Sistema de reconocimiento basado en IA para la identificación de peces
Cargando...
Fecha
2024
Autores
Van Strahlens Terán, Placido Manuel
Martínez Ramos, Leyder José
Título de la revista
ISSN de la revista
Título del volumen
Editor
Facultad de Ingenierías
Ediciones Universidad Simón Bolívar
Ediciones Universidad Simón Bolívar
Resumen
La identificación precisa de peces es fundamental para la pesca sostenible, la investigación científica y la seguridad alimentaria. Los métodos tradicionales son lentos, subjetivos y requieren experiencia especializada. Los sistemas de reconocimiento de peces basados en inteligencia artificial (IA) ofrecen una alternativa más rápida, precisa y automatizada. El desarrollo de estos sistemas incluye la recopilación de imágenes de peces, su preprocesamiento, el entrenamiento de un modelo de reconocimiento y la implementación del sistema. Se utilizan técnicas de aprendizaje profundo, como redes neuronales convolucionales (CNN), para entrenar el modelo. Los sistemas de reconocimiento de peces basados en IA han demostrado alta precisión en la identificación de especies, evaluación de la calidad del pescado y recomendaciones culinarias. Se han evaluado aspectos críticos como la usabilidad, el rendimiento, las interfaces externas y la integridad de los datos. Estos sistemas ofrecen una solución innovadora para la industria pesquera, promoviendo la eficiencia, precisión, objetividad y sostenibilidad en la identificación y evaluación de peces, contribuyendo a la seguridad alimentaria y la gestión responsable de los recursos pesqueros.
Fish identification is crucial for sustainable fisheries management, scientific research, and food security. Traditional methods are often slow, subjective, and require specialized expertise. AI-based fish recognition systems offer a faster, more accurate, and automated alternative. These systems involve collecting fish image data, preprocessing the images, training a recognition model, and implementing the system. Deep learning techniques, such as convolutional neural networks (CNNs), are used to train the model. AI-based fish recognition systems have demonstrated high accuracy in species identification, fish quality assessment, and culinary recommendations. Critical aspects such as usability, performance, external interfaces, and data integrity have been evaluated. These systems provide an innovative solution for the fishing industry, promoting efficiency, accuracy, objectivity, and sustainability in fish identification and assessment, contributing to food security and responsible fisheries management.
Fish identification is crucial for sustainable fisheries management, scientific research, and food security. Traditional methods are often slow, subjective, and require specialized expertise. AI-based fish recognition systems offer a faster, more accurate, and automated alternative. These systems involve collecting fish image data, preprocessing the images, training a recognition model, and implementing the system. Deep learning techniques, such as convolutional neural networks (CNNs), are used to train the model. AI-based fish recognition systems have demonstrated high accuracy in species identification, fish quality assessment, and culinary recommendations. Critical aspects such as usability, performance, external interfaces, and data integrity have been evaluated. These systems provide an innovative solution for the fishing industry, promoting efficiency, accuracy, objectivity, and sustainability in fish identification and assessment, contributing to food security and responsible fisheries management.
Descripción
Palabras clave
Reconocimiento IA, Peces, Industria pesquera, Eficiencia, Calidad, Consumo, Visión por computador, Aprendizaje profundo, Recomendaciones, Culinarias, Experiencia usuaria