disorder of the human brain. Brain Pathol. 2016, 26, 726–740. [CrossRef] | eng |
dcterms.references | Liu, H.; Zhang, C.; Xu, J.; Jin, J.; Cheng, L.; Miao, X.; Wu, Q.; Wei, Z.; Liu, P.; Lu, H.; et al. Huntingtin silencing delays onset and slows progression of Huntington’s disease: A biomarker study. Brain 2021, 144, 3101–3113. [CrossRef] [PubMed] | eng |
dcterms.references | Saudou, F.; Humbert, S. The Biology of Huntingtin. Neuron 2016, 89, 910–926. [CrossRef] [PubMed] | eng |
dcterms.references | Gregory, S.; Scahill, R.I.; Rees, G.; Tabrizi, S. Magnetic resonance imaging in Huntington’s disease. In Huntington’s Disease; Precious, S.V., Rosser, A.E., Dunnett, S.B., Eds.; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2018; Volume 1780, pp. 303–328. [CrossRef] | eng |
dcterms.references | Zeun, P.; Scahill, R.I.; Tabrizi, S.J.; Wild, E.J. Fluid and imaging biomarkers for Huntington’s disease. Mol. Cell. Neurosci. 2019, 97, 67–80. [CrossRef] [PubMed] | eng |
dcterms.references | Wijeratne, P.A.; Garbarino, S.; Gregory, S.; Johnson, E.B.; Scahill, R.I.; Paulsen, J.S.; Tabrizi, S.J.; Lorenzi, M.; Alexander, D.C. Revealing the Timeline of Structural MRI Changes in Premanifest to Manifest Huntington Disease. Neurol. Genet. 2021, 7, e617. [CrossRef] [PubMed] | eng |
dcterms.references | McColgan, P.; Gregory, S.; Seunarine, K.K.; Razi, A.; Papoutsi, M.; Johnson, E.; Durr, A.; Roos, R.A.C.; Leavitt, B.R.; Holmans, P.; et al. Brain Regions Showing White Matter Loss in Huntington’s Disease Are Enriched for Synaptic and Metabolic Genes. Biol. Psychiatry 2018, 83, 456–465. [CrossRef] | eng |
dcterms.references | Kumar, Y.; Koul, A.; Singla, R.; Ijaz, M.F. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 8459–8486. [CrossRef] | eng |
dcterms.references | De Natale, E.R.; Wilson, H.; Politis, M. Imaging BiomarkersBiomarkersin Huntington’s DiseaseHuntington’s Disease (HD) BT— Neurodegenerative Diseases Biomarkers: Towards Translating Research to Clinical Practice; Peplow, P.V., Martinez, B., Gennarelli, T.A., Eds.; Springer: New York, NY, USA, 2022; pp. 457–505. [CrossRef] | eng |
dcterms.references | Ashburner, J.; Friston, K.J. Unified segmentation. Neuroimage 2005, 26, 839–851. [CrossRef] | eng |
dcterms.references | Reuter, M.; Schmansky, N.J.; Rosas, H.D.; Fischl, B. Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 2012, 61, 1402–1418. [CrossRef] | eng |
dcterms.references | Ahmad, M.; Ríos-Anillo, M.R.; Acosta-López, J.E.; Cervantes-Henríquez, M.L.; Martínez-Banfi, M.; Pineda-Alhucema,W.; Puentes- Rozo, P.; Sánchez-Barros, C.; Pinzón, A.; Patel, H.R.; et al. Uncovering the Genetic and Molecular Features of Huntington’s Disease in Northern Colombia. Int. J. Mol. Sci. 2023, 24, 16154. [CrossRef] | eng |
dcterms.references | Sánchez-Rojas, M.; Puentes Rozo, P.; Pineda, D.A.; Acosta-López, J.; Mejía-Segura, E.; Cervantes-Henríquez, M.; Martínez-Banfi, M.; Ahmad, M.; Rosa Ríos Anillo, M.; Pineda-Alhucema,W.; et al. Enfermedad de Huntington una Aproximación Desde la Investigación; Universidad Simón Bolivar: Caracas, Venezuela, 2021. | spa |
dcterms.references | Huntington Study Group. Unified Huntington’s Disease Rating Scale: Reliability and consistency. Mov. Disord. 1996, 11, 136–142. [CrossRef] | eng |
dcterms.references | Myers, R.H.; Harris, J.D.; Shoulson, I. Physical disability rating scale. Clinical and neuropathologic assessment of severity in Huntington’s disease. Neurology 1988, 38, 341–347. [CrossRef] [PubMed] | eng |
dcterms.references | Ciosi, M.; Ciosi, M.; Cumming, S.A.; Mubarak, A.; Symeonidi, E.; Herzyk, P.; McGuinness, D.; Galbraith, J.; Hamilton, G.; Monckton, D.G. Library preparation and MiSeq sequencing for the genotyping-by-sequencing of the Huntington disease HTT exon one trinucleotide repeat and the quantification of somatic mosaicism. Protoc. Exch. 2018. [CrossRef] | eng |
dcterms.references | Free, S.L.; Bergin, P.S.; Fish, D.R.; Cook, M.J.; Shorvon, S.D.; Stevens, J.M. Methods for normalization of hippocampal volumes measured with MR. AJNR Am. J. Neuroradiol. 1995, 16, 637–643. [PubMed] | eng |
dcterms.references | Möhler, R.; Meyer, G. Development methods of guidelines and documents with recommendations on physical restraint reduction in nursing homes: A systematic review. BMC Geriatr. 2015, 15, 152. [CrossRef] | eng |
dcterms.references | Chew, R.; Wenger, M.; Guillory, J.; Nonnemaker, J.; Kim, A. Identifying Electronic Nicotine Delivery System Brands and Flavors on Instagram: Natural Language Processing Analysis. J. Med. Internet Res. 2022, 24, e30257. [CrossRef] | eng |
dcterms.references | Ceccarini, J.; Ahmad, R.; Van De Vliet, L.; Casteels, C.; Vandenbulcke, M.; Vandenberghe, W.; Van Laere, K. Behavioral symptoms in premanifest Huntington disease correlate with reduced frontal CB 1 R levels. J. Nucl. Med. 2019, 60, 115–121. [CrossRef] | eng |
dcterms.references | Podvin, S.; Reardon, H.T.; Yin, K.; Mosier, C.; Hook, V. Multiple clinical features of Huntington’s disease correlate with mutant HTT gene CAG repeat lengths and neurodegeneration. J. Neurol. 2019, 266, 551–564. [CrossRef] | eng |
dcterms.references | Valdés Hernández, M.D.C.; Abu-Hussain, J.; Qiu, X.; Priller, J.; Parra Rodríguez, M.; Pino, M.; Báez, S.; Ibáñez, A. Structural neuroimaging differentiates vulnerability from disease manifestation in colombian families with Huntington’s disease. Brain Behav. 2019, 9, e01343. [CrossRef] | eng |
dcterms.references | Tabrizi, S.J.; Langbehn, D.R.; Leavitt, B.R.; Roos, R.A.; Durr, A.; Craufurd, D.; Kennard, C.; Hicks, S.L.; Fox, N.C.; Scahill, R.I.; et al. Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: Cross-sectional analysis of baseline data. Lancet Neurol. 2009, 8, 791–801. [CrossRef] | eng |
dcterms.references | Khan, W.; Alusi, S.; Tawfik, H.; Hussain, A. The relationship between non-motor features and weight-loss in the premanifest stage of Huntington’s disease. PLoS ONE 2021, 16, e0253817. [CrossRef] | eng |
dcterms.references | Langbehn, D.R.; Stout, J.C.; Gregory, S.; Mills, J.A.; Durr, A.; Leavitt, B.R.; Roos, R.A.C.; Long, J.D.; Owen, G.; Johnson, H.J.; et al. Association of CAG Repeats With Long-term Progression in Huntington Disease. JAMA Neurol. 2019, 76, 1375–1385. [CrossRef] [PubMed] | eng |
dcterms.references | Casella, C.; Lipp, I.; Rosser, A.; Jones, D.K.; Metzler-Baddeley, C. A Critical Review of White Matter Changes in Huntington’s Disease. Mov. Disord. 2020, 35, 1302–1311. [CrossRef] | eng |
dcterms.references | Tan, B.; Shishegar, R.; Poudel, G.R.; Fornito, A.; Georgiou-Karistianis, N. Cortical morphometry and neural dysfunction in Huntington’s disease: A review. Eur. J. Neurol. 2021, 28, 1406–1419. [CrossRef] | eng |
dcterms.references | Gómez-Ansón, B.; Alegret, M.; Muñoz, E.; Monté, G.C.; Alayrach, E.; Sánchez, A.; Boada, M.; Tolosa, E. Prefrontal cortex volume reduction on MRI in preclinical Huntington’s disease relates to visuomotor performance and CAG number. Park. Relat. Disord. 2009, 15, 213–219. [CrossRef] [PubMed] | eng |
dcterms.references | Penney, J.B.J.; Vonsattel, J.P.; MacDonald, M.E.; Gusella, J.F.; Myers, R.H. CAG repeat number governs the development rate of pathology in Huntington’s disease. Ann. Neurol. 1997, 41, 689–692. [CrossRef] | eng |
dcterms.references | Aylward, E.H.; Anderson, N.B.; Bylsma, F.W.;Wagster, M.V.; Barta, P.E.; Sherr, M.; Feeney, J.; Davis, A.; Rosenblatt, A.; Pearlson, G.D.; et al. Frontal lobe volume in patients with Huntington’s disease. Neurology 1998, 50, 252–258. [CrossRef] | eng |
dcterms.references | Hobbs, N.Z.; Barnes, J.; Frost, C.; Henley, S.M.D.; Wild, E.J.; Macdonald, K.; Barker, R.A.; Scahill, R.I.; Fox, N.C.; Tabrizi, S.J. Onset and progression of pathologic atrophy in Huntington disease: A longitudinal MR imaging study. AJNR Am. J. Neuroradiol. 2010, 31, 1036–1041. [CrossRef] [PubMed] | eng |
dcterms.references | Squitieri, F.; Cannella, M.; Simonelli, M.; Sassone, J.; Martino, T.; Venditti, E.; Ciammola, A.; Colonnese, C.; Frati, L.; Ciarmiello, A. Distinct brain volume changes correlating with clinical stage, disease progression rate, mutation size, and age at onset prediction as early biomarkers of brain atrophy in Huntington’s disease. CNS Neurosci. Ther. 2009, 15, 1–11. [CrossRef] | eng |
dcterms.references | Vonsattel, J.P.; DiFiglia, M. Huntington disease. J. Neuropathol. Exp. Neurol. 1998, 57, 369–384. [CrossRef] | eng |
dcterms.references | Fennema-Notestine, C.; Archibald, S.L.; Jacobson, M.W.; Corey-Bloom, J.; Paulsen, J.S.; Peavy, G.M.; Gamst, A.C.; Hamilton, J.M.; Salmon, D.P.; Jernigan, T.L. In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease. Neurology 2004, 63, 989–995. [CrossRef] | eng |
dcterms.references | Glangetas, C.; Espinosa, P.; Bellone, C. Deficit in motor skill consolidation-dependent synaptic plasticity at motor cortex to dorsolateral striatum synapses in a mouse model of Huntington’s disease. eNeuro 2020, 7, 0297-19. [CrossRef] [PubMed] | eng |
dcterms.references | Kim, A.; Lalonde, K.; Truesdell, A.; Gomes Welter, P.; Brocardo, P.S.; Rosenstock, T.R.; Gil-Mohapel, J. New Avenues for the Treatment of Huntington’s Disease. Int. J. Mol. Sci. 2021, 22, 8363. [CrossRef] [PubMed] | eng |
dcterms.references | Ruocco, H.H.; Lopes-Cendes, I.; Li, L.M.; Santos-Silva, M.; Cendes, F. Striatal and extrastriatal atrophy in Huntington’s disease and its relationship with length of the CAG repeat. Braz. J. Med. Biol. Res. 2006, 39, 1129–1136. [CrossRef] | eng |
dcterms.references | Brown, T.; Chen, L. Neuropathology of Huntington’s Disease; IntechOpen: London, UK, 2022. [CrossRef] | eng |
dcterms.references | Escudero-Cabarcas, J.; Pineda-Alhucema, W.; Martinez-Banfi, M.; Acosta-López, J.E.; Cervantes-Henriquez, M.L.; Mejía-Segura, E.; Jiménez-Figueroa, G.; Sánchez-Barros, C.; Puentes-Rozo, P.J.; Noguera-Machacón, L.M.; et al. Theory of Mind in Huntington’s Disease: A Systematic Review of 20 Years of Research. J. Huntingt. Dis. 2024, 13, 15–31. [CrossRef] | eng |
dcterms.references | Tan, B.; Shishegar, R.; Fornito, A.; Poudel, G.; Georgiou-Karistianis, N. Longitudinal mapping of cortical surface changes in Huntington’s Disease. Brain Imaging Behav. 2022, 16, 1381–1391. [CrossRef] [PubMed] | eng |
dcterms.references | Seto-Ohshima, A.; Emson, P.C.; Lawson, E.; Mountjoy, C.Q.; Carrasco, L.H. Loss of matrix calcium-binding protein-containing neurons in Huntington’s disease. Lancet 1988, 1, 1252–1255. [CrossRef] | eng |
dcterms.references | Tippett, L.J.; Waldvogel, H.J.; Snell, R.G.; Vonsattel, J.-P.; Young, A.B.; Faull, R.L.M. The Complexity of Clinical Huntington’s Disease: Developments in Molecular Genetics, Neuropathology and Neuroimaging Biomarkers. Adv. Neurobiol. 2017, 15, 129–161. [CrossRef] | eng |
dcterms.references | Kassubek, J.; Juengling, F.D.; Ecker, D.; Landwehrmeyer, G.B. Thalamic atrophy in Huntington’s disease co-varies with cognitive performance: A morphometric MRI analysis. Cereb. Cortex 2005, 15, 846–853. [CrossRef] [PubMed] | eng |
dcterms.references | Rüb, U.; Hoche, F.; Brunt, E.R.; Heinsen, H.; Seidel, K.; Del Turco, D.; Paulson, H.L.; Bohl, J.; von Gall, C.; Vonsattel, J.-P.; et al. Degeneration of the cerebellum in Huntington’s disease (HD): Possible relevance for the clinical picture and potential gateway to pathological mechanisms of the disease process. Brain Pathol. 2013, 23, 165–177. [CrossRef] | eng |
dcterms.references | Drouin-Ouellet, J.; Sawiak, S.J.; Cisbani, G.; Lagacé, M.; Kuan, W.-L.; Saint-Pierre, M.; Dury, R.J.; Alata, W.; St-Amour, I.; Mason, S.L.; et al. Cerebrovascular and blood–brain barrier impairments in Huntington’s disease: Potential implications for its pathophysiology. Ann. Neurol. 2015, 78, 160–177. [CrossRef] | eng |
dcterms.references | Rocha, N.P.; Ribeiro, F.M.; Furr-Stimming, E.; Teixeira, A.L. Neuroimmunology of Huntington’s Disease: Revisiting Evidence from Human Studies. Mediat. Inflamm. 2016, 2016, 8653132. [CrossRef] [PubMed] | eng |
oaire.version | info:eu-repo/semantics/publishedVersion | |
sb.programa | Especialización en Neurología | spa |
sb.sede | Sede Barranquilla | spa |