The generalized fermat conjecture
dc.contributor.author | García Máynez, Adalberto | |
dc.contributor.author | Gary, Margarita | |
dc.contributor.author | Pimienta Acosta, Adolfo | |
dc.date.accessioned | 2019-04-05T16:47:20Z | |
dc.date.available | 2019-04-05T16:47:20Z | |
dc.date.issued | 2019 | |
dc.description.abstract | Abstract. If a; b; c are non-zero integers, we considerer the following problem: for which values of n the line ax + by + cz = 0 may be tangent to the curve xn + yn = zn? We give a partial solution: if n = 5 or if n - 1 is a prime a number, then the answer is the line cannot be tangent to the curve. This problem is strongly related to Fermat' s Last Theorem. | eng |
dc.identifier.issn | 01399918 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12442/2878 | |
dc.language.iso | eng | eng |
dc.publisher | Springer | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.source | Mathematica Slovaca | eng |
dc.source | Vol. 69 No. 2 (2019) | spa |
dc.source.uri | DOI: 10.1515/ms-2017-0225 | spa |
dc.title | The generalized fermat conjecture | eng |
dc.type | article | eng |
dcterms.references | B. Fine and G. Rosenberger. Classification of all generating pairs of two generator Fuchsian groups. London Math. Soc. Lecture Note Ser. 211, (1995) 205-232. | eng |
dcterms.references | D. J. H. Garling. A Course in Galois Theory. Cambridge University Press, 1986. | eng |
dcterms.references | S. Lang. Cyclotomic Fields I and II. Graduate Texts in Mathematics, 121, Springer-Verlag, New York, 1990. | eng |
dcterms.references | J. H. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, 151, Springer-Verlag, New York, 1994. | eng |
dcterms.references | L. Washington. Introduction to Cyclotomic Fields. Graduate Texts in Mathematics, Springer-Verlag, New York, 1996. | eng |
dcterms.references | A. Wiles. Modular elliptic curves and Fermat's Last Theorem. Ann. Math. 141 (1995), 443-551. | eng |