Machine learning in lupus nephritis: bridging prediction models and clinical decision-making towards personalized nephrology

datacite.rightshttp://purl.org/coar/access_right/c_abf2
dc.contributor.authorGarcia Bañol, Diego Fernando
dc.contributor.authorArias Choles, Adrianny Mahelis
dc.contributor.authorAldana Peréz, Silvia
dc.contributor.authorAroca Martínez, Gustavo J.
dc.contributor.authorGuido Musso, Carlos
dc.contributor.authorNavarro Quiroz, Roberto
dc.contributor.authorDominguez Vargas, Alex
dc.contributor.authorGonzalez Torres, Henry J.
dc.date.accessioned2026-01-28T22:12:20Z
dc.date.available2026-01-28T22:12:20Z
dc.date.issued2025
dc.description.abstractLupus nephritis (LN) is one of the most severe manifestations of systemic lupus erythematosus (SLE), affecting up to 65% of patients during the disease (1, 2). Its clinical course is heterogeneous, characterized by alternating periods of exacerbation and remission, and influenced by a complex interplay of immunological, endocrine, genetic, and environmental factors (3–5). Renal involvement ranges from subclinical disease to end-stage renal disease (ESRD), in which a generalized pro-inflammatory state accelerates renal function decline and significantly worsens patient survival (6). There is currently no definitive cure for SLE or LN. Since the 1950s, standard treatment has aimed to induce remission, suppress disease activity, reduce symptoms, preserve renal function, and maintain remission (7). Although therapeutic regimens have evolved over time (induction vs. maintenance strategies), they typically combine an immunosuppressant with an intermediate-acting glucocorticoid to prevent persistent inflammation, irreversible renal damage, and progression to ESRD (8). Multiple factors influence LN progression, including dysregulation of autoantibody production, poor adherence to therapy, excessive sun exposure (9), and socioeconomic disadvantages (10). However, these variables alone have limited predictive value for anticipating disease flares or renal deterioration (5). In this regard, machine learning (ML) algorithms offer the ability to incorporate multiple clinical and biological variables simultaneously, detect hidden patterns, and generate predictive models with greater accuracy (2). The application of ML to LN monitoring provides several potential benefits. These include timely interventions to prevent disease progression and complications (11–15), the development of personalized follow-up strategies based on patient-specific characteristics and trajectories (14–17), and the ability to identify high-risk patients who may require closer surveillance. Moreover, ML models can predict the likelihood of flares by analyzing historical and longitudinal data, enabling clinicians to implement preventive measures such as therapy adjustments or lifestyle modifications.eng
dc.format.mimetypepdf
dc.identifier.citationGarcia-Bañol DF, Arias-Choles AM, Aldana-Peréz S, Aroca-Martínez GJ, Musso CG, Navarro-Quiroz R, Dominguez-Vargas A and Gonzalez-Torres HJ (2025) Machine learning in lupus nephritis: bridging prediction models and clinical decision-making towards personalized nephrology. Front. Med. 12:1686057. doi: 10.3389/fmed.2025.1686057
dc.identifier.doihttps://doi.org/10.3389/fmed.2025.1686057
dc.identifier.issn2296-858X  (Electrónico)
dc.identifier.urihttps://hdl.handle.net/20.500.12442/17312
dc.identifier.urlhttps://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2025.1686057/full
dc.language.isoeng
dc.publisherFrontiers Mediaspa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ciencias de la Saludspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationaleng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceFrontiers in Medicineeng
dc.sourceFront. Med.eng
dc.sourceVol. 12 Año  2025spa
dc.subject.keywordsLupus nephritiseng
dc.subject.keywordsMachine learningeng
dc.subject.keywordsArtificial intelligenceeng
dc.subject.keywordsDisease progressioneng
dc.subject.keywordsPredictive modelseng
dc.subject.keywordsPersonalized nephrologyeng
dc.titleMachine learning in lupus nephritis: bridging prediction models and clinical decision-making towards personalized nephrologyeng
dc.type.driverinfo:eu-repo/semantics/other
dc.type.spaOtros
dcterms.referencesWang D-C, Xu W-D, Wang S-N, Wang X, Leng W, Fu L, et al. Lupus nephritis or not? A simple and clinically friendly machine learning pipeline to help diagnosis of lupus nephritis. Inflamm Res. (2023) 72:1315–24. doi: 10.1007/s00011-023-01755-7eng
dcterms.referencesChen Y, Huang S, Chen T, Liang D, Yang J, Zeng C, et al. Machine learning for prediction and risk stratification of lupus nephritis renal flare. Am J Nephrol. (2021) 52:152–60. doi: 10.1159/000513566eng
dcterms.referencesGuo H-Q, Wang X-T, Yang X, Huang M-W, Bai J. Risk factors for poor outcomes in adult patients with lip through-and-through wounds. Asian J Surg. (2024) 3:133. doi: 10.1016/j.asjsur.2024.11.133eng
dcterms.referencesQin X, Xia L, Zhu C, Hu X, Xiao W, Xie X, et al. Noninvasive evaluation of lupus nephritis activity using a Radiomics machine learning model based on ultrasound. J Inflamm Res. (2023) 16:433–41. doi: 10.2147/JIR.S398399eng
dcterms.referencesGuo J, Teymur A, Tang C, Saxena R, Wu T. Advancing point-of-care diagnosis: digitalizing combinatorial biomarker signals for lupus nephritis. Biosensors. (2024) 14:147. doi: 10.3390/bios14030147eng
dcterms.referencesZheng Z, Zhang X, Ding J, Zhang D, Cui J, Fu X, et al. Deep learning-based artificial intelligence system for automatic assessment of glomerular pathological findings in lupus nephritis. Diagnostics. (2021) 11:1983. doi: 10.3390/diagnostics11111983eng
dcterms.referencesAustin HA, Klippel JH, Balow JE, le Riche NG, Steinberg AD, Plotz PH, et al. Therapy of lupus nephritis. Controlled trial of prednisone and cytotoxic drugs. N Engl J Med. (1986) 314:614–9. doi: 10.1056/NEJM198603063141004eng
dcterms.referencesAn Y, Zhang H, Liu Z. Individualizing therapy in lupus nephritis. Kidney Int Rep. (2019) 4:1366–72. doi: 10.1016/j.ekir.2019.08.005eng
dcterms.referencesChen LY, Shi ZR, Tan GZ, Han YF, Tang ZQ, Wang L. Systemic lupus erythematosus with and without a family history: a Meta-analysis. Lupus. (2018) 27:716–21. doi: 10.1177/0961203317739133eng
dcterms.referencesBarr RG, Seliger S, Appel GB, Zuniga R, D’Agati V, Salmon J, et al. Prognosis in proliferative lupus nephritis: the role of socio-economic status and race/ethnicity. Nephrol Dial Transplant. (2003) 18:2039–46. doi: 10.1093/ndt/gfg345eng
dcterms.referencesStojanowski J, Konieczny A, Rydzyńska K, Kasenberg I, Mikołajczak A, Gołębiowski T, et al. Artificial neural network - an effective tool for predicting the lupus nephritis outcome. BMC Nephrol. (2022) 23:381. doi: 10.1186/s12882-022-02978-2eng
dcterms.referencesZhao Y, Smith D, Jorge A. Comparing two machine learning approaches in predicting lupus hospitalization using longitudinal data. Sci Rep. (2022) 12:16424. doi: 10.1038/s41598-022-20845-weng
dcterms.referencesZhang J, Chen B, Liu J, Chai P, Liu H, Chen Y, et al. Predictive modeling of coinfection in lupus nephritis using multiple machine learning algorithms. Sci Rep. (2024) 14:9242. doi: 10.1038/s41598-024-59717-weng
dcterms.referencesAkhgar A, Sinibaldi D, Zeng L, Farris AB, Cobb J, Battle M, et al. Urinary markers differentially associate with kidney inflammatory activity and chronicity measures in patients with lupus nephritis. Lupus Sci Med. (2023) 10:747. doi: 10.1136/lupus-2022-000747eng
dcterms.referencesPesce F, Pasculli D, Pasculli G, De Nicola L, Cozzolino M, Granata A, et al. “The disease awareness innovation network” for chronic kidney disease identification in general practice. J Nephrol. (2022) 35:2057–65. doi: 10.1007/s40620-022-01353-6eng
dcterms.referencesChoi MY, Chen I, Clarke AE, Fritzler MJ, Buhler KA, Urowitz M, et al. Machine learning identifies clusters of longitudinal autoantibody profiles predictive of systemic lupus erythematosus disease outcomes. Ann Rheum Dis. (2023) 82:927–36. doi: 10.1136/ard-2022-223808eng
dcterms.referencesZhan K, Buhler KA, Chen IY, Fritzler MJ, Choi MY. Systemic lupus in the era of machine learning medicine. Lupus Sci. Med. (2024) 11:1140. doi: 10.1136/lupus-2023-001140eng
dcterms.referencesAbuabara-Franco E, Bohórquez-Rivero J, Restom-Arrieta J, Sáenz-López J, Gómez-Franco A, Navarro-Quiróz R. Importancia de Un Modelo de Nefroprevención Adaptado Para Colombia. Rev Colomb Nefrol. (2021) 8:e399. doi: 10.22265/ acnef.8.3.399spa
dcterms.referencesGonzález-Torres HJ, Yosa Reyes J, Montoya Villegas JC. Implementation of statistical analysis in biomedical sciences through an interactive multi-agent assistant based on large language models / Implementación Del Análisis Estadístico En Ciencias Biomédicas Mediante un Asistente Interactivo Multiagente Basado. Cali, Colombia: Universidad del Valle (2025).eng
dcterms.referencesHuang S, Chen Y, Song Y, Wu K, Chen T, Zhang Y, et al. Deep learning model to predict lupus nephritis renal flare based on dynamic multivariable time-series data. BMJ Open. (2024) 14:e071821. doi: 10.1136/bmjopen-2023-071821eng
dcterms.referencesMou L, Lu Y, Wu Z, Pu Z, Huang X, Wang M. Applying 12 machine learning algorithms and non-negative matrix factorization for robust prediction of lupus nephritis. Front Immunol. (2024) 15:1218. doi: 10.3389/fimmu.2024.1391218eng
dcterms.referencesTang Y, Zhang W, Zhu M, Zheng L, Xie L, Yao Z, et al. Lupus nephritis pathology prediction with clinical indices. Sci Rep. (2018) 8:10231. doi: 10.1038/s41598-018-28611-7eng
dcterms.referencesLee D-J, Tsai P-H, Chen C-C, Dai Y-H. Incorporating knowledge of diseasedefining hub genes and regulatory network into a machine learning-based model for predicting treatment response in lupus nephritis after the first renal flare. J Transl Med. (2023) 21:76. doi: 10.1186/s12967-023-03931-zeng
dcterms.referencesWang Z, Hu D, Pei G, Zeng R, Yao Y. Identification of driver genes in lupus nephritis based on comprehensive bioinformatics and machine learning. Front Immunol. (2023) 14:1288699. doi: 10.3389/fimmu.2023.1288699eng
dcterms.referencesTang C, Tan G, Teymur A, Guo J, Haces-Garcia A, Zhu W, et al. A serum biomarker panel and Miniarray detection system for tracking disease activity and flare risk in lupus nephritis. Front Immunol. (2025) 16:1907. doi: 10.3389/fimmu.2025.1541907eng
dcterms.referencesDeng Y, Pacheco JA, Ghosh A, Chung A, Mao C, Smith JC, et al. Natural language processing to identify lupus nephritis phenotype in electronic health records. BMC Med Inform Decis Mak. (2024) 22:348. doi: 10.1186/s12911-024-02420-7eng
dcterms.referencesLi T, Lin S, Guan Z, Zhou Y, Zeng D, Wang Z, et al. A deep learning system for detecting systemic lupus erythematosus from retinal images. Cell Reports Med. (2025) 6:102203. doi: 10.1016/j.xcrm.2025.102203eng
dcterms.referencesIzadi Z, Gianfrancesco M, Anastasiou C, Schmajuk G, Yazdany J. Development and validation of a risk scoring system to identify patients with lupus nephritis in electronic health record data. Lupus Sci Med. (2024) 11:e001170. doi: 10.1136/lupus-2024-001170eng
dcterms.referencesNavarro Quiroz E, Chavez-Estrada V, Macias-Ochoa K, Ayala-Navarro MF, FloresAguilar AS, Morales-Navarrete F, et al. Epigenetic mechanisms and posttranslational modifications in systemic lupus erythematosus. Int J Mol Sci. (2019) 20:5679. doi: 10.3390/ijms20225679eng
dcterms.referencesNavarro-Quiroz E, Pacheco-Lugo L, Lorenzi H, Díaz-Olmos Y, Almendrales L, Rico E, et al. High-throughput sequencing reveals circulating MiRNAs as potential biomarkers of kidney damage in patients with systemic lupus erythematosus. PLoS One. (2016) 11:e0166202. doi: 10.1371/journal.pone.0166202eng
dcterms.referencesGomathi S., Narayani V. Implementing big data analytics to predict systemic lupus erythematosus. In Proceedings of the 2015 international conference on innovations in information, embedded and communication systems (ICIIECS); India: IEEE, (2015); pp. 1–5.eng
dcterms.referencesAgrawal D., Das S., El Abbadi A. Big data and cloud computing. In Proceedings of the proceedings of the 14th international conference on extending database technology; ACM: New York, NY, USA, (2011); pp. 530–533.eng
dcterms.referencesPetri M, Orbai A-M, Alarcón GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. (2012) 64:2677–86. doi: 10.1002/art.34473eng
dcterms.referencesUeda D, Kakinuma T, Fujita S, Kamagata K, Fushimi Y, Ito R, et al. Fairness of artificial intelligence in healthcare: review and recommendations. Jpn J Radiol. (2024) 42:3–15. doi: 10.1007/s11604-023-01474-3eng
dcterms.referencesYang P, Liu Z, Lu F, Sha Y, Li P, Zheng Q, et al. Machine learning models predicts risk of proliferative lupus nephritis. Front Immunol. (2024) 15:1413569. doi: 10.3389/fimmu.2024.1413569eng
dcterms.referencesMou L, Chen Z, Tian X, Lai Y, Pu Z, Wang M. Phosphorylation-related genes in lupus nephritis: single-cell and machine learning insights. Genes Dis. (2025) 12:101385. doi: 10.1016/j.gendis.2024.101385eng
dcterms.referencesMou L, Lu Y, Wu Z, Pu Z, Wang M. Integrating genomics and AI to uncover molecular targets for MRNA vaccine development in lupus nephritis. Front Immunol. (2024) 15:1445. doi: 10.3389/fimmu.2024.1381445eng
dcterms.referencesHanna MG, Pantanowitz L, Jackson B, Palmer O, Visweswaran S, Pantanowitz J, et al. Ethical and Bias considerations in artificial intelligence/machine learning. Mod Pathol. (2025) 38:100686. doi: 10.1016/j.modpat.2024.100686eng
dcterms.referencesHoche M, Mineeva O, Rätsch G, Vayena E, Blasimme A. What makes clinical machine learning fair? A practical ethics framework. PLOS Digit Health. (2025) 4:e0000728. doi: 10.1371/journal.pdig.0000728eng
dcterms.referencesRatti E, Morrison M, Jakab I. Ethical and social considerations of applying artificial intelligence in healthcare—a two-pronged scoping review. BMC Med Ethics. (2025) 26:68. doi: 10.1186/s12910-025-01198-1eng
dcterms.referencesYu S, Lee S-S, Hwang H. The ethics of using artificial intelligence in medical research. Kosin Med J. (2024) 39:229–37. doi: 10.7180/kmj.24.140eng
dcterms.referencesAbujaber AA, Nashwan AJ. Ethical framework for artificial intelligence in healthcare research: a path to integrity. World J Methodol. (2024) 14:94071. doi: 10.5662/wjm.v14.i3.94071eng
dcterms.referencesWolf BJ, Spainhour JC, Arthur JM, Janech MG, Petri M, Oates JC. Development of biomarker models to predict outcomes in lupus nephritis. Arthritis Rheumatol. (2016) 68:1955–63. doi: 10.1002/art.39623eng
dcterms.referencesRojas-Rivera JE, García-Carro C, Ávila AI, Espino M, Espinosa M, FernándezJuárez G, et al. Diagnosis and treatment of lupus nephritis: a summary of the consensus document of the Spanish Group for the Study of glomerular diseases (GLOSEN). Clin Kidney J. (2023) 16:1384–402. doi: 10.1093/ckj/sfad055eng
dcterms.referencesBrisimi TS, Chen R, Mela T, Olshevsky A, Paschalidis IC, Shi W. Federated learning of predictive models from federated electronic health records. Int J Med Inform. (2018) 112:59–67. doi: 10.1016/j.ijmedinf.2018.01.007eng
dcterms.referencesCheng C, Li B, Li J, Wang Y, Xiao H, Lian X, et al. Multi-stain deep learning prediction model of treatment response in lupus nephritis based on renal histopathology. Kidney Int. (2025) 107:714–27. doi: 10.1016/j.kint.2024.12.007eng
dcterms.referencesWu D, Xu-Monette ZY, Zhou J, Yang K, Wang X, Fan Y, et al. CAR T-cell therapy in autoimmune diseases: a promising frontier on the horizon. Front Immunol. (2025) 16:878. doi: 10.3389/fimmu.2025.1613878eng
dcterms.referencesYin C, Xiao W, Hu X, Liu X, Xian H, Su J, et al. Non-invasive prediction of the chronic degree of lupus nephropathy based on ultrasound radiomics. Lupus. (2024) 33:121–128. doi: 10.1177/09612033231223373eng
oaire.versioninfo:eu-repo/semantics/publishedVersion
sb.programaEspecialización en Medicina Internaspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
305.23 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.93 KB
Formato:
Item-specific license agreed upon to submission
Descripción: