Clinical effectiveness of treatments for mild cognitive impairment in adults: a systematic review

datacite.rightshttp://purl.org/coar/access_right/c_abf2
dc.contributor.authorCepeda-Pineda, Daniel
dc.contributor.authorSequeda, Gabriela
dc.contributor.authorCarrillo-Sierra, Sandra-Milena
dc.contributor.authorsilvera cruz, kevin
dc.contributor.authorRedondo-Chamorro, Johanna
dc.contributor.authorROZO SANCHEZ, ASTRID CAROLINA
dc.contributor.authorBermudez, Valmore
dc.contributor.authorContreras-Velásquez, Julio César
dc.contributor.authorGómez Charris, Yulineth
dc.contributor.authorRivera-Porras, Diego
dc.date.accessioned2025-12-04T20:26:17Z
dc.date.available2025-12-04T20:26:17Z
dc.date.issued2025
dc.description.abstractBackground/Objectives: Mild cognitive impairment (MCI) represents an intermediate stage between normal ageing and dementia, with a high annual progression rate. Despite its clinical relevance, no pharmacological treatment has been definitively approved for this condition; however, multiple pharmacological and non-pharmacological strategies have been investigated for their potential benefits. This systematic review assessed the effectiveness of both types of interventions in adults with MCI, aiming to identify effective strategies to preserve cognitive function. Methods: A systematic search (2017–2025) was conducted in PubMed, Scopus, ScienceDirect, SpringerLink, and WOS, following PRISMA guidelines. Randomised controlled trials and quasi-experimental studies involving adults aged ≥ 50 years with a diagnosis of MCI were included. Outcomes were evaluated in terms of cognitive, functional, behavioural, and quality-of-life improvements. Risk of bias was assessed using the RoB 2 and ROBINS-I tools. Results: Of 108,700 records screened, 40 studies were included. Non-pharmacological interventions, such as cognitive training (conventional, computerised, or virtual reality-based), consistently improved memory, attention, and executive functions (e.g., MoCA: +3.84 points; p < 0.001). Transcranial magnetic stimulation combined with physical exercise also demonstrated significant benefits (p = 0.025). Among pharmacological treatments, only vortioxetine and choline alfoscerate showed modest improvements; cholinesterase inhibitors had limited effects and frequent adverse events. Complementary therapies (yoga, probiotics, and acupuncture) yielded promising outcomes but require further validation. Conclusions: Non-pharmacological strategies, particularly cognitive training and physical exercise, emerge as the most effective and safe approaches for managing MCI. The inclusion of pharmacological interventions with preliminary evidence of benefit should be considered within a personalised, multimodal approach, while recognising the current absence of approved drug treatments for MCI. Further research is needed in underrepresented populations, such as those in Latin America.eng
dc.format.mimetypepdf
dc.identifier.citationCepeda-Pineda, D., Sequeda, G., Carrillo-Sierra, S.-M., Silvera-Cruz, K., Redondo-Chamorro, J., Rozo-Sánchez, A., Bermúdez, V., Contreras-Velásquez, J. C., Gómez-Charris, Y., & Rivera-Porras, D. (2025). Clinical Effectiveness of Treatments for Mild Cognitive Impairment in Adults: A Systematic Review. European Journal of Investigation in Health, Psychology and Education, 15(11), 226. https://doi.org/10.3390/ejihpe15110226
dc.identifier.doihttps://doi.org/10.3390/ejihpe15110226
dc.identifier.issn22549625 (Electrónico)
dc.identifier.urihttps://hdl.handle.net/20.500.12442/17167
dc.identifier.urlhttps://www.mdpi.com/2254-9625/15/11/226
dc.language.isoeng
dc.publisherMDPIeng
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ciencias de la Saludspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationaleng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceEuropean Journal of Investigation in Health, Psychology and Educationeng
dc.sourceEur. J. Investig. Health Psychol. Educ.spa
dc.sourceVol. 15 No. 11  Año 2025eng
dc.subject.keywordsMild cognitive impairmenteng
dc.subject.keywordsDrug therapyeng
dc.subject.keywordsNon-pharmacologic therapyeng
dc.subject.keywordsCognitioneng
dc.subject.keywordsTreatment outcomeeng
dc.titleClinical effectiveness of treatments for mild cognitive impairment in adults: a systematic reviewspa
dc.type.driverinfo:eu-repo/semantics/other
dc.type.spaOtros
dcterms.referencesAndrango Pilataxi, M. L., & López Barba, D. F. (2022). Abordaje clínico del deterioro cognitivo leve en atención primaria. RECIMUNDO: Revista Científica de la Investigación y el Conocimiento, 6(2), 47–59.spa
dcterms.referencesApostolova, L. G., Di, L. J., Duffy, E. L., Brook, J., Elashoff, D., Tseng, C. H., Fairbanks, L., & Cummings, J. L. (2014). Risk factors for behavioral abnormalities in mild cognitive impairment and mild Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 37(5–6), 315–326.eng
dcterms.referencesBaik, J. S., Min, J. H., Ko, S.-H., Yun, M. S., Lee, B., Kang, N. Y., Kim, B., Lee, H., & Shin, Y.-I. (2024). Effects of home-based computerized cognitive training in community-dwelling adults with mild cognitive impairment. IEEE Journal of Translational Engineering in Health and Medicine, 12, 97–105.eng
dcterms.referencesBidzan, L., Grabowski, J., Przybylak, M., & Ali, S. (2023). Aggressive behavior and prognosis in patients with mild cognitive impairment. Dementia & Neuropsychologia, 17(2019), e20200096eng
dcterms.referencesBray, N. W., Pieruccini-Faria, F., Witt, S. T., Bartha, R., Doherty, T. J., Nagamatsu, L. S., Almeida, Q. J., Liu-Ambrose, T., Middleton, L. E., Bherer, L., & Montero-Odasso, M. (2023). Combining exercise with cognitive training and vitamin D3 to improve functional brain connectivity (FBC) in older adults with mild cognitive impairment (MCI). Results from the SYNERGIC trial. GeroScience, 45(3), 1967–1985.eng
dcterms.referencesBuckinx, F., & Aubertin-Leheudre, M. (2021). Nutrition to prevent or treat cognitive impairment in older adults: A GRADE recommendation. The Journal of Prevention of Alzheimer’s Disease, 8(1), 110–116.eng
dcterms.referencesBuele, J., Avilés-Castillo, F., Del-Valle-Soto, C., Varela-Aldás, J., & Palacios-Navarro, G. (2024). Effects of a dual intervention (motor and virtual reality-based cognitive) on cognition in patients with mild cognitive impairment: A single-blind, randomized controlled trial. Journal of NeuroEngineering and Rehabilitation, 21(1), 149.eng
dcterms.referencesCarcelén-Fraile, M. D. C., Llera-DelaTorre, A. M., Aibar-Almazán, A., Afanador-Restrepo, D. F., Baena-Marín, M., Hita-Contreras, F., Brandão-Loureiro, V., García-Garro, P. A., & Castellote-Caballero, Y. (2022). Cognitive stimulation as alternative treatment to improve psychological disorders in patients with mild cognitive impairment. Journal of Clinical Medicine, 11(14), 3947.eng
dcterms.referencesCarvalho, C. M., Poltronieri, B. C., Reuwsaat, K., Reis, M. E. A., & Panizzutti, R. (2025). Digital cognitive training for functionality in mild cognitive impairment: A randomized controlled clinical trial. GeroScience, 47, 5111–5121.eng
dcterms.referencesCastellote-Caballero, Y., Carcelén Fraile, M. D. C., Aibar-Almazán, A., Afanador-Restrepo, D. F., & González-Martín, A. M. (2024). Effect of combined physical-cognitive training on the functional and cognitive capacity of older people with mild cognitive impairment: A randomized controlled trial. BMC Medicine, 22(1), 281.eng
dcterms.referencesChertkow, H., Massoud, F., Nasreddine, Z., Belleville, S., Joanette, Y., Bocti, C., Drolet, V., Kirk, J., Freedman, M., & Bergman, H. (2008). Diagnosis and treatment of dementia: 3. Mild cognitive impairment and cognitive impairment without dementia. Canadian Medical Association Journal, 178(10), 1273–1285.eng
dcterms.referencesCuijpers, P., Karyotaki, E., Harrer, M., & Stikkelbroek, Y. (2023). Individual behavioral activation in the treatment of depression: A meta analysis. Psychotherapy Research, 33(7), 886–897.eng
dcterms.referencesDevanand, D. P., Pelton, G. H., D’Antonio, K., Ciarleglio, A., Scodes, J., Andrews, H., Lunsford, J., Beyer, J. L., Petrella, J. R., Sneed, J., Ciovacco, M., & Doraiswamy, P. M. (2018). Donepezil treatment in patients with depression and cognitive impairment on stable antidepressant treatment: A randomized controlled trial. The American Journal of Geriatric Psychiatry, 26(10), 1050–1060.eng
dcterms.referencesDevier, D. J., Villemarette-Pittman, N., Brown, P., Pelton, G., Stern, Y., Sano, M., & Devanand, D. P. (2010). Predictive utility of type and duration of symptoms at initial presentation in patients with mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 30(3), 238–244.eng
dcterms.referencesEyre, H. A., Siddarth, P., Acevedo, B., Van Dyk, K., Paholpak, P., Ercoli, L., St Cyr, N., Yang, H., Khalsa, D. S., & Lavretsky, H. (2017). A randomized controlled trial of Kundalini yoga in mild cognitive impairment. International Psychogeriatrics, 29(4), 557–567.eng
dcterms.referencesFei, Y.,Wang, R., Lu, J., Peng, S., Yang, S.,Wang, Y., Zheng, K., Li, R., Lin, L., & Li, M. (2023). Probiotic intervention benefits multiple neural behaviors in older adults with mild cognitive impairment. Geriatric Nursing, 51, 167–175.eng
dcterms.referencesFeldman, H. H., & Jacova, C. (2005). Mild cognitive impairment. The American Journal of Geriatric Psychiatry: Official Journal of the American Association for Geriatric Psychiatry, 13(8), 645–655.eng
dcterms.referencesFitzpatrick-Lewis, D.,Warren, R., Ali, M. U., Sherifali, D., & Raina, P. (2015). Treatment for mild cognitive impairment: A systematic review and meta-analysis. CMAJ Open, 3(4), E419–E427.eng
dcterms.referencesFu, Y., & Wang, H. (2025). Clinical observation of VR virtual reality rehabilitation training combined with acupuncture in the treatment of mild cognitive impairment. SLAS Technology, 31, 100250.eng
dcterms.referencesGinsberg, T. B., Powell, L., Emrani, S., Wasserman, V., Higgins, S., Chopra, A., Cavalieri, T. A., & Libon, D. J. (2019). Instrumental activities of daily living, neuropsychiatric symptoms, and neuropsychological impairment in mild cognitive impairment. Journal of the American Osteopathic Association, 119(2), 96–101.eng
dcterms.referencesGonzález Hernández, A., Rodríguez Quintero, A. M., & Bonilla Santos, J. (2022). Depression and its relationship with mild cognitive impairment and Alzheimer disease: A review study. Revista Espanola de Geriatria y Gerontologia, 57(2), 118–128.eng
dcterms.referencesGonzález Martínez, P., Oltra Cucarella, J., Sitges Maciá, E., & Bonete López, B. (2021). Revisión y actualización de los criterios de deterioro cognitivo objetivo y su implicación en el deterioro cognitivo leve y la demencia. Revista de Neurología, 72(08), 288.spa
dcterms.referencesGozdas, E., Avelar-Pereira, B., Fingerhut, H., Dacorro, L., Jo, B., Williams, L., O’Hara, R., & Hosseini, S. M. H. (2024). Long-term cognitive training enhances fluid cognition and brain connectivity in individuals with MCI. Translational Psychiatry, 14(1), 447.eng
dcterms.referencesGuerrero Barragán, A., Lucumí Cuesta, D. I., Gómez, I. E., & Lawior, B. (2023). Análisis situacional del deterioro cognitivo en Colombia. Notas de Política, 7199(45).spa
dcterms.referencesHale, J. M., Schneider, D. C., Mehta, N. K., & Myrskylä, M. (2020). Cognitive impairment in the U.S.: Lifetime risk, age at onset, and years impaired. SSM—Population Health, 11, 100577.eng
dcterms.referencesHassan, M., Rashid, S., Khan, R. R., Khalid, M. U., Mansha, H., & Khalid, H. (2021). Effects of structured resisted exercises on cognition level among patients with mild cognitive impairment. Pakistan Journal of Medical and Health Sciences, 15(6), 1876–1878.eng
dcterms.referencesHu, C., Yu, D., Sun, X., Zhang, M.,Wang, L., & Qin, H. (2017). The prevalence and progression of mild cognitive impairment among clinic and community populations: A systematic review and meta-analysis. International Psychogeriatrics, 29(10), 1595–1608.eng
dcterms.referencesHughes, T. F., Snitz, B. E., & Ganguli, M. (2011). Should mild cognitive impairment be subtyped? Current Opinion in Psychiatry, 24(3), 237–242.eng
dcterms.referencesJak, A. J., Bondi, M.W., Delano-Wood, L.,Wierenga, C., Corey-Bloom, J., Salmon, D. P., & Delis, D. C. (2009). Quantification of five neuropsychological approaches to defining mild cognitive impairment. The American Journal of Geriatric Psychiatry, 17(5), 368–375.eng
dcterms.referencesJefferson, A. L., Beiser, A. S., Seshadri, S., Wolf, P. A., & Au, R. (2015). APOE and mild cognitive impairment: The Framingham heart study. Age and Ageing, 44(2), 307–311.eng
dcterms.referencesJeon, J., Lee, S. Y., Lee, S., Han, C., Park, G. D., Kim, S. J., Chang, J. G., & Kim,W. J. (2024). Efficacy and safety of choline alphoscerate for amnestic mild cognitive impairment: A randomized double-blind placebo-controlled trial. BMC Geriatrics, 24(1), 774.eng
dcterms.referencesJohn, A., Patel, U., Rusted, J., Richards, M., & Gaysina, D. (2019). Affective problems and decline in cognitive state in older adults: A systematic review and meta-analysis. Psychological Medicine, 49(3), 353–365.eng
dcterms.referencesJones, K. T., Ostrand, A. E., Gazzaley, A., & Zanto, T. P. (2023). Enhancing cognitive control in amnestic mild cognitive impairment via at-home non-invasive neuromodulation in a randomized trial. Scientific Reports, 13(1), 7435.eng
dcterms.referencesKaramacoska, D., Tan, T., Mathersul, D. C., Sabag, A., de Manincor, M., Chang, D., & Steiner-Lim, G. Z. (2023). A systematic review of the health effects of yoga for people with mild cognitive impairment and dementia. BMC Geriatrics, 23(1), 37.eng
dcterms.referencesKatsipis, G., Tzekaki, E. E., Andreadou, E. G., Mouzakidis, C., Baldimtsi, E. N., Karathanasi, E. M., Hassandra, M., Galanis, E., Hatzigeorgiadis, A., Goudas, M., Zikas, P., Evangelou, G., Papagiannakis, G., Bellis, G., Kokkotis, C., Tsatalas, T., Giakas, G., Theodorakis, Y., Tsolaki, M., & Pantazaki, A. A. (2024). The effect of physical exercise with cognitive training on inflammation and Alzheimer’s disease biomarkers of Mild Cognitive Impairment patients. Neuroscience Applied, 3, 104085.eng
dcterms.referencesKatsuno, M., Sahashi, K., Iguchi, Y., & Hashizume, A. (2018). Preclinical progression of neurodegenerative diseases. Nagoya Journal of Medical Science, 80(3), 289–298.eng
dcterms.referencesKaufman, M., Dyrek, P., Fredericson, M., Oppezzo, M., Roche, M., Frehlich, L., & Noordsy, D. (2024). The role of physical exercise in cognitive preservation: A systematic review. American Journal of Lifestyle Medicine, 18(4), 574–591.eng
dcterms.referencesKnopman, D. S., & Petersen, R. C. (2014). Mild cognitive impairment and mild dementia: A clinical perspective. Mayo Clinic Proceedings, 89(10), 1452–1459.eng
dcterms.referencesKumar, H., Song, S.-Y., More, S., Kang, S.-M., Kim, B.-W., Kim, I.-S., & Choi, D.-K. (2013). Traditional Korean East Asian medicines and herbal formulations for cognitive impairment. Molecules, 18(12), 14670–14693.eng
dcterms.referencesLau, C. I., Liu, M.-N., Cheng, F.-Y.,Wang, H.-C.,Walsh, V., & Liao, Y.-Y. (2024). Can transcranial direct current stimulation combined with interactive computerized cognitive training boost cognition and gait performance in older adults with mild cognitive impairment? a randomized controlled trial. Journal of NeuroEngineering and Rehabilitation, 21(1), 26.eng
dcterms.referencesLee, J., Cho, E., Kim, H., Lee, K. H., Kim, E., & Ye, B. S. (2023). The development and evaluation of a self-efficacy enhancement program for older adults with mild cognitive impairment. Applied Nursing Research, 73, 151726.eng
dcterms.referencesLee, T. M., Chan, F. H., Chu, L.W., Kwok, T. C., Lam, L. C., Tam, H. M., &Woo, J. (2017). Auditory-based cognitive training programme for attention and memory in older people at risk of progressive cognitive decline: A randomised controlled trial. Hong Kong Medical Journal = Xianggang Yi Xue Za Zhi, 23(3), 12–15.eng
dcterms.referencesLi, B.-Y., He, N.-Y., Qiao, Y., Xu, H.-M., Lu, Y.-Z., Cui, P.-J., Ling, H.-W., Yan, F.-H., Tang, H.-D., & Chen, S.-D. (2019). Computerized cognitive training for Chinese mild cognitive impairment patients: A neuropsychological and fMRI study. NeuroImage: Clinical, 22, 101691.eng
dcterms.referencesLi, H., Su, W., Dang, H., Han, K., Lu, H., Yue, S., & Zhang, H. (2022). Exercise training for mild cognitive impairment adults older than 60: A systematic review and meta-analysis. Journal of Alzheimer’s Disease, 88(4), 1263–1278.eng
dcterms.referencesLiao, Y. Y., Tseng, H. Y., Lin, Y. J.,Wang, C. J., & Hsu,W. C. (2020). Using virtual reality-based training to improve cognitive function, instrumental activities of daily living and neural efficiency in older adults with mild cognitive impairment. European Journal of Physical and Rehabilitation Medicine, 56(1), 47–57.eng
dcterms.referencesLiu, C.-C., Kanekiyo, T., Xu, H., & Bu, G. (2013). Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nature Reviews Neurology, 9(2), 106–118.eng
dcterms.referencesLiu, Y., Yu, X., Han, P., Chen, X.,Wang, F., Lian, X., Li, J., Li, R.,Wang, B., Xu, C., Li, J., Zheng, Y., Zhang, Z., Li, M., Yu, Y., & Guo, Q. (2022). Gender-specific prevalence and risk factors of mild cognitive impairment among older adults in Chongming, Shanghai, China. Frontiers in Aging Neuroscience, 14, 900523.eng
dcterms.referencesLonghurst, J., Phan, J., Chen, E., Jackson, S., & Landers, M. R. (2020). Physical therapy for gait, balance, and cognition in individuals with cognitive impairment: A retrospective analysis. Rehabilitation Research and Practice, 2020, 8861004.eng
dcterms.referencesLuo, Y., Lin, R., Yan, Y., Li, Y., Huang, C., Chen, M., & Li, H. (2024). Maintenance effects of short-period intensive creative expressive arts-based program (SPI-CrEAS) on cognitive function older adults with mild cognitive impairment: A pilot study. Geriatric Nursing, 59, 170–180.eng
dcterms.referencesMalavera, M., Silva, F., García, R., Rueda, L., & Carrillo, S. (2014). Fundamentos y aplicaciones clínicas de la estimulación magnética transcraneal en neuropsiquiatría. Revista Colombiana de Psiquiatría, 43(1), 32–39.spa
dcterms.referencesMolano, J., Boeve, B., Ferman, T., Smith, G., Parisi, J., Dickson, D., Knopman, D., Graff-Radford, N., Geda, Y., Lucas, J., Kantarci, K., Shiung, M., Jack, C., Silber, M., Pankratz, V. S., & Petersen, R. (2010). Mild cognitive impairment associated with limbic and neocortical lewy body disease: A clinicopathological study. Brain, 133(2), 540–556.eng
dcterms.referencesMontero-Odasso, M., Zou, G., Speechley, M., Almeida, Q. J., Liu-Ambrose, T., Middleton, L. E., Camicioli, R., Bray, N.W., Li, K. Z. H., Fraser, S., Pieruccini-Faria, F., Berryman, N., Lussier, M., Shoemaker, J. K., Son, S., & Bherer, L. (2023). Effects of exercise alone or combined with cognitive training and vitamin d supplementation to improve cognition in adults with mild cognitive impairment: A randomized clinical trial. JAMA Network Open, 6(7), E2324465.eng
dcterms.referencesMotter, J. N., Rushia, S. N., Qian, M., Ndouli, C., Nwosu, A., Petrella, J. R., Doraiswamy, P. M., Goldberg, T. E., & Devanand, D. P. (2024). Expectancy does not predict 18-month treatment outcomes with cognitive training in mild cognitive impairment. The Journal of Prevention of Alzheimer’s Disease, 11(1), 71–78.eng
dcterms.referencesMoustaka, K., Nega, C., & Beratis, I. N. (2023). Exploring the impact of age of onset of mild cognitive impairment on the profile of cognitive and psychiatric symptoms. Geriatrics, 8(5), 96.eng
dcterms.referencesMuhammad, T., Govindu, M., & Srivastava, S. (2021). Relationship between chewing tobacco, smoking, consuming alcohol and cognitive impairment among older adults in India: A cross-sectional study. BMC Geriatrics, 21(1), 85.eng
dcterms.referencesNakagawa, S., Kowa, H., Takagi, Y., Kakei, Y., Kagimura, T., Sanada, S., & Nagai, Y. (2024). Efficacy of a non-pharmaceutical multimodal intervention program in a group setting for patients with mild cognitive impairment: A single-arm interventional study with pre-post and external control analyses. Contemporary Clinical Trials Communications, 40, 101326.eng
dcterms.referencesNwosu, A., Qian, M., Phillips, J., Hellegers, C. A., Rushia, S., Sneed, J., Petrella, J. R., Goldberg, T. E., Devanand, D. P., & Doraiswamy, P. M. (2024). Computerized cognitive training in mild cognitive impairment: Findings in african americans and caucasians. Journal of Prevention of Alzheimer’s Disease, 11(1), 149–154.eng
dcterms.referencesOrr, M. E., Kotkowski, E., Ramirez, P., Bair-Kelps, D., Liu, Q., Brenner, C., Schmidt, M. S., Fox, P. T., Larbi, A., Tan, C., Wong, G., Gelfond, J., Frost, B., Espinoza, S., Musi, N., & Powers, B. (2024). A randomized placebo-controlled trial of nicotinamide riboside in older adults with mild cognitive impairment. GeroScience, 46(1), 665–682.eng
dcterms.referencesPage, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E.W., Mayo-Wilson, E., McDonald, S., . . . Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71.eng
dcterms.referencesPantoni, L., Poggesi, A., Diciotti, S., Valenti, R., Orsolini, S., Della Rocca, E., Inzitari, D., Mascalchi, M., & Salvadori, E. (2017). Effect of attention training in mild cognitive impairment patients with subcortical vascular changes: The rehatt study. Journal of Alzheimer’s Disease, 60(2), 615–624.eng
dcterms.referencesPark, J.-H. (2022). Effects of virtual reality-based spatial cognitive training on hippocampal function of older adults with mild cognitive impairment. International Psychogeriatrics, 34(2), 157–163.eng
dcterms.referencesPavel, A., Matei, V., Paun, R., & Tudose, C. (2023). How “subjective” is subjective cognitive decline? Psychiatry and Clinical Psychopharmacology, 32(4), 299–305.eng
dcterms.referencesPellegrino, L. D., Peters, M. E., Lyketsos, C. G., & Marano, C. M. (2013). Depression in cognitive impairment. Current Psychiatry Reports, 15(9), 384.eng
dcterms.referencesPeng, Z., Jiang, H.,Wang, X., Huang, K., Zuo, Y.,Wu, X., Abdullah, A. S., & Yang, L. (2019). The efficacy of cognitive training for elderly Chinese individuals with mild cognitive impairment. BioMed Research International, 2019, 4347281.eng
dcterms.referencesPetersen, R. C. (2016). Mild cognitive impairment. CONTINUUM: Lifelong Learning in Neurology, 22, 404–418.eng
dcterms.referencesPetersen, R. C., Roberts, R. O., Knopman, D. S., Geda, Y. E., Cha, R. H., Pankratz, V. S., Boeve, B. F., Tangalos, E. G., Ivnik, R. J., & Rocca, W. A. (2010). Prevalence of mild cognitive impairment is higher in men: The mayo clinic study of aging. Neurology, 75(10), 889–897.eng
dcterms.referencesPower, R., Nolan, J. M., Prado-Cabrero, A., Coen, R., Roche,W., Power, T., Howard, A. N., & Mulcahy, R. (2020). Targeted nutritional intervention for patients with mild cognitive impairment: The cognitive impairment study (CARES) trial 1. Journal of Personalized Medicine, 10(2), 43.eng
dcterms.referencesProkopenko, S. V., Bezdenezhnykh, A. F., Mozheyko, E. Y., & Zubrickaya, E. M. (2019). Effectiveness of computerized cognitive training in patients with poststroke cognitive impairments. Neuroscience and Behavioral Physiology, 49(5), 539–543.eng
dcterms.referencesRaschetti, R., Albanese, E., Vanacore, N., & Maggini, M. (2007). Cholinesterase inhibitors in mild cognitive impairment: A systematic review of randomised trials. PLoS Medicine, 4(11), 1818–1828.eng
dcterms.referencesRethlefsen, M. L., & Page, M. J. (2021). PRISMA 2020 and PRISMA-S: Common questions on tracking records and the flow diagram. Journal of the Medical Library Association, 110(2), 253–257.eng
dcterms.referencesRotenberg, S., Anderson, N. D., Binns, M. A., Skidmore, E. R., Troyer, A. K., Richardson, J., Xie, F., Nalder, E., Bar, Y., Davids-Brumer, N., Bernick, A., & Dawson, D. R. (2024). Effectiveness of a meta-cognitive group intervention for older adults with subjective cognitive decline or mild cognitive impairment: The ASPIRE randomized controlled trial. Journal of Prevention of Alzheimer’s Disease, 11(6), 1534–1548.eng
dcterms.referencesRovner, B. W., Casten, R. J., Hegel, M. T., & Leiby, B. (2018). Preventing cognitive decline in black individuals with mild cognitive impairment: A randomized clinical trial. JAMA Neurology, 75(12), 1487–1493.eng
dcterms.referencesRusso, M. J., Kañevsky, A., Leis, A., Iturry, M., Roncoroni, M., Serrano, C., Cristalli, D., Ure, J., & Zuin, D. (2020). Role of physical activity in preventing cognitive impairment and dementia in older adults: A systematic review. Neurologia Argentina, 12(2), 124–137.eng
dcterms.referencesSaari, T., Smith, E. E., & Ismail, Z. (2021). Network analysis of impulse dyscontrol in mild cognitive impairment and subjective cognitive decline. International Psychogeriatrics, 34(6), 553–562.eng
dcterms.referencesSakurai, T., Sugimoto, T., Akatsu, H., Doi, T., Fujiwara, Y., Hirakawa, A., Kinoshita, F., Kuzuya, M., Lee, S., Matsumoto, N., Matsuo, K., Michikawa, M., Nakamura, A., Ogawa, S., Otsuka, R., Sato, K., Shimada, H., Suzuki, H., Suzuki, H., . . . Arai, H. (2024). Japan-multimodal intervention trial for the prevention of dementia: A randomized controlled trial. Alzheimer’s and Dementia, 20(6), 3918–3930.eng
dcterms.referencesSchneider, L. S., Geffen, Y., Rabinowitz, J., Thomas, R. G., Schmidt, R., Ropele, S., & Weinstock, M. (2019). Low-dose ladostigil for mild cognitive impairment: A phase 2 placebo-controlled clinical trial. Neurology, 93(15), e1474–e1484.eng
dcterms.referencesShin, H. Y., Kim, H. R., Jahng, G. H., Jin, C., Kwon, S., Cho, S. Y., Park, S. U., Jung,W. S., Moon, S. K., Ko, C. N., & Park, J. M. (2021). Efficacy and safety of Kami-guibi-tang for mild cognitive impairment: A pilot, randomized, double-blind, placebo-controlled trial. BMC Complementary Medicine and Therapies, 21(1), 251.eng
dcterms.referencesSteinbeisser, K., Schwarzkopf, L., Graessel, E., & Seidl, H. (2020). Cost-effectiveness of a non-pharmacological treatment vs. “care as usual” in day care centers for community-dwelling older people with cognitive impairment: Results from the German randomized controlled DeTaMAKS-trial. The European Journal of Health Economics, 21(6), 825–844.eng
dcterms.referencesSung, C. M., Jen, H. J., Liu, D., Kustanti, C. Y., Chu, H., Chen, R., Lin, H. C., Chang, C. Y., & Chou, K. R. (2023a). The effect of cognitive training on domains of attention in older adults with mild cognitive impairment and mild dementia: A meta-analysis of randomised controlled trials. Journal of Global Health, 13, 04078.eng
dcterms.referencesSung, C. M., Lee, T. Y., Chu, H., Liu, D., Lin, H. C., Pien, L. C., Jen, H. J., Lai, Y. J., Kang, X. L., & Chou, K. R. (2023b). Efficacy of multi-domain cognitive function training on cognitive function, working memory, attention, and coordination in older adults with mild cognitive impairment and mild dementia: A one-year prospective randomised controlled trial. Journal of Global Health, 13(250), 04069.eng
dcterms.referencesTan, S. N., & Tan, C. (2021). Vortioxetine improves cognition in mild cognitive impairment. International Clinical Psychopharmacology, 36(6), 279–287.eng
dcterms.referencesWang, P., Yang, T., Peng,W.,Wang, M., Chen, X., Yang, Y., Huang, Y., Jiang, Y.,Wang, F., Sun, S., Ruan, Y., Ding, Y., Yao, Y., &Wang, Y. (2024). Effects of a Multicomponent intervention with cognitive training and lifestyle guidance for older adults at risk of dementia: A randomized controlled trial. Journal of Clinical Psychiatry, 85(2), 23m15112.eng
dcterms.referencesWare, E. B., Higgins Tejera, C., Wang, H., Harris, S., Fisher, J. D., & Bakulski, K. M. (2024). Interplay of education and DNA methylation age on cognitive impairment: Insights from the health and retirement study. GeroScience, 47, 3177–3190.eng
dcterms.referencesWu, J., He, Y., Liang, S., Liu, Z., Huang, J., Tao, J., Chen, L., Chan, C. C. H., & Lee, T. M. C. (2023). Computerized cognitive training enhances episodic memory by down-modulating posterior cingulate-precuneus connectivity in older persons with mild cognitive impairment: A randomized controlled trial. American Journal of Geriatric Psychiatry, 31(10), 820–832.eng
dcterms.referencesXiao, B., Fu, L., Yang, Z., & Yu, G. (2025). Effect of probiotics on cognitive function and cardiovascular risk factors in mild cognitive impairment and Alzheimer’s disease: An umbrella meta-analysis. Journal of Health, Population and Nutrition, 44(1), 109.eng
dcterms.referencesYan, Y., Tian, M., Wang, T., Wang, X., Wang, Y., & Shi, J. (2023). Transcranial magnetic stimulation effects on cognitive enhancement in mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis. Frontiers in Neurology, 14, 1209205.eng
dcterms.referencesZhao, J., Li, H., Lin, R., Xie, M., Wang, Y., & Chen, H. (2021). Effects of creative expression program on the event-related potential and task reaction time of elderly with mild cognitive impairment. International Journal of Nursing Sciences, 8(1), 38–42.eng
oaire.versioninfo:eu-repo/semantics/publishedVersion
sb.programaEspecialización en Neurologíaspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
1.85 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.93 KB
Formato:
Item-specific license agreed upon to submission
Descripción: