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Abstract. If a, b, c are non-zero integers, we considerer the fol-
lowing problem: for which values of n the line ax + by + cz = 0
may be tangent to the curve xn + yn = zn?

We give a partial solution: if n = 5 or if n − 1 is a prime a
number, then the answer is the line cannot be tangent to the curve.
This problem is strongly related to Fermat' s Last Theorem.

1. Introduction

The classical Fermat Conjecture (was proved to be true [6]) states the
impossibility of �nding three integers 6= 0 α, β, γ such that αn+βn = γn,
where n is an integers≥ 3. In geometrical terms, the theorem is equivalent
to say that the Fermat curve xn+yn = zn, where n ≥ 3, contains no points
whose coordinates in the proyective plane over C can be expressed in the
form [λ : µ : ν], where λ, µ, ν are non-zero rational numbers. If F is a �eld
extension of Q, we shall say that a point P in the proyective plane over
C is an F−point if there exist elements λ, µ, ν ∈ F not all zero, such that
P = [λ : µ : ν]. Thus Fermat's Theorem states that the curve xn+yn = zn

contains no Q−points for n ≥ 3. It is well know that the Fermat curves do
not have singular points and hence every point [x0 : y0 : z0] of the curve
yields a unique tangent line xn−10 x+ yn−10 y = zn−10 z. We shall say that a
line L is an F−tangent to the Fermat curve xn + yn = zn if the equation
of L can be expressed in the form λx+ µy = νz, where λ, µ, ν ∈ F not all
zero and L is the tangent at some point of the curve. It is obvious that the
tangent at an F−point of the curve is an F−tangent but the converse is not

2010 Mathematics Subject Classi�cation. Primary 11R04, 11R09, 11R11, 11R58;
Secondary 41A50.

Key words and phrases. Tangent, Fermat curve, Chebyshev polynomials.
The �rst and third author thank to Dr. Francisco González Acuña for several

fruitful conversations about the solution of the conjecture in the title.
The second author was supported by Grupo de Investigación e Innovación en Cien-

cias Básicas, GICNEX..

1



2ADALBERTO GARCÍA-MÁYNEZ, MARGARITA GARY, AND ADOLFO PIMIENTA ACOSTA

true: the line x+ y = z is a Q−tangent of the Fermat curve x7 + y7 = z7

but the points of tangency are not Q−points: in fact the line, x+ y = z
is tangent to the curve at the points (cos π3 + i sin π

3 , cos
π
3 − i sin

π
3 , 1),

(cos π3 −i sin
π
3 , cos

π
3 +i sin

π
3 , 1) and there is no further intersection of the

line with the curve. We can state now the generalized Fermat Conjecture.
Fermat's Last Theorem (FLT), formulated in 1637, states that no three

distinct positive integers α, β and γ can satisfy the equation

αn + βn = γn

if n is an integer greater than 2.
Generalized Fermat Conjecture (GFC). Let n be a natural number ≥ 3

which is not congruent to 1 (mod 6); then the Fermat curve xn+yn = zn

has no Q−tangents.
The main relation between GFC and FLT lies in the imposibility that

Fermat curve xn + yn = zn has no Q−tangents.
In this paper we shall prove the Generalized Fermat Conjecture for

n = 5 and for every integer n ≥ 3 such that n− 1 is a prime number.

2. Preliminary

The terminology of [2], [3], [4] and [5], is used throughout.

Let p be a prime number ≥ 3. We know
[
Q(ζp

1) : Q
]
= p − 1 : in

fact, xp−1 − xp−2 + xp−3 − · · · + 1 is the minimal polynomial of ζp over
Q. Using this fact, we can prove the following result:

Proposition 2.1. Let p be a prime number ≥ 3. Then
[
Q
(
cos πp

)
: Q
]
=

p−1
2 .

Proof. It is easy to prove that Q
(
ζp

)
= Q

(
cos πp , i sin

π
p

)
. So:

p− 1 =
[
Q
(
ζp

)
: Q
]

=
[
Q
(
cos

π

p
, i sin

π

p

)
: Q
]

=
[
Q
(
cos

π

p
, i sin

π

p

)
: Q
(
cos

π

p

)][
Q
(
cos

π

p

)
: Q
]
.

The second degree polynomial x2 + 1 − cos2 πp ∈ Q
(
cos πp

)
[x] has the

number i sin π
p as a root. Since i sin π

p /∈ Q
(
cos πp

)
, this polynomial is

1Let us denote by ζp the primitive pth root of unity given by e
iπ
p .
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irreducible in Q
(
cos πp

)
[x] and, therefore it is precisely the minimal poly-

nomial of i sin π
p over Q

(
cos πp

)
. Therefore:

[
Q
(
cos

π

p
, i sin

π

p

)
: Q
(
cos

π

p

)]
= 2

and, by the tower law, we have

[
Q
(
cos

π

p

)
: Q
]
=
p− 1

2
,

as wanted. �

Remark 2.2. Since Q
(
cos πp + i sin

π
p

)
= Q

(
cos nπp + i sin nπ

p

)
for every

n ∈ {1, 2, . . . , p− 1}, we have
[
Q
(
cos nπp

)
: Q
]
= p−1

2 if n 6≡ 0 (mod p).

The Chebyshev polynomials Sm(x) (m = 0, 1, 2, . . .) (see [1]) are de-
�ned recursively as follows:

S0(x) = 0

S1(x) = 1

Sm(x) = xSm−1(x)− Sm−2(x) for m ≥ 2.

Lemma 2.3. deg(Sm) = m− 1 (m = 1, 2, . . .) and for every m ≥ 1 and

θ ∈ (0, π), Sm(2 cos θ) =
sinmθ

sin θ
.

Proof. The sentence about the degrees is clear from the de�nition. For the

second part, observe that S1(2 cos θ) =
sin θ

sin θ
= 1. Inductively, suppose
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Sr(2 cos θ) =
sin rθ

sin θ
for each r with 1 ≤ r ≤ m. Then:

Sm+1(x) =
sin(m+ 1)θ

sin θ

=
sinmθ cos θ + sin θ cosmθ

sin θ

=
2 sinmθ cos θ − [sinmθ cos θ − sin θ cosmθ]

sin θ

=
2 sinmθ cos θ − sin(m− 1)θ

sin θ

= 2 cos θ · sinmθ
sin θ

− sin(m− 1)θ

sin θ
= 2 cos θSm(2 cos θ)− Sm−1(2 cos θ)

�

Lemma 2.4. Let p be a prime number ≥ 3 and let j, k be non-zero integers

which are not divisible by p. Then the number
sin kjπ

p

sin jπ
p

is rational if only

if k ≡ ±1 (mod p).

Proof. Suppose k 6≡ ±1 (mod p). Let k0 ∈ {2, 3, . . . , p− 2} be such that
k0 ≡ k (mod p). Then

sin k0jπ
p

sin jπ
p

= ±
sin kjπ

p

sin jπ
p

.

If λ =
sin k0jπ

p

sin jπ
p

, then by Lemma 2.3, 2 cos jπp is a root of the polynomial

Sk0(x) − λ. Since sin k0jπ
p = sin (p−k0)jπ

p , the polynomial Sp−k0(x) − λ
has also the number 2 cos jπp as a root. If λ where rational, (Proposition

2.1) would imply.:

k0 − 1 = deg(Sk0(x)− λ) ≥
p− 1

2

and

p− k0 − 1 = deg(Sp−k0(x)− λ) ≥
p− 1

2

Adding these two equations, we would obtain p−2 ≥ p−1, a contradiction.
Hence the number λ has to be irrational. �
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3. Main result

We prove the generalized Fermat conjecture for the special case n = 5
and for every integer n ≥ 3 such that n− 1 is a prime number.

Theorem 3.1 (Generalized Fermat Conjecture). Let λ, µ be non-zero

rational numbers and let n be a natural number such that n− 1 is prime

or n = 5. Then the line L : λx + µy = z is not tangent to the Fermat

curve of degree n.

Proof. Suppose, on the contrary, that L is tangent to C : xn + yn = zn

and let [x0 : y0 : 1] be a point of tangency. We shall prove this point is
rational, contradicting Fermat's theorem. We have then xn−10 = λ and
yn−10 = µ. If we set w = cos π

n−1 + i sin π
n−1 . It is easy to prove that

w0 = 1, w2, . . . , w2n−4 is the complete list roots of unity of order n − 1
and w1, w3, . . . , w2n−3 is the complete list of roots of −1 of order n − 1.
Therefore, there exists two integers j, k ∈ {0, 1, . . . , 2n − 3} such that

x0 = wj |λ|
1

n−1 and y0 = wk|µ|
1

n−1 . Observe that if x0 and y0 are not real
numbers, then we should have j 6= k. Since λx0 + µy0 = 1, we have then
the following equation:

(3.1) wj(λ|λ|
1

n−1 ) + wk(µ|µ|
1

n−1 ) = 1.

With no loss of generality, we may suppose that j ≤ k. We prove �rst
that the numbers x0, y0 are both real numbers, that is, the only possible
values of j, k are 0 or n− 1. Indeed, if k 6= 0, n− 1, then also j 6= 0, n− 1
and we would have a second equation taking conjugates:

(3.2) w−j(λ|λ|
1

n−1 ) + w−k(µ|µ|
1

n−1 ) = 1.

Adding and subtracting (3.1) and (3.2), we would have

cos
πj

n− 1
λ|λ|

1
n−1 + cos

πk

n− 1
µ|µ|

1
n−1 = 1.

sin
πj

n− 1
λ|λ|

1
n−1 + sin

πk

n− 1
µ|µ|

1
n−1 = 0.

The determinant of this system is:

sin
πk

n− 1
cos

πj

n− 1
− sin

πj

n− 1
cos

πk

n− 1
= sin

π(k − j)
n− 1

and it is equal to zero only if k = j or k = j+(n−1). But then wj = ±wk
and equation (3.1) could be written as follows:

wk(±λ|λ|
1

n−1 + µ|µ|
1

n−1 ) = 1
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and wk would be a real number, which a contradiction. Therefore, sin π(k−j)
n−1 6=

0. Applying Cramer's rule, we obtain:

λ|λ|
1

n−1 =
sin πk

n−1

sin π(k−j)
n−1

µ|µ|
1

n−1 = −
sin πj

n−1

sin π(k−j)
n−1

.

If n− 1 is a prime number p ≥ 3, then:

(3.3) λ|λ|
1
p =

sin πk
p

sin π(k−j)
p

; µ|µ|
1
p = −

sin πj
p

sin π(k−j)
p

.

We know [Q(w) : Q] = p− 1. It is obvious that wk + wp−k = 2i sin kπ
p

for each integer k. Therefore, both numbers λ|λ|
1
p and µ|µ|

1
p belong to

Q(w) and, for this reason, the degrees [Q(|λ|
1
p ) : Q] and [Q(|µ|

1
p ) : Q]

are both ≤ p − 1. Since the only possible values of [Q(t
1
p ) : Q], for t

a positive rational, are 1 or p, we conclude that |λ|
1
p and |µ|

1
p are both

rational numbers. The trigonometric quotients in (3.3) are then rational
numbers.

Since p is a prime number, there exist integers s1 and s2 such that:

s1(k − j) ≡ k (mod p)

s2(k − j) ≡ j (mod p)

By Lemma 2.4, we deduce s1, s2 ≡ ±1 (mod p). But then sin πk
p = sin πj

p ,

which, as j 6= k should imply k − j = mp for some positive integer m:
however as k, j ≤ 2n− 3, the only posibility is to have k − j = p which a
contradiction.

If n = 5, then w = cos π4 + i sin π
4 =

√
2
2 (1 + i) and

λ|λ| 14 =
sin πk

4

sin π(k−j)
4

; µ|µ| 14 = −
sin πj

4

sin π(k−j)
4

.

The only possible values of sin πk
4 with 1 ≤ k ≤ 7 are 0,±1,±

√
2
2 . For

example if k = 6 and j = 1, give λ|λ| 14 =
sin 3π

2

sin 5π
4

=
√
2 and µ|µ| 14 =

− sin π
4

sin 5π
4

= 1. If λ > 0 and µ > 0, necessarily j is odd, k is even, k− j > 4,

j < 4, j 6= 3 and k > 4. If λ < 0 and µ < 0, then j, k are odd numbers,
k − j < 4, j < 4 and k > 4. The only possibility is k = 5 and j = 3. But

then |λ| 54 =
√
2
2 = |µ| 54 and λ = − 5

√
1
4 = µ contradicting the rationality

of λ and µ. If λ < 0 and µ > 0, then j is odd, k is even, k − j < 4, k > 4
and j > 4. The only possibility is j = 5 and k = 6. Then |λ| 54 =

√
2

and λ = − 5
√
4, contradicting again the rationality of λ. Finally, if λ > 0



THE GENERALIZED FERMAT CONJECTURE 7

and µ < 0, then j is even, k is odd, k − j < 4, j < 4, k < 4. The only
possibility is j = 2 and |µ| 54 =

√
2 and µ = − 5

√
4, contradicting again the

rationality of µ.
We have proved then that the only possible values of j, k are 0, n− 1.

Hence, x0 = ±|λ|
1

n−1 and y0 = ±|µ|
1

n−1 .
The equation (3.1) may therefore be written as

±λ|λ|
1

n−1 ± µ|µ|
1

n−1 = 1.

Let us say, to �x ideas, that

λ|λ|
1

n−1 + µ|µ|
1

n−1 = 1.

Setting α = µ|µ|
1

n−1 , we deduce α is a common root of the rational
polynomials ϕ(x) = xn−1 − µn−1|µ| and ψ(x) = (1− x)n−1 − λn−1|λ|. If
n−1 is an odd prime number, α will be the only common root of ϕ(x) and
ψ(x), because if we had another common root, this would be of the form

w2kµ|µ|
1

n−1 , with k = 1, . . . , n− 2 and we would have on substituting in
ψ(x), an equation of the form:

wjλ|λ|
1

n−1 + wkµ|µ|
1

n−1 = 1

with j, k 6= 0, n − 1, which we have already proved is impossible. If
n − 1 = 2, the polynomials ϕ(x) and ψ(x) have degree 2 and therefore
they could not have another common root. If n− 1 = 4, then −α cannot
be a root of ψ(x), because in that case (1 − α)4 = (1 + α)4 and this
would imply that α = 0. Reasoning as before, we deduce that wkα, with
k 6= 0, 4, cannot be a root of ψ(x). Therefore, in any situation, x−α must
be the greatest common divisor of ϕ(x) and ψ(x). But ϕ(x) and ψ(x) are
both rational polynomials and so its greatest common divisor must also
be a rational polynomial. We conclude then that α is a rational number,

so also |µ|
1

n−1 must be rational. In similar way, we can prove that |λ|
1

n−1

is rational. But then [x0 : y0 : 1] is a rational solution of xn + yn = zn,
contradicting Fermat's Theorem.

�
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