Limitaciones técnicas que obstaculizan la eficiencia y aplicabilidad de la Bioimpresión 3D en la fabricación de órganos y tejidos
Cargando...
Fecha
2024
Autores
Fernández Nieto, Valeria
Palmera Olmos, Daniel Enrique
Peña Suárez, Dannia Gabriela
Tovar Jiménez, Anderson
Título de la revista
ISSN de la revista
Título del volumen
Editor
Ediciones Universidad Simón Bolívar
Facultad de Ingenierías
Facultad de Ingenierías
Resumen
La creciente demanda de trasplantes de órganos en todo el mundo debido a factores como el deterioro de la salud por estilos de vida poco saludables y el aumento de enfermedades como la diabetes y las hepáticas ha creado una crisis en la disponibilidad de órganos. En Colombia miles de pacientes están en lista de espera para trasplantes, especialmente de riñón. Para abordar esta crisis, la tecnología de bioimpresión 3D ha surgido como una solución prometedora, destacando por su capacidad de personalización, al crear tejidos y órganos a medida, reduciendo el riesgo de rechazo y mejorando la compatibilidad. Además, la bioimpresión 3D alivia la escasez de órganos al producirlos in vitro, minimiza los rechazos al utilizar células del propio paciente, impulsa la investigación en medicina regenerativa, permite una producción más rápida que la espera de donantes adecuados y tiene el potencial de reducir los costos a largo plazo al disminuir la necesidad de inmunosupresores y prolongar la vida útil de los órganos impresos. Esta implica la impresión de tejidos y órganos utilizando biotintas que contienen células, biomateriales y factores de crecimiento, permitiendo la creación de estructuras morfológicamente similares a órganos y tejidos humanos. Sin embargo, aún se evidencian varios desafíos técnicos, como la resolución y velocidad de impresión, la necesidad de biotintas especializadas y la vascularización de los órganos impresos. A pesar de la investigación teórica prometedora y resultados alentadores a escala de laboratorio, la mayoría de los desarrollos tecnológicos no han alcanzado una etapa de maduración tecnológica para su llegada al mercado, lo que plantea preocupaciones sobre la eficacia de los órganos y tejidos bioimpresos. Este trabajo analiza las limitaciones técnicas en la bioimpresión 3D y proporciona un marco de referencia que incluye la evolución desde la impresión 3D convencional, el proceso general de bioimpresión, biomateriales, biotintas y técnicas de bioimpresión actuales. También se exploran las aplicaciones actuales de la bioimpresión 3D en la investigación biomédica, como la creación de modelos de enfermedades, el desarrollo de tratamientos personalizados y la reducción del uso de modelos animales, haciendo especial énfasis en la generación de reemplazos de piel y riñón. Finalmente, se presentan los retos en la bioimpresión 3D, que incluyen la estandarización y validación, requisitos mecánicos y de densidad celular, costos asociados y la necesidad de abordar aspectos regulatorios y de seguridad antes de la implantación en humanos.
The increasing demand for organ transplants worldwide, driven by factors such as deteriorating health due to unhealthy lifestyles and the rising prevalence of diseases like diabetes and liver conditions, has led to a crisis in organ availability. In Colombia, thousands of patients are on waiting lists for transplants, particularly for kidneys. To address this crisis, 3D bioprinting technology has emerged as a promising solution, notable for its customization capabilities in creating tailor-made tissues and organs, thereby reducing the risk of rejection and improving compatibility. Additionally, 3D bioprinting alleviates organ shortages by producing them in vitro, minimizes rejections by employing the patient's own cells, propels research in regenerative medicine, enables faster production than waiting for suitable donors, and has the potential to reduce long-term costs by decreasing the need for immunosuppressants and extending the lifespan of printed organs. This involves printing tissues and organs using bioinks containing cells, biomaterials, and growth factors, allowing for the creation of structures morphologically similar to human organs and tissues. However, several technical challenges remain evident, including printing resolution and speed, the need for specialized bioinks, and the vascularization of printed organs. Despite promising theoretical research and encouraging laboratory-scale results, most technological developments have not reached a stage of technological maturity for market entry, raising concerns about the efficacy of bioprinted organs and tissues. This paper analyzes the technical limitations in 3D bioprinting and provides a framework that encompasses the evolution from conventional 3D printing, the general bio printing process, biomaterials, bioinks, and current bioprinting techniques. Current applications of 3D bioprinting in biomedical research are also explored, such as disease modeling, the development of personalized treatments, and the reduction of animal models usage, with special emphasis on skin and kidney replacements. Finally, challenges in 3D bioprinting are presented, including standardization and validation, mechanical and cell density requirements, associated costs, and the need to address regulatory and safety aspects before implementation in humans.
The increasing demand for organ transplants worldwide, driven by factors such as deteriorating health due to unhealthy lifestyles and the rising prevalence of diseases like diabetes and liver conditions, has led to a crisis in organ availability. In Colombia, thousands of patients are on waiting lists for transplants, particularly for kidneys. To address this crisis, 3D bioprinting technology has emerged as a promising solution, notable for its customization capabilities in creating tailor-made tissues and organs, thereby reducing the risk of rejection and improving compatibility. Additionally, 3D bioprinting alleviates organ shortages by producing them in vitro, minimizes rejections by employing the patient's own cells, propels research in regenerative medicine, enables faster production than waiting for suitable donors, and has the potential to reduce long-term costs by decreasing the need for immunosuppressants and extending the lifespan of printed organs. This involves printing tissues and organs using bioinks containing cells, biomaterials, and growth factors, allowing for the creation of structures morphologically similar to human organs and tissues. However, several technical challenges remain evident, including printing resolution and speed, the need for specialized bioinks, and the vascularization of printed organs. Despite promising theoretical research and encouraging laboratory-scale results, most technological developments have not reached a stage of technological maturity for market entry, raising concerns about the efficacy of bioprinted organs and tissues. This paper analyzes the technical limitations in 3D bioprinting and provides a framework that encompasses the evolution from conventional 3D printing, the general bio printing process, biomaterials, bioinks, and current bioprinting techniques. Current applications of 3D bioprinting in biomedical research are also explored, such as disease modeling, the development of personalized treatments, and the reduction of animal models usage, with special emphasis on skin and kidney replacements. Finally, challenges in 3D bioprinting are presented, including standardization and validation, mechanical and cell density requirements, associated costs, and the need to address regulatory and safety aspects before implementation in humans.
Descripción
Palabras clave
Bioimpresión de órganos, Bioimpresión de tejidos, Medicina regenerativa, Biotintas, Biomateriales, Limitaciones