Machine learning in lupus nephritis: bridging prediction models and clinical decision-making towards personalized nephrology
| datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
| dc.contributor.author | Garcia Bañol, Diego Fernando | |
| dc.contributor.author | Arias Choles, Adrianny Mahelis | |
| dc.contributor.author | Aldana Peréz, Silvia | |
| dc.contributor.author | Aroca Martínez, Gustavo J. | |
| dc.contributor.author | Guido Musso, Carlos | |
| dc.contributor.author | Navarro Quiroz, Roberto | |
| dc.contributor.author | Dominguez Vargas, Alex | |
| dc.contributor.author | Gonzalez Torres, Henry J. | |
| dc.date.accessioned | 2026-01-28T22:12:20Z | |
| dc.date.available | 2026-01-28T22:12:20Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Lupus nephritis (LN) is one of the most severe manifestations of systemic lupus erythematosus (SLE), affecting up to 65% of patients during the disease (1, 2). Its clinical course is heterogeneous, characterized by alternating periods of exacerbation and remission, and influenced by a complex interplay of immunological, endocrine, genetic, and environmental factors (3–5). Renal involvement ranges from subclinical disease to end-stage renal disease (ESRD), in which a generalized pro-inflammatory state accelerates renal function decline and significantly worsens patient survival (6). There is currently no definitive cure for SLE or LN. Since the 1950s, standard treatment has aimed to induce remission, suppress disease activity, reduce symptoms, preserve renal function, and maintain remission (7). Although therapeutic regimens have evolved over time (induction vs. maintenance strategies), they typically combine an immunosuppressant with an intermediate-acting glucocorticoid to prevent persistent inflammation, irreversible renal damage, and progression to ESRD (8). Multiple factors influence LN progression, including dysregulation of autoantibody production, poor adherence to therapy, excessive sun exposure (9), and socioeconomic disadvantages (10). However, these variables alone have limited predictive value for anticipating disease flares or renal deterioration (5). In this regard, machine learning (ML) algorithms offer the ability to incorporate multiple clinical and biological variables simultaneously, detect hidden patterns, and generate predictive models with greater accuracy (2). The application of ML to LN monitoring provides several potential benefits. These include timely interventions to prevent disease progression and complications (11–15), the development of personalized follow-up strategies based on patient-specific characteristics and trajectories (14–17), and the ability to identify high-risk patients who may require closer surveillance. Moreover, ML models can predict the likelihood of flares by analyzing historical and longitudinal data, enabling clinicians to implement preventive measures such as therapy adjustments or lifestyle modifications. | eng |
| dc.format.mimetype | ||
| dc.identifier.citation | Garcia-Bañol DF, Arias-Choles AM, Aldana-Peréz S, Aroca-Martínez GJ, Musso CG, Navarro-Quiroz R, Dominguez-Vargas A and Gonzalez-Torres HJ (2025) Machine learning in lupus nephritis: bridging prediction models and clinical decision-making towards personalized nephrology. Front. Med. 12:1686057. doi: 10.3389/fmed.2025.1686057 | |
| dc.identifier.doi | https://doi.org/10.3389/fmed.2025.1686057 | |
| dc.identifier.issn | 2296-858X (Electrónico) | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12442/17312 | |
| dc.identifier.url | https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2025.1686057/full | |
| dc.language.iso | eng | |
| dc.publisher | Frontiers Media | spa |
| dc.publisher | Ediciones Universidad Simón Bolívar | spa |
| dc.publisher | Facultad de Ciencias de la Salud | spa |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | eng |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.source | Frontiers in Medicine | eng |
| dc.source | Front. Med. | eng |
| dc.source | Vol. 12 Año 2025 | spa |
| dc.subject.keywords | Lupus nephritis | eng |
| dc.subject.keywords | Machine learning | eng |
| dc.subject.keywords | Artificial intelligence | eng |
| dc.subject.keywords | Disease progression | eng |
| dc.subject.keywords | Predictive models | eng |
| dc.subject.keywords | Personalized nephrology | eng |
| dc.title | Machine learning in lupus nephritis: bridging prediction models and clinical decision-making towards personalized nephrology | eng |
| dc.type.driver | info:eu-repo/semantics/other | |
| dc.type.spa | Otros | |
| dcterms.references | Wang D-C, Xu W-D, Wang S-N, Wang X, Leng W, Fu L, et al. Lupus nephritis or not? A simple and clinically friendly machine learning pipeline to help diagnosis of lupus nephritis. Inflamm Res. (2023) 72:1315–24. doi: 10.1007/s00011-023-01755-7 | eng |
| dcterms.references | Chen Y, Huang S, Chen T, Liang D, Yang J, Zeng C, et al. Machine learning for prediction and risk stratification of lupus nephritis renal flare. Am J Nephrol. (2021) 52:152–60. doi: 10.1159/000513566 | eng |
| dcterms.references | Guo H-Q, Wang X-T, Yang X, Huang M-W, Bai J. Risk factors for poor outcomes in adult patients with lip through-and-through wounds. Asian J Surg. (2024) 3:133. doi: 10.1016/j.asjsur.2024.11.133 | eng |
| dcterms.references | Qin X, Xia L, Zhu C, Hu X, Xiao W, Xie X, et al. Noninvasive evaluation of lupus nephritis activity using a Radiomics machine learning model based on ultrasound. J Inflamm Res. (2023) 16:433–41. doi: 10.2147/JIR.S398399 | eng |
| dcterms.references | Guo J, Teymur A, Tang C, Saxena R, Wu T. Advancing point-of-care diagnosis: digitalizing combinatorial biomarker signals for lupus nephritis. Biosensors. (2024) 14:147. doi: 10.3390/bios14030147 | eng |
| dcterms.references | Zheng Z, Zhang X, Ding J, Zhang D, Cui J, Fu X, et al. Deep learning-based artificial intelligence system for automatic assessment of glomerular pathological findings in lupus nephritis. Diagnostics. (2021) 11:1983. doi: 10.3390/diagnostics11111983 | eng |
| dcterms.references | Austin HA, Klippel JH, Balow JE, le Riche NG, Steinberg AD, Plotz PH, et al. Therapy of lupus nephritis. Controlled trial of prednisone and cytotoxic drugs. N Engl J Med. (1986) 314:614–9. doi: 10.1056/NEJM198603063141004 | eng |
| dcterms.references | An Y, Zhang H, Liu Z. Individualizing therapy in lupus nephritis. Kidney Int Rep. (2019) 4:1366–72. doi: 10.1016/j.ekir.2019.08.005 | eng |
| dcterms.references | Chen LY, Shi ZR, Tan GZ, Han YF, Tang ZQ, Wang L. Systemic lupus erythematosus with and without a family history: a Meta-analysis. Lupus. (2018) 27:716–21. doi: 10.1177/0961203317739133 | eng |
| dcterms.references | Barr RG, Seliger S, Appel GB, Zuniga R, D’Agati V, Salmon J, et al. Prognosis in proliferative lupus nephritis: the role of socio-economic status and race/ethnicity. Nephrol Dial Transplant. (2003) 18:2039–46. doi: 10.1093/ndt/gfg345 | eng |
| dcterms.references | Stojanowski J, Konieczny A, Rydzyńska K, Kasenberg I, Mikołajczak A, Gołębiowski T, et al. Artificial neural network - an effective tool for predicting the lupus nephritis outcome. BMC Nephrol. (2022) 23:381. doi: 10.1186/s12882-022-02978-2 | eng |
| dcterms.references | Zhao Y, Smith D, Jorge A. Comparing two machine learning approaches in predicting lupus hospitalization using longitudinal data. Sci Rep. (2022) 12:16424. doi: 10.1038/s41598-022-20845-w | eng |
| dcterms.references | Zhang J, Chen B, Liu J, Chai P, Liu H, Chen Y, et al. Predictive modeling of coinfection in lupus nephritis using multiple machine learning algorithms. Sci Rep. (2024) 14:9242. doi: 10.1038/s41598-024-59717-w | eng |
| dcterms.references | Akhgar A, Sinibaldi D, Zeng L, Farris AB, Cobb J, Battle M, et al. Urinary markers differentially associate with kidney inflammatory activity and chronicity measures in patients with lupus nephritis. Lupus Sci Med. (2023) 10:747. doi: 10.1136/lupus-2022-000747 | eng |
| dcterms.references | Pesce F, Pasculli D, Pasculli G, De Nicola L, Cozzolino M, Granata A, et al. “The disease awareness innovation network” for chronic kidney disease identification in general practice. J Nephrol. (2022) 35:2057–65. doi: 10.1007/s40620-022-01353-6 | eng |
| dcterms.references | Choi MY, Chen I, Clarke AE, Fritzler MJ, Buhler KA, Urowitz M, et al. Machine learning identifies clusters of longitudinal autoantibody profiles predictive of systemic lupus erythematosus disease outcomes. Ann Rheum Dis. (2023) 82:927–36. doi: 10.1136/ard-2022-223808 | eng |
| dcterms.references | Zhan K, Buhler KA, Chen IY, Fritzler MJ, Choi MY. Systemic lupus in the era of machine learning medicine. Lupus Sci. Med. (2024) 11:1140. doi: 10.1136/lupus-2023-001140 | eng |
| dcterms.references | Abuabara-Franco E, Bohórquez-Rivero J, Restom-Arrieta J, Sáenz-López J, Gómez-Franco A, Navarro-Quiróz R. Importancia de Un Modelo de Nefroprevención Adaptado Para Colombia. Rev Colomb Nefrol. (2021) 8:e399. doi: 10.22265/ acnef.8.3.399 | spa |
| dcterms.references | González-Torres HJ, Yosa Reyes J, Montoya Villegas JC. Implementation of statistical analysis in biomedical sciences through an interactive multi-agent assistant based on large language models / Implementación Del Análisis Estadístico En Ciencias Biomédicas Mediante un Asistente Interactivo Multiagente Basado. Cali, Colombia: Universidad del Valle (2025). | eng |
| dcterms.references | Huang S, Chen Y, Song Y, Wu K, Chen T, Zhang Y, et al. Deep learning model to predict lupus nephritis renal flare based on dynamic multivariable time-series data. BMJ Open. (2024) 14:e071821. doi: 10.1136/bmjopen-2023-071821 | eng |
| dcterms.references | Mou L, Lu Y, Wu Z, Pu Z, Huang X, Wang M. Applying 12 machine learning algorithms and non-negative matrix factorization for robust prediction of lupus nephritis. Front Immunol. (2024) 15:1218. doi: 10.3389/fimmu.2024.1391218 | eng |
| dcterms.references | Tang Y, Zhang W, Zhu M, Zheng L, Xie L, Yao Z, et al. Lupus nephritis pathology prediction with clinical indices. Sci Rep. (2018) 8:10231. doi: 10.1038/s41598-018-28611-7 | eng |
| dcterms.references | Lee D-J, Tsai P-H, Chen C-C, Dai Y-H. Incorporating knowledge of diseasedefining hub genes and regulatory network into a machine learning-based model for predicting treatment response in lupus nephritis after the first renal flare. J Transl Med. (2023) 21:76. doi: 10.1186/s12967-023-03931-z | eng |
| dcterms.references | Wang Z, Hu D, Pei G, Zeng R, Yao Y. Identification of driver genes in lupus nephritis based on comprehensive bioinformatics and machine learning. Front Immunol. (2023) 14:1288699. doi: 10.3389/fimmu.2023.1288699 | eng |
| dcterms.references | Tang C, Tan G, Teymur A, Guo J, Haces-Garcia A, Zhu W, et al. A serum biomarker panel and Miniarray detection system for tracking disease activity and flare risk in lupus nephritis. Front Immunol. (2025) 16:1907. doi: 10.3389/fimmu.2025.1541907 | eng |
| dcterms.references | Deng Y, Pacheco JA, Ghosh A, Chung A, Mao C, Smith JC, et al. Natural language processing to identify lupus nephritis phenotype in electronic health records. BMC Med Inform Decis Mak. (2024) 22:348. doi: 10.1186/s12911-024-02420-7 | eng |
| dcterms.references | Li T, Lin S, Guan Z, Zhou Y, Zeng D, Wang Z, et al. A deep learning system for detecting systemic lupus erythematosus from retinal images. Cell Reports Med. (2025) 6:102203. doi: 10.1016/j.xcrm.2025.102203 | eng |
| dcterms.references | Izadi Z, Gianfrancesco M, Anastasiou C, Schmajuk G, Yazdany J. Development and validation of a risk scoring system to identify patients with lupus nephritis in electronic health record data. Lupus Sci Med. (2024) 11:e001170. doi: 10.1136/lupus-2024-001170 | eng |
| dcterms.references | Navarro Quiroz E, Chavez-Estrada V, Macias-Ochoa K, Ayala-Navarro MF, FloresAguilar AS, Morales-Navarrete F, et al. Epigenetic mechanisms and posttranslational modifications in systemic lupus erythematosus. Int J Mol Sci. (2019) 20:5679. doi: 10.3390/ijms20225679 | eng |
| dcterms.references | Navarro-Quiroz E, Pacheco-Lugo L, Lorenzi H, Díaz-Olmos Y, Almendrales L, Rico E, et al. High-throughput sequencing reveals circulating MiRNAs as potential biomarkers of kidney damage in patients with systemic lupus erythematosus. PLoS One. (2016) 11:e0166202. doi: 10.1371/journal.pone.0166202 | eng |
| dcterms.references | Gomathi S., Narayani V. Implementing big data analytics to predict systemic lupus erythematosus. In Proceedings of the 2015 international conference on innovations in information, embedded and communication systems (ICIIECS); India: IEEE, (2015); pp. 1–5. | eng |
| dcterms.references | Agrawal D., Das S., El Abbadi A. Big data and cloud computing. In Proceedings of the proceedings of the 14th international conference on extending database technology; ACM: New York, NY, USA, (2011); pp. 530–533. | eng |
| dcterms.references | Petri M, Orbai A-M, Alarcón GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. (2012) 64:2677–86. doi: 10.1002/art.34473 | eng |
| dcterms.references | Ueda D, Kakinuma T, Fujita S, Kamagata K, Fushimi Y, Ito R, et al. Fairness of artificial intelligence in healthcare: review and recommendations. Jpn J Radiol. (2024) 42:3–15. doi: 10.1007/s11604-023-01474-3 | eng |
| dcterms.references | Yang P, Liu Z, Lu F, Sha Y, Li P, Zheng Q, et al. Machine learning models predicts risk of proliferative lupus nephritis. Front Immunol. (2024) 15:1413569. doi: 10.3389/fimmu.2024.1413569 | eng |
| dcterms.references | Mou L, Chen Z, Tian X, Lai Y, Pu Z, Wang M. Phosphorylation-related genes in lupus nephritis: single-cell and machine learning insights. Genes Dis. (2025) 12:101385. doi: 10.1016/j.gendis.2024.101385 | eng |
| dcterms.references | Mou L, Lu Y, Wu Z, Pu Z, Wang M. Integrating genomics and AI to uncover molecular targets for MRNA vaccine development in lupus nephritis. Front Immunol. (2024) 15:1445. doi: 10.3389/fimmu.2024.1381445 | eng |
| dcterms.references | Hanna MG, Pantanowitz L, Jackson B, Palmer O, Visweswaran S, Pantanowitz J, et al. Ethical and Bias considerations in artificial intelligence/machine learning. Mod Pathol. (2025) 38:100686. doi: 10.1016/j.modpat.2024.100686 | eng |
| dcterms.references | Hoche M, Mineeva O, Rätsch G, Vayena E, Blasimme A. What makes clinical machine learning fair? A practical ethics framework. PLOS Digit Health. (2025) 4:e0000728. doi: 10.1371/journal.pdig.0000728 | eng |
| dcterms.references | Ratti E, Morrison M, Jakab I. Ethical and social considerations of applying artificial intelligence in healthcare—a two-pronged scoping review. BMC Med Ethics. (2025) 26:68. doi: 10.1186/s12910-025-01198-1 | eng |
| dcterms.references | Yu S, Lee S-S, Hwang H. The ethics of using artificial intelligence in medical research. Kosin Med J. (2024) 39:229–37. doi: 10.7180/kmj.24.140 | eng |
| dcterms.references | Abujaber AA, Nashwan AJ. Ethical framework for artificial intelligence in healthcare research: a path to integrity. World J Methodol. (2024) 14:94071. doi: 10.5662/wjm.v14.i3.94071 | eng |
| dcterms.references | Wolf BJ, Spainhour JC, Arthur JM, Janech MG, Petri M, Oates JC. Development of biomarker models to predict outcomes in lupus nephritis. Arthritis Rheumatol. (2016) 68:1955–63. doi: 10.1002/art.39623 | eng |
| dcterms.references | Rojas-Rivera JE, García-Carro C, Ávila AI, Espino M, Espinosa M, FernándezJuárez G, et al. Diagnosis and treatment of lupus nephritis: a summary of the consensus document of the Spanish Group for the Study of glomerular diseases (GLOSEN). Clin Kidney J. (2023) 16:1384–402. doi: 10.1093/ckj/sfad055 | eng |
| dcterms.references | Brisimi TS, Chen R, Mela T, Olshevsky A, Paschalidis IC, Shi W. Federated learning of predictive models from federated electronic health records. Int J Med Inform. (2018) 112:59–67. doi: 10.1016/j.ijmedinf.2018.01.007 | eng |
| dcterms.references | Cheng C, Li B, Li J, Wang Y, Xiao H, Lian X, et al. Multi-stain deep learning prediction model of treatment response in lupus nephritis based on renal histopathology. Kidney Int. (2025) 107:714–27. doi: 10.1016/j.kint.2024.12.007 | eng |
| dcterms.references | Wu D, Xu-Monette ZY, Zhou J, Yang K, Wang X, Fan Y, et al. CAR T-cell therapy in autoimmune diseases: a promising frontier on the horizon. Front Immunol. (2025) 16:878. doi: 10.3389/fimmu.2025.1613878 | eng |
| dcterms.references | Yin C, Xiao W, Hu X, Liu X, Xian H, Su J, et al. Non-invasive prediction of the chronic degree of lupus nephropathy based on ultrasound radiomics. Lupus. (2024) 33:121–128. doi: 10.1177/09612033231223373 | eng |
| oaire.version | info:eu-repo/semantics/publishedVersion | |
| sb.programa | Especialización en Medicina Interna | spa |
| sb.sede | Sede Barranquilla | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- PDF.pdf
- Tamaño:
- 305.23 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

