Conectando puntos: Inteligencia Artificial, datos y su impacto en la sostenibilidad. Memorias del Encuentro Internacional Inteligencia Artificial. Impacto de los datos en la sostenibilidad de las organizaciones
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.contributor.author | Martínez Marenco, Ronald David | |
dc.contributor.author | Gonzales Méndez, Juan Estevan | |
dc.contributor.author | Arenas Perdomo, Juan Manuel | |
dc.contributor.author | Gutiérrez Madrid, Daniel | |
dc.contributor.author | Calabria Sarmiento, Juan Carlos | |
dc.contributor.author | Mora Núñez, Néstor | |
dc.contributor.author | Gutiérrez Salcedo, María | |
dc.contributor.author | Tetsue Choji, Thamyres | |
dc.contributor.author | Martínez Duarte, Verónica | |
dc.contributor.author | Cobo Martín, Manuel Jesús | |
dc.contributor.author | Galet Villafañe, Richard | |
dc.contributor.author | Soto Casas, Esteban | |
dc.contributor.author | Melamed Varela, Enrique | |
dc.contributor.author | Condori Guzmán, Enmanuel Andreé | |
dc.contributor.author | Martínez Huaman, Sebastián Josué | |
dc.contributor.author | Rodríguez Lazo, Marcello Juaquin | |
dc.contributor.author | Rojas Sánchez, Andrés Felipe | |
dc.contributor.author | Orozco Guzmán, Manuel Guillermo | |
dc.contributor.author | Bravo Valero, Antonio José | |
dc.contributor.author | Hernández Albarracín, Juan Diego | |
dc.contributor.author | Ramírez Lindarte, María Daniela | |
dc.contributor.author | Vera, Miguel Ángel | |
dc.contributor.author | Rincón Rolón, Juan José | |
dc.contributor.author | Flórez Rueda, Sebastián | |
dc.contributor.author | Calderón Martínez, Jaybel Sebastián | |
dc.contributor.author | Rodríguez Ibáñez, Raúl Eduardo | |
dc.contributor.author | Donado Fonseca, Erick Fabián | |
dc.contributor.author | González Vásquez, Marco Antonio | |
dc.contributor.author | Iglesias Durán, Alvaro Favian | |
dc.contributor.author | García Londoño, Anndy | |
dc.contributor.author | Sarmiento Fontalvo, Melisa | |
dc.date.accessioned | 2025-01-21T19:54:39Z | |
dc.date.available | 2025-01-21T19:54:39Z | |
dc.date.issued | 2024 | |
dc.description.abstract | La inteligencia artificial (IA) es un campo multidisciplinario que incorpora elementos de diversos saberes del conocimiento, y cada vez más demandada tanto por las organizaciones como por las acciones que se dan en la vida cotidiana en general. Justamente, con el uso eficiente de las tecnologías emergentes, la IA está reconfigurando los diferentes sectores económicos, sociales, educativos, culturales, políticos y ambientales, entre otros que sustentan los ecosistemas de las comunidades y la sociedad. En este contexto, la Universidad Simón Bolívar, respaldada por la Red Iberoamericana de Investigación en Data Science (RIINDS), fue beneficiada con un apoyo que procede de la convocatoria para la organización de encuentros de investigación colaborativa, destinados a los miembros del Grupo de Universidades Iberoamericanas: La RABIDA (ERICI-2024). El encuentro celebrado con este soporte llevó por título: “Inteligencia Artificial: Impacto de los Datos en la Sostenibilidad en las Organizaciones», y fue realizado los días 17 y 18 de septiembre en las instalaciones de la Universidad Simón Bolívar, Barranquilla, (Colombia). En el mismo se congregaron destacados investigadores procedentes de universidades Iberoamericanas vinculadas a la RABIDA, así como a la RIINDS, la cual se encuentra actualmente avalada por la AUIP. Esta convergencia de investigadores, académicos y empresarios permitió debatir a profundidad el impacto de la IA y de las ciencias de datos en la sostenibilidad de las organizaciones, determinando con ello los respectivos avances en la consecución de los Objetivos de Desarrollo Sostenible (ODS). Las narrativas expresadas en los textos de este encuentro académico-investigativo, abarcan una variedad de temas relacionados con los ejes principales de la convocatoria de la RABIDA y las líneas de investigación de RIINDS. De manera esencial se destacan: el aprendizaje automático, las ciencias de datos y su papel en la sostenibilidad, machine learning y los sistemas de recomendación, entre otros muchos temas en los que tiene cabida la IA. Así mismo, no se pueden obviar algunos contenidos básicos producto del ejercicio investigativo, como el desarrollo de aplicaciones que reconocen el lenguaje de señas en tiempo real mediante redes neuronales, la implementación de sistemas inteligentes en robótica autónoma, y el impacto de la inteligencia de negocios en la toma de decisiones y la gestión de datos. Estos trabajos no solo evidencian cómo las herramientas tecnológicas optimizan procesos, sino también cómo contribuyen a mejorar la sostenibilidad en las organizaciones para avanzar en la realización de la Agenda 2030 propuesta por las Naciones Unidas. | spa |
dc.format.mimetype | ||
dc.identifier.doi | https://doi.org/10.17081/r.book.2025.01.16118 | |
dc.identifier.isbn | 9786287533844 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/16118 | |
dc.language.iso | spa | |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.subject | Inteligencia artificial | spa |
dc.subject | Aprendizaje automático | spa |
dc.subject | Sistemas adaptativos | spa |
dc.subject | Realidad virtual | spa |
dc.title | Conectando puntos: Inteligencia Artificial, datos y su impacto en la sostenibilidad. Memorias del Encuentro Internacional Inteligencia Artificial. Impacto de los datos en la sostenibilidad de las organizaciones | spa |
dc.type.driver | info:eu-repo/semantics/book | |
dc.type.spa | Libro | |
dcterms.references | Fellinger, J., Holzinger, D., & Pollard, R. (2012). Mental health of deaf people. The Lancet, 379(9820), 1037-1044. https://doi.org/10.1016/S0140-6736(11)61143-4 | eng |
dcterms.references | Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, MA: MIT Press. | eng |
dcterms.references | Google for Developers. (2023). MediaPipe Solutions Guide. Retrieved from https://developers.google.com/mediapipe/solutions/guide | eng |
dcterms.references | Google for Developers. (2024). Holistic Landmarks Detection Task Guide. Retrieved from https://ai.google.dev/edge/mediapipe/solutions/vision/holistic_landmarker | eng |
dcterms.references | Harmer, L. (1999). Health care delivery and deaf people: practice, problems, and recommendations for change. Journal of Deaf Studies and Deaf Education, 4(2), 73-110. | eng |
dcterms.references | Keras Team. (2024). Keras documentation: Getting started with Keras. Retrieved from https://keras.io/getting_started/ | eng |
dcterms.references | Khasawneh, M. A. S. (2021). Problems teaching English to deaf students. Indonesian. Journal of Creative Counseling, 1(2), 32-42. | eng |
dcterms.references | Ljubicic, M., Zubcic, S., & Sare, S. (2017). Communication between nurses and deaf people in health institutions. CBU International Conference Proceedings, 5, 958. | eng |
dcterms.references | OpenCV. (2024, July 15). Home. Retrieved from https://opencv.org/ “Home,” OpenCV, Jul. 15, 2024. [Online]. Available: https://opencv.org/ | eng |
dcterms.references | Python Software Foundation. (2023). Python Release Python 3.11.3. Python.org. Retrieved from https://www.python.org/downloads/release/python-3113/ | eng |
dcterms.references | Rainer, J. D. (1963). Family and mental health problems in a deaf population. New York: Columbia University. | eng |
dcterms.references | TensorFlow. (2024). TensorFlow. Retrieved from https://www.tensorflow.org/ | eng |
dcterms.references | Batagelj, V., & Cerinšek, M. (2013). On bibliographic networks. Scientometrics, 96(3), 845–864. https://doi.org/10.1007/s11192-013-0956-5 | eng |
dcterms.references | Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179–255. https://doi.org/10.1002/aris.1440370106 | eng |
dcterms.references | Callon, M., Courtial, J. P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Social Science Information, 22(2), 191–235. https://doi.org/10.1177/053901883022002003 | eng |
dcterms.references | Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011a). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402. https://doi.org/10.1002/asi.21525 | eng |
dcterms.references | Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2012). SciMAT: A new science mapping analysis software tool. Journal of the American Society for Information Science and Technology, 63(8), 1609–1630. https://doi.org/10.1002/asi.22688 | eng |
dcterms.references | Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011b). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, 5(1), 146–166. https://doi.org/10.1016/j.joi.2010.10.002 | eng |
dcterms.references | Fortunato, S., Bergstrom, C. T., Börner, K., Evans, J. A., Helbing, D., Milojevic, S., Petersen, A. M., Radicchi, F., Sinatra, R., Uzzi, B., Vespignani, A., Waltman, L., Wang, D., & Barabási, A.-L. (2018). Science of science. Science, 359(6379), eaao0185. https://doi.org/10.1126/science.aao0185 | eng |
dcterms.references | Aktouf, O. (agosto, 1998). La administración entre tradición y renovación. ISBN: 2-89105-323-0. Universidad del Valle Cali. Recuperado de: https://www.researchgate.net/publication/335970055_La_Administracion_entre_tradicion_ y_renovacion | spa |
dcterms.references | Alyoubi, B. (9 de octubre de 2015). Decision Support System and Knowledge-based Strategic Management. Procedia Computer Science. Recuperado de: https://doi.org/10.1016/j.procs.2015.09.079 | eng |
dcterms.references | Gonzáles, L. (octubre, 2012). Inteligencia de negocios business intelligence (bi). Universidad popular autónoma del estado de puebla. Recuperado de: https://basesdatoscms.files.wordpress.com/2012/10/resumen-businessintelligence.pdf | eng |
dcterms.references | Hedgebeth, D. (30 de octubre de 2007). Data-driven decision making for the enterprise: An overview of business intelligence applications. VINE, 37(4), 414-420. https://doi.org/10.1108/03055720710838498 | eng |
dcterms.references | Kitchenham, B. & Charters, S. M. (9 de julio de 2007). Guidelines for performing systematic literature reviews in software engineering. Technical Report EBSE 2007-001, Keele University and Durham University Joint Report. https://legacyfileshare.elsevier.com/promis_misc/525444systematicreviewsguide.pdf | eng |
dcterms.references | Ning, H., & Liu, H. (8 de enero de 2015). Cyber-physical-social-thinking space based science and technology framework for the Internet of things. Revista Science China Information Sciences, 58, 1-19. https://doi.org/10.1007/s11432-014-5209-2 | eng |
dcterms.references | Vergara, L., Santiago, A., & Vivero, S. (diciembre, 2004). Aproximación al proceso de toma de decisiones en la empresa Barranquillera. Universidad del Norte. Recuperado de: https://www.redalyc.org/pdf/646/64601701.pdf | spa |
dcterms.references | Adam, M., Wessel, M., & Benlian, A. (2021). AI-based chatbots in customer service and their effects on user compliance. Electronic Markets, 31(2), 427-445. | eng |
dcterms.references | Batrinca, B., & Treleaven, P. C. (2015). Social media analytics: a survey of techniques, tools and platforms. Ai & Society, 30, 89-116. | eng |
dcterms.references | Cui, F., Cui, Q., & Song, Y. (2020). A survey on learning-based approaches for modeling and classification of human–machine dialog systems. IEEE transactions on neural networks and learning systems, 32(4), 1418-1432. | eng |
dcterms.references | García Mena, R. F., Balderas, A., Huerta, M., Dodero, J. M., & Mora Nuñez, N. (2022, October). Chatbot to Provide Initial Assistance to Erasmus Students in Case of Emergency. In International conference on technological ecosystems for enhancing multiculturality (pp. 755-763). Singapore: Springer Nature Singapore. | eng |
dcterms.references | Gunkel, D. J. (2012). Communication and artificial intelligence: Opportunities and challenges for the 21st century. Communication 1, 1(1), 1-25. | eng |
dcterms.references | Kolekar, S. V., Pai, R. M., & MM, M. P. (2017). Prediction of Learner’s Profile Based on Learning Styles in Adaptive E-learning System. International Journal of Emerging Technologies in Learning, 12(6). | eng |
dcterms.references | Lee, J., Kim, C., & Lee, K. C. (2022). Exploring the personalization-intrusiveness-intention framework to evaluate the effects of personalization in social media. International Journal of Information Management, 66, 102532. | eng |
dcterms.references | Lin, C. C., Huang, A. Y., & Yang, S. J. (2023). A review of ai-driven conversational chatbots implementation methodologies and challenges (1999–2022). Sustainability, 15(5), 4012. | eng |
dcterms.references | LinkedIn. (2023). Introducing New AI Tools to Enhance Your LinkedIn Experience. https://www.linkedin.com/pulse/introducing-new-ai-tools-enhance-your-linkedinexperience | eng |
dcterms.references | Simplilearn. (2023). Netflix Recommendations: How Netflix Uses AI, Data Science, And ML. https://www.simplilearn.com/how-netflix-uses-ai-data-science-and-ml-article | eng |
dcterms.references | Brown, T. B., Smith, B. A., & Kuffner, J. M. (2024). Quadrupedal Robots: Past, Present, and Future. Journal of Field Robotics, 41(2), 135-160. | eng |
dcterms.references | Bruton, J. (25 de agosto de 2024). OpenDogV3. GitHub. https://github.com/XRobots/openDogV3. | eng |
dcterms.references | Carvajal, A., & Garcia-Colon, V. R. (2003). High capacity motors on-line diagnosis based on ultra wide band partial discharge detection, 4th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives. SDEMPED 2003., Atlanta, GA,USA, 2003, pp. 168-170, doi: 10.1109/DEMPED.2003.1234567. | eng |
dcterms.references | Musa, A. (25 de agosto de 2024). TOPS: Traverser of Planar Surfaces. GitHub repository. https://github.com/aaedmusa/TOPS | eng |
dcterms.references | Object Detection with YOLOv5: Detecting People in Images. (2021). News @ machinelearning.sg. Available: https://news.machinelearning.sg/yolov5-detection. | eng |
dcterms.references | Raschka, S., & Mirjalili, V. (2017). Python Machine Learning, 2nd ed. Birmingham, U.K.: Packt Publishing. | eng |
dcterms.references | Scholkopf, B., & Smola, A. (2002). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA: MIT Press. | eng |
dcterms.references | Yadav, A., Patil, S., Dangle, A. & Nangare, P. (2024). Optimized Detection, Classification, and Tracking with YOLOV5, HSV Color Thresholding, and KCF Tracking. SpringerLink, 23, 583– 596. https://link.springer.com/article/10.1007/s100-springer. [Accessed: aug. 25, 2024]. | eng |
dcterms.references | Ahuja, R., & Banga, A. (2019). Mental stress detection in university students using machine learning algorithms. Procedia Computer Science, 152, 349–353. | eng |
dcterms.references | Alpert, R., & Haber, R. N. (1960). Anxiety in academic achievement situations. The Journal of Abnormal and Social Psychology, 61(2), 207. | eng |
dcterms.references | Armani, F., Daly, I., Vernitski, A., Gillmeister, H., & Scherer, R. (2023). Maths anxiety and cognitive state monitoring for neuroadaptive learning systems using electroencephalography. En 2023 IEEE International Conference on Metrology for eXtended Reality. Artificial Intelligence and Neural Engineering (MetroXRAINE) (pp. 467-472). IEEE. | eng |
dcterms.references | Ashcraft, M. H., & Kirk, E. P. (2001). The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology: General, 130(2), 224. | eng |
dcterms.references | Ashcraft, M. H., & Krause, J. A. (2007). Working memory, math performance, and math anxiety. Psychonomic Bulletin & Review, 14, 243–248. | eng |
dcterms.references | Ashcraft, M. H., & Moore, A. M. (2009). Mathematics anxiety and the affective drop in performance. Journal of Psychoeducational Assessment, 27(3), 197–205. | eng |
dcterms.references | del Valle, M., & Zamora, E. V. (2022). El uso de las medidas de auto-informe: ventajas y limitaciones en la investigación en Psicología. Alternativas psicología, 47, 22-35. | spa |
dcterms.references | Eidlin-Levy, H., Avraham, E., Fares, L., & Rubinsten, O. (2023). Math anxiety affects career choices during development. International Journal of STEM Education, 10(1), 49. | eng |
dcterms.references | Fernández, L. M., Wang, X., Ramirez, O., & Villalobos, M. C. (2021). Latinx students’ mathematics anxiety and their study habits: Exploring their relationship at the postsecondary level. Journal of Hispanic Higher Education, 20(3), 278–296. | eng |
dcterms.references | Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of Educational Research, 74(1), 59–109. | eng |
dcterms.references | Gunderson, E. A., Park, D., Maloney, E. A., Beilock, S. L., & Levine, S. C. (2018). Reciprocal relations among motivational frameworks, math anxiety, and math achievement in early elementary school. Journal of Cognition and Development, 19(1), 21–46. | eng |
dcterms.references | Klados, M. A., Pandria, N., Athanasiou, A., & Bamidis, P. D. (2017). An automatic EEG based system for the recognition of math anxiety. In 2017 IEEE 30th International Symposium on Computer-Based. Medical Systems (CBMS) (pp. 409–412). IEEE. | eng |
dcterms.references | Klados, M. A., Paraskevopoulos, E., Pandria, N., & Bamidis, P. D. (2019). The impact of math anxiety on working memory: A cortical activations and cortical functional connectivity EEG study. IEEE Access, 7, 15027–15039. | eng |
dcterms.references | Martínez-Monteagudo, M., Ingles, C., Cano-Vindel, A., & García-Fernández, J. (2012). Estado actual de la investigación sobre la teoría tridimensional de la ansiedad de Lang. Ansiedad y Estrés, 18, 201–219. | spa |
dcterms.references | Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18, 315– 341. | eng |
dcterms.references | Pozos-Radillo, B. E., Preciado-Serrano, M. de L., Acosta-Fernández, M., Aguilera-Velasco, M. de los A., & Delgado-García, D. D. (2014). Academic stress as a predictor of chronic stress in university students. Psicología Educativa, 20(1), 47–52. | eng |
dcterms.references | Ramírez, G., Shaw, S. T., & Maloney, E. A. (2018). Math anxiety: Past research, promising interventions, and a new interpretation framework. Educational Psychologist, 53(3), 145–164. | eng |
dcterms.references | Richardson, F. C., & Suinn, R. M. (1972). The mathematics anxiety rating scale: Psychometric data. Journal of Counseling Psychology, 19(6), 551. | eng |
dcterms.references | Rodríguez, C. F., Canedo, M. del M. F., Cerviño, S. F., & Enríquez, E. B. (2019). Ansiedad ante los exámenes en estudiantes de educación primaria: Diferencias en función del curso y del género. Publicaciones: Facultad de Educación y Humanidades del Campus de Melilla, 49(2), 151–168. | spa |
dcterms.references | Rose, A. C., Alashwal, H., Moustafa, A. A., & Weidemann, G. (2023). A neural network model of mathematics anxiety: The role of attention. PLoS ONE, 18(12), e0295264. https://doi.org/10.1371/journal.pone.0295264 | eng |
dcterms.references | Soysal, D., Bani-Yaghoub, M., & Riggers-Piehl, T. A. (2022). A machine learning approach to evaluate variables of math anxiety in STEM students. Pedagogical Research, 7(2). | eng |
dcterms.references | Thanasekhar, B., Gomathy, N., Kiruthika, A., & Swarnalaxmi, S. (2019). Machine learning based academic stress management system. En 2019 11th International Conference on Advanced Computing (ICoAC) IEEE (pp. 147–151). | eng |
dcterms.references | Wang, Z., (2015). Is math anxiety always bad for math learning? The role of math motivation. Psychological Science, 26(12), 1863–1876. | eng |
dcterms.references | Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain– computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791. | eng |
dcterms.references | Wuthrich, V. M., Jagiello, T., & Azzi, V. (2020). Academic stress in the final years of school: A systematic literature review. Child Psychiatry & Human Development, 51(6), 986–1015. | eng |
dcterms.references | Yadawad, P. R., Pandey, L., Mallibhat, K., & Mudenagudi, U. (2024). Predicting anxiety among young adults using machine learning algorithms. En 2024 IEEE 9th International Conference for Convergence in Technology. IEEE (I2CT) (pp. 1–8). | eng |
dcterms.references | Yáñez-Marquina, L., & Villardón-Gallego, L. (2017). Math anxiety, a hierarchical construct: Development and validation of the scale for assessing math anxiety in secondary education. Ansiedad y Estrés, 23(2–3), 59–65. | eng |
dcterms.references | Aldoseri, A., Al-Khalifa, K., & Hamouda, A. (2023). Re-thinking data strategy and integration for artificial intelligence: Concepts, opportunities, and challenges. Applied Sciences, 13(12), 7082. https://doi.org/10.3390/app13127082 | eng |
dcterms.references | Brown, T., (2020). Language models are few-shot learners. In Advances in Neural Information Processing Systems, 33, 1877-1901. | eng |
dcterms.references | Chen, X., Xie, H., & Tao, X. (2022). Vision, status, and research topics of Natural Language Processing. Natural Language Processing, 1, 100001. https://doi.org/10.1016/j.nlp.2022.100001 | eng |
dcterms.references | Francisco, M., & Linnér, B.-O. (2023). AI and the governance of sustainable development: An idea analysis of the European Union, the United Nations, and the World Economic Forum. Environmental Science & Policy, 150, 103590. https://doi.org/10.1016/j.envsci.2023.103590 | eng |
dcterms.references | Gadamer, H.-G. (2004). Truth and method. New York: Continuum. | eng |
dcterms.references | Huérfano-Maldonado, Y., Mora, M., Vilches, K., Hernández-García, R., Gutiérrez, R., & Vera, M. (2023). A comprehensive review of extreme learning machine on medical imaging. Neurocomputing, 556, 126618. https://doi.org/10.1016/j.neucom.2023.126618 | eng |
dcterms.references | Jackson, I., Saenz, M. J., & Ivanov, D. (2023). From natural language to simulations: Applying AI to automate simulation modelling of logistics systems. International Journal of Production Research, 62(4), 1434–1457. https://doi.org/10.1080/00207543.2023.2276811 | eng |
dcterms.references | Just, J. (2024). Natural language processing for innovation search – Reviewing an emerging nonhuman innovation intermediary. Technovation, 129, 102883. https://doi.org/10.1016/j.technovation.2023.102883 | eng |
dcterms.references | Khurana, D., Koli, A., Khatter, K., & Singh, S. (2023). Natural language processing: State of the art, current trends and challenges. Multimedia Tools and Applications, 82, 3713–3744. https://doi.org/10.1007/s11042-022-13428-4 | eng |
dcterms.references | Mariani, M., & Dwivedi, Y. K. (2024). Generative artificial intelligence in innovation management: A preview of future research developments. Journal of Business Research, 175, 114542. https://doi.org/10.1016/j.jbusres.2024.114542 | eng |
dcterms.references | Maxwell, J. (2013). Qualitative research design: An interactive approach. CA: SAGE Publications. | eng |
dcterms.references | Molenaar, A., Lukose, D., Brennan, L., Jenkins, E., & McCaffrey, T. (2024). Using natural language processing to explore social media opinions on food security: Sentiment analysis and topic modeling study. Journal of Medical Internet Research, 26, e47826. https://doi.org/10.2196/47826 | eng |
dcterms.references | Ofori-Boateng, R., Aceves-Martins, M., Wiratunga, N., & Moreno-Garcia, C. F. (2024). Towards the automation of systematic reviews using natural language processing, machine learning, and deep learning: A comprehensive review. Artificial Intelligence Review, 57, 200. https://doi.org/10.1007/s10462-024-10844-w | eng |
dcterms.references | Olujimi, P.A., Ade-Ibijola, A. (2023). NLP techniques for automating responses to customer queries: a systematic review. Discov Artif Intell, 3, 20. https://doi.org/10.1007/s44163-023- 00065-5 | eng |
dcterms.references | Sarker, I. (2021). Data science and analytics: An overview from data-driven computing, decisionmaking and applications perspective. SN Computer Science, 2(5), 377. https://doi.org/10.1007/s42979-021-00765-8 | eng |
dcterms.references | Sommer, U., & Fassbender, F. (2024). Environmental peacebuilding: Moving beyond resolving violence-ridden conflicts to sustaining peace. World Development, 178, 106555. https://doi.org/10.1016/j.worlddev.2024.106555 | eng |
dcterms.references | Talaei Khoei, T., Ould Slimane, H., & Kaabouch, N. (2023). Deep learning: Systematic review, models, challenges, and research directions. Neural Computing and Applications, 35, 23103– 23124. https://doi.org/10.1007/s00521-023-08957-4 | eng |
dcterms.references | Cabero Almenara, J., & Fernández Robles, B. (2018). Las tecnologías digitales emergentes entran en la Universidad: RA y RV. RIED. Revista Iberoamericana de Educación a Distancia, 21(2), 119. https://doi.org/10.5944/ried.21.2.20094 | spa |
dcterms.references | Cameron, I., Marucci, M., Matthews, S., Briddon, P., & Delgado-Charro, M. (2018). Development and implementation of a virtual reality laboratory practical for teaching molecular structure. Journal of Chemical Education, 95(6), 957-962. | eng |
dcterms.references | García, F. M., & Morales, J. D. (2021). El impacto de los laboratorios virtuales en la enseñanza de la química: una solución accesible y segura. Revista de Innovación Educativa, 11(2), 120-134. | spa |
dcterms.references | García, L. M., & Pérez, C. R. (2022). Diseñar actividades didácticas experimentales: Un enfoque para fomentar el pensamiento crítico en el aula. Revista Internacional de Innovación Educativa, 14(2), 34-47. | spa |
dcterms.references | Gómez, P. L., & Castillo, J. R. (2021). La importancia de la experimentación en la enseñanza de la química básica: Desafíos actuales en entornos educativos. Revista de Educación y Ciencia, 9(4), 65-78. | spa |
dcterms.references | Gómez, R. M., Sánchez, F. J., & Fernández, P. L. (2021). La realidad virtual como herramienta educativa: un enfoque inmersivo para el aprendizaje interactivo. Revista de Innovación Educativa, 12(3), 45-58. | spa |
dcterms.references | Gros, B. (2018). Realidad virtual y educación: Estado de la cuestión y retos pendientes. Revista de Educación a Distancia, (56), 1-18. | spa |
dcterms.references | Hernández, A. M. (2022-10-05). La ingeniería en multimedia como herramienta para impulsar la disrupción digital en Colombia Recuperado de: http://hdl.handle.net/10654/44069 | spa |
dcterms.references | Li, X., Zhang, D., & Cheng, J. (2018). Virtual reality in chemistry education: A systematic review of research. Chemistry Education Research and Practice, 19(3), 825-838. | eng |
dcterms.references | Martínez, A. E. (2020). El rol de los laboratorios en el aprendizaje de la química: una revisión de las limitaciones en la educación secundaria. Journal of Chemical Education, 19(1), 34-42. | spa |
dcterms.references | Realidad Virtual: otro mundo al alcance de tus ojos - FerVilela Digital Consulting. (s. f.). Recuperado 27 de noviembre de 2024, de https://fervilela.com/realidad-virtual-otro-mundoal- alcance-de-tus-ojos.html | spa |
dcterms.references | Rodríguez, S. F., López, M. T., Martínez, J. C., & Ramírez, A. G. (2021). Desafíos en la enseñanza de las ciencias: superando los modelos tradicionales para un aprendizaje significativo. Educación y Ciencia, 16(1), 98-113. | spa |
dcterms.references | Suárez D. A. (2020). Prototipo funcional de software multimedia e interactivo de realidad virtual para la enseñanza de compuestos químicos de uso cotidiano. [Tesis de grado inédita]. Universidad Autónoma de Bucaramanga, Colombia. | spa |
dcterms.references | Al-Dhabyani, W., Gomaa, M., Khaled, H., & Fahmy, A. (2020). Dataset of breast ultrasound images. Data in Brief, 28, 104863. https://doi.org/10.1016/j.dib.2019.104863 | eng |
dcterms.references | K. Team. (2024). About Keras 3 [Documento en línea]. Keras.io. https://keras.io/about/ NumPy. (s.f). What is NumPy? [Documento en línea]. https://numpy.org/doc/stable/user/whatisnumpy.html | eng |
dcterms.references | OpenCV. (2024, July 15). Home. [Documento en línea]. https://opencv.org/ | eng |
dcterms.references | Pandas. (s.f). What is it? [Documento en línea]. https://github.com/pandas-dev/panda s | eng |
dcterms.references | Pawłowska, A., Karwat, P., & Żołek, N. (2023). Letter to the editor. Re: “[Dataset of breast ultrasound images by W. Al-Dhabyani, M. Gomaa, H. Khaled & A. Fahmy, Data in Brief, 2020, 28, 104863].” Data in Brief, 48, 109247. https://doi.org/10.1016/j.dib.2023.109247 | eng |
dcterms.references | Python Software Foundation. (2024). What is Python? Executive summary [Documento en línea]. Python.org. https://www.python.org/doc/essays/blurb/ | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion |