The generalized fermat conjecture

dc.contributor.authorGarcía Máynez, Adalberto
dc.contributor.authorGary, Margarita
dc.contributor.authorPimienta Acosta, Adolfo
dc.date.accessioned2019-04-05T16:47:20Z
dc.date.available2019-04-05T16:47:20Z
dc.date.issued2019
dc.description.abstractAbstract. If a; b; c are non-zero integers, we considerer the following problem: for which values of n the line ax + by + cz = 0 may be tangent to the curve xn + yn = zn? We give a partial solution: if n = 5 or if n - 1 is a prime a number, then the answer is the line cannot be tangent to the curve. This problem is strongly related to Fermat' s Last Theorem.eng
dc.identifier.issn01399918
dc.identifier.urihttp://hdl.handle.net/20.500.12442/2878
dc.language.isoengeng
dc.publisherSpringereng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.sourceMathematica Slovacaeng
dc.sourceVol. 69 No. 2 (2019)spa
dc.source.uriDOI: 10.1515/ms-2017-0225spa
dc.titleThe generalized fermat conjectureeng
dc.typearticleeng
dcterms.referencesB. Fine and G. Rosenberger. Classification of all generating pairs of two generator Fuchsian groups. London Math. Soc. Lecture Note Ser. 211, (1995) 205-232.eng
dcterms.referencesD. J. H. Garling. A Course in Galois Theory. Cambridge University Press, 1986.eng
dcterms.referencesS. Lang. Cyclotomic Fields I and II. Graduate Texts in Mathematics, 121, Springer-Verlag, New York, 1990.eng
dcterms.referencesJ. H. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, 151, Springer-Verlag, New York, 1994.eng
dcterms.referencesL. Washington. Introduction to Cyclotomic Fields. Graduate Texts in Mathematics, Springer-Verlag, New York, 1996.eng
dcterms.referencesA. Wiles. Modular elliptic curves and Fermat's Last Theorem. Ann. Math. 141 (1995), 443-551.eng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
264.78 KB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
368 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones