Características clínicas y evaluación de la expresión proteica de la disferlina en los pacientes con fenotipo clínico de disferlinopatías que presentan las nuevas variantes c.251C>A (p.Ala84Asp) y 4491G>T (p.Lys1497Asn) en el gen DYSF identificadas en familias de Antioquía – Colombia
datacite.rights | http://purl.org/coar/access_right/c_16ec | spa |
dc.contributor.advisor | Trindade, Cristiano | |
dc.contributor.advisor | Paradas López, Carmen | |
dc.contributor.author | Villarreal Pérez, Liliana María | |
dc.date.accessioned | 2023-12-14T13:50:50Z | |
dc.date.available | 2023-12-14T13:50:50Z | |
dc.date.issued | 2023 | |
dc.description.abstract | En las disferlinopatías, un subgrupo de distrofias musculares, se observa un defecto en la proteína disferlina por mutaciones en el gen DYSF. El diagnóstico se basa en la detección de dos variantes patogénicas en homocigosis o heterocigosis. Se describen las características clínicas y expresión proteica mediante inmunohistoquímica en neutrófilos, en un grupo de pacientes antioqueños con fenotipo clínico de disferlinopatías, con las dos variantes nuevas: c.251C>A p.Ala84Asp) y 4491G>T (p.Lys1497Asn). Se incluyeron 16 pacientes (11 familias), con media de edad de inicio de 25,44 (±11,413), con media de evolución de 20,31 años (±10,855), media de tiempo hasta el diagnóstico de 18,13 años (10,513). Los fenotipos de inicio más frecuentes fueron miopatía de Miyoshi (37.5%) y fenotipo PD (37.5%). El 75% de casos (n:12) aún deambulantes, auque la gran mayoría con algún tipo de ayuda de marcha. Se realizó la determinación de la expresión de disferlina en neutrófilos de extendido de sangre periférica, mediante la cual se encontró disminución o ausencia de la expresión proteica neutrófilos en todos los sujetos evaluados excepto en un caso (en el que previamente se demostró ausencia en biopsia de músculo. Está técnica muestra su utilidad como una prueba de fácil acceso y bajo costo para la evaluación y confirmación de disferlinopatías. Las nuevas variantes estudiadas: c.251C>A p.Ala84Asp) y 4491G>T (p.Lys1497Asn) en el gen DYSF implican cada una un cambio de aminoácidos que conlleva a alteración de las diferentes propiedades físico – químicas de la proteína. Este estudio representa la primera cohorte de pacientes con disferlinopatías en población colombiana y describe dos nuevas variantes en el gen Dysf. | spa |
dc.description.abstract | In dysferlinopathies, a subgroup of muscular dystrophies, a defect in the dysferlin protein is observed by mutations in the DYSF gene. The diagnosis is based on the detection of two pathogenic variants in homozygosis or heterozygosis. Our study describes clinical characteristics, as well as protein expression by immunohistochemistry in neutrophils from patients with clinical dysferlinopathy phenotypes in Antioquia, Colombia, with two new variants: 251C>T (p.Ala84Asp) and 4491G>T (p.Lys1497Asn). We included 16 patients (11 families), with mean age of onset of 25.44 (± 11.413), with mean progression of 20.31 years (± 10.855), mean time to diagnosis of 18.13 years (10.513). The most common initial phenotypes were Miyoshi myopathy (37.5%) and PD phenotype (37.5%). 75% of cases (n: 12) are still with preserved ambulation although most of these require some kind of walking aid. Dysferlin expression was observed in neutrophils of peripheral blood films by enhanced immunohistochemical methods; decreased or absent neutrophil protein expression was found in all of the subjects evaluated except one (which previously showed absence in muscle biopsy). This technique shows usefulness as an easily accessible and inexpensive test for the evaluation and confirmation of dysferlinopathies. The new variants studied in the DYSF gene each involve a change of amino acids that leads to alteration of the different physical - chemical properties of the protein. This study represents the first cohort of patients with dysferlinopathies in the Colombian population and describes two novel variants in the Dysf gene. | eng |
dc.format.mimetype | spa | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/13652 | |
dc.language.iso | spa | spa |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias Básicas y Biomédicas | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Distrofia muscular | spa |
dc.subject | Disferlina | spa |
dc.subject | Disferlinopatía | spa |
dc.subject | LGMD | spa |
dc.subject | Miopatía de Miyoshi | spa |
dc.subject | Inmunohistoquímica en sangre periférica | spa |
dc.subject | Técnica expresión de disferlina | spa |
dc.subject | Muscular dystrophy | eng |
dc.subject | Dysferlin | eng |
dc.subject | Dysferlinopathy | eng |
dc.subject | Miyoshi myopathy | eng |
dc.subject | Inmunohistochemistry in blood film | eng |
dc.subject | Dysferlin expression technique | eng |
dc.title | Características clínicas y evaluación de la expresión proteica de la disferlina en los pacientes con fenotipo clínico de disferlinopatías que presentan las nuevas variantes c.251C>A (p.Ala84Asp) y 4491G>T (p.Lys1497Asn) en el gen DYSF identificadas en familias de Antioquía – Colombia | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.spa | Trabajo de grado máster | spa |
dcterms.references | RANM Real Academia Nacional de Medicina. Diccionario de términos médicos versión electrónica de acceso libre. España. Editorial Médica Panamericana. 2013. Versión digital. https://dtme.ranm.es/index.aspx | spa |
dcterms.references | Manzur AY, Muntoni F. Diagnosis and new treatments in muscular dystrophies. J Neurol Neurosurg Psychiatry. 2009;80(7):706-714. doi:10.1136/jnnp.2008.158329 | spa |
dcterms.references | Gupta S, Kim SM, Wang Y, Dinasarapu AR, Subramaniam S. Statistical insights into major human muscular diseases. Hum Mol Genet. 2014;23(14):3772-3778. doi:10.1093/hmg/ddu090 | eng |
dcterms.references | Zaganas I, Mastorodemos V, Spilioti M, et al. Genetic cause of heterogeneous inherited myopathies in a cohort of Greek patients. Mol Genet Metab Rep. 2020; 25:100682. Published 2020 Nov 30. doi:10.1016/j.ymgmr.2020.100682 | eng |
dcterms.references | Narayanaswami P, Weiss M, Selcen D, et al. Evidence-based guideline summary: diagnosis and treatment of limb-girdle and distal dystrophies: report of the guideline development subcommittee of the American Academy of Neurology and the practice issues review panel of the American Association of Neuromuscular & Electrodiagnostic Medicine. Neurology. 2014;83(16):1453-1463. doi:10.1212/WNL.0000000000000892 | eng |
dcterms.references | Khadilkar SV, Patel BA, Lalkaka JA. Making sense of the clinical spectrum of limb girdle muscular dystrophies. Pract Neurol. 2018;18(3):201-210. doi:10.1136/practneurol-2017-001799 | eng |
dcterms.references | Straub V, Murphy A, Udd B; LGMD workshop study group. 229th ENMC international workshop: Limb girdle muscular dystrophies - Nomenclature and reformed classification Naarden, the Netherlands, 17-19 March 2017. Neuromuscul Disord. 2018;28(8):702-710. doi:10.1016/j.nmd.2018.05.007 | eng |
dcterms.references | Murphy AP, Straub V. The Classification, Natural History and Treatment of the Limb Girdle Muscular Dystrophies. J Neuromuscul Dis. 2015;2(s2):S7-S19. doi:10.3233/JND-150105 | eng |
dcterms.references | Angelini C, Giaretta L, Marozzo R. An update on diagnostic options and considerations in limb-girdle dystrophies. Expert Rev Neurother. 2018;18(9):693-703. doi:10.1080/14737175.2018.1508997 | eng |
dcterms.references | Angelini C. LGMD. Identification, description and classification. Acta Myol. 2020;39(4):207-217. Published 2020 Dec 1. doi:10.36185/2532-1900-024 | eng |
dcterms.references | Georganopoulou DG, Moisiadis VG, Malik FA, et al. A Journey with LGMD: From Protein Abnormalities to Patient Impact. Protein J. 2021;40(4):466-488. doi:10.1007/s10930-021-10006-9 | eng |
dcterms.references | Magri F, Nigro V, Angelini C, et al. The italian limb girdle muscular dystrophy registry: Relative frequency, clinical features, and differential diagnosis. Muscle Nerve. 2017;55(1):55-68. doi:10.1002/mus.25192 | eng |
dcterms.references | Taghizadeh E, Rezaee M, Barreto GE, Sahebkar A. Prevalence, pathological mechanisms, and genetic basis of limb-girdle muscular dystrophies: A review. J Cell Physiol. 2019;234(6):7874-7884. doi:10.1002/jcp.27907 | eng |
dcterms.references | Wicklund MP. The Limb-Girdle Muscular Dystrophies. Continuum (Minneap Minn). 2019;25(6):1599-1618. doi:10.1212/CON.0000000000000809 | eng |
dcterms.references | Mah JK, Korngut L, Fiest KM, et al. A Systematic Review and Meta-analysis on the Epidemiology of the Muscular Dystrophies. Can J Neurol Sci. 2016;43(1):163-177. doi:10.1017/cjn.2015.311 | eng |
dcterms.references | Theadom A, Rodrigues M, Roxburgh R, et al. Prevalence of muscular dystrophies: a systematic literature review. Neuroepidemiology. 2014;43(3-4):259-268. doi:10.1159/000369343 | eng |
dcterms.references | Mahmood OA, Jiang XM. Limb-girdle muscular dystrophies: where next after six decades from the first proposal (Review). Mol Med Rep. 2014;9(5):1515-1532. doi:10.3892/mmr.2014.2048 | eng |
dcterms.references | Izumi R, Takahashi T, Suzuki N, Niihori T, Ono H, Nakamura N, Katada S, Kato M, Warita H, Tateyama M, Aoki Y, Aoki M. The genetic profile of dysferlinopathy in a cohort of 209 cases: Genotype-phenotype relationship and a hotspot on the inner DysF domain. Hum Mutat. 2020 Sep; 41(9):1540-1554. doi: 10.1002/humu.24036. Epub 2020 Jul 5. PMID: 32400077 | eng |
dcterms.references | Amato AA, Brown RH Jr. Dysferlinopathies. Handb Clin Neurol. 2011; 101:111-118. doi:10.1016/B978-0-08-045031-5.00007-4 | eng |
dcterms.references | Fanin M, Angelini C. Progress and challenges in diagnosis of dysferlinopathy. Muscle Nerve. 2016;54(5):821-835. doi:10.1002/mus.25367 | eng |
dcterms.references | Cerino M, González-Hormazábal P, Abaji M, et al. Genetic Profile of Patients with Limb-Girdle Muscle Weakness in the Chilean Population. Genes (Basel). 2022; 13(6):1076. Published 2022 Jun 16. doi:10.3390/genes13061076 | eng |
dcterms.references | Bevilacqua JA, Guecaimburu Ehuletche MDR, Perna A, et al. The Latin American experience with a next generation sequencing genetic panel for recessive limb-girdle muscular weakness and Pompe disease. Orphanet J Rare Dis. 2020; 15(1):11. Published 2020 Jan 13. doi:10.1186/s13023-019-1291-2 | eng |
dcterms.references | Cacciottolo M, Numitone G, Aurino S, et al. Muscular dystrophy with marked Dysferlin deficiency is consistently caused by primary dysferlin gene mutations. Eur J Hum Genet. 2011; 19(9):974-980. doi:10.1038/ejhg.2011.70 | eng |
dcterms.references | Harris E, Bladen CL, Mayhew A, James M, Bettinson K, Moore U, Smith FE, Rufibach L, Cnaan A, Bharucha-Goebel DX, Blamire AM, Bravver E, Carlier PG, Day JW, Díaz-Manera J, Eagle M, Grieben U, Harms M, Jones KJ, Lochmüller H, Mendell JR, Mori-Yoshimura M, Paradas C, Pegoraro E, Pestronk A, Salort-Campana E, Schreiber-Katz O, Semplicini C, Spuler S, Stojkovic T, Straub V, Takeda S, Rocha CT, Walter MC, Bushby K; Jain COS Consortium. The Clinical Outcome Study for dysferlinopathy: An international multicenter study. Neurol Genet. 2016 Aug 4;2(4):e89. | eng |
dcterms.references | Alharbi N, Matar R, Cupler E, et al. Clinical, Neurophysiological, Radiological, Pathological, and Genetic Features of Dysferlinopathy in Saudi Arabia. Front Neurosci. 2022;16:815556. Published 2022 Feb 22. | eng |
dcterms.references | Paradas C, Llauger J, Diaz-Manera J, et al. Redefining dysferlinopathy phenotypes based on clinical findings and muscle imaging studies. Neurology. 2010;75(4):316-323. doi:10.1212/WNL.0b013e3181ea1564 | eng |
dcterms.references | Okubo M, Iida A, Hayashi S, et al. Three novel recessive DYSF mutations identified in three patients with muscular dystrophy, limb-girdle, type 2B. J Neurol Sci. 2018;395:169-171. doi:10.1016/j.jns.2018.10.015 | eng |
dcterms.references | Moore U, Gordish H, Diaz-Manera J, et al. Miyoshi myopathy and limb girdle muscular dystrophy R2 are the same disease. Neuromuscul Disord. 2021;31(4):265-280. doi:10.1016/j.nmd.2021.01.009 | eng |
dcterms.references | Jin SQ, Yu M, Zhang W, Lyu H, Yuan Y, Wang ZX. Dysferlin Gene Mutation Spectrum in a Large Cohort of Chinese Patients with Dysferlinopathy. Chin Med J (Engl). 2016;129(19):2287-2293. doi:10.4103/0366-6999.190671 | eng |
dcterms.references | Fernández-Eulate G, Querin G, Moore U, et al. Deep phenotyping of an international series of patients with late-onset dysferlinopathy. Eur J Neurol. 2021;28(6):2092-2102. doi:10.1111/ene.14821 | eng |
dcterms.references | Mayhew AG, James MK, Moore U, et al. Assessing the Relationship of Patient Reported Outcome Measures With Functional Status in Dysferlinopathy: A Rasch Analysis Approach. Front Neurol. 2022; 13:828525. Published 2022 Mar 10. doi:10.3389/fneur.2022.828525 | eng |
dcterms.references | Moore U, Jacobs M, James MK, et al. Assessment of disease progression in dysferlinopathy: A 1-year cohort study [published online ahead of print, 2019 Jan 9]. Neurology. 2019;92(5):e461-e474. doi:10.1212/WNL.0000000000006858 | eng |
dcterms.references | Angelini C, Nardetto L, Borsato C, et al. The clinical course of calpainopathy (LGMD2A) and dysferlinopathy (LGMD2B). Neurol Res. 2010;32(1):41-46. doi:10.1179/174313209X380847 | eng |
dcterms.references | Nguyen K, Bassez G, Krahn M, et al. Phenotypic study in 40 patients with dysferlin gene mutations: high frequency of atypical phenotypes. Arch Neurol. 2007;64(8):1176-1182. doi:10.1001/archneur.64.8.1176 | eng |
dcterms.references | Klinge L, Aboumousa A, Eagle M, et al. New aspects on patients affected by dysferlin deficient muscular dystrophy. J Neurol Neurosurg Psychiatry. 2010;81(9):946-953. doi:10.1136/jnnp.2009.178038 | eng |
dcterms.references | Reash NF, James MK, Alfano LN, et al. Comparison of strength testing modalities in dysferlinopathy. Muscle Nerve. 2022;66(2):159-166. doi:10.1002/mus.27570 | eng |
dcterms.references | Iyadurai SJ, Kissel JT. The Limb-Girdle Muscular Dystrophies and the Dystrophinopathies. Continuum (Minneap Minn). 2016;22(6, Muscle and Neuromuscular Junction Disorders):1954-1977. doi:10.1212/CON.0000000000000406 | eng |
dcterms.references | Park HJ, Hong YB, Hong JM, et al. Null variants in DYSF result in earlier symptom onset. Clin Genet. 2021;99(3):396-406. doi:10.1111/cge.13887 | eng |
dcterms.references | Khadilkar SV, Faldu HD, Patil SB, Singh R. Limb-girdle Muscular Dystrophies in India: A Review. Ann Indian Acad Neurol. 2017;20(2):87-95. doi:10.4103/aian.AIAN_81_17 | eng |
dcterms.references | Pradhan S. Clinical and magnetic resonance imaging features of 'diamond on quadriceps' sign in dysferlinopathy. Neurol India. 2009;57(2):172-175. doi:10.4103/0028-3886.5128 | eng |
dcterms.references | Pradhan S. Diamond on quadriceps: a frequent sign in dysferlinopathy. Neurology. 2008;70(4):322. doi:10.1212/01.wnl.0000298091.07609.a0 | eng |
dcterms.references | Pradhan S. Calf-head sign in Miyoshi myopathy. Arch Neurol. 2006;63(10):1414-1417. doi:10.1001/archneur.63.10.1414 | eng |
dcterms.references | Shyma MM, Roopchand PS, Ram KM, Shaji CV. Calf heads on atrophy sign: Miyoshi myopathy. J Neurosci Rural Pract. 2015;6(3):428-430. doi:10.4103/0976-3147.158798 | eng |
dcterms.references | Eymard B, Laforêt P, Tomé FM, et al. Myopathie distale de type Miyoshi: séméiologie particulière et fréquence [Miyoshi distal myopathy: specific signs and incidence]. Rev Neurol (Paris). 2000;156(2):161-168. PMID: 10743015 | eng |
dcterms.references | El Sherif R, Hussein RS, Nishino I. "Boule du biceps" in dysferlinopathy. Neurology. 2020;94(2):83-84. doi:10.1212/WNL.0000000000008782 | eng |
dcterms.references | Miyoshi K, Kawai H, Iwasa M, Kusaka K, Nishino H. Autosomal recessive distal muscular dystrophy as a new type of progressive muscular dystrophy. Seventeen cases in eight families including an autopsied case. Brain. 1986;109 (Pt1):31-54. doi:10.1093/brain/109.1.31 | eng |
dcterms.references | Ivanova A, Smirnikhina S, Lavrov A. Dysferlinopathies: Clinical and genetic variability [published online ahead of print, 2022 Aug 27]. Clin Genet. 2022;10.1111/cge.14216. doi:10.1111/cge.14216 | eng |
dcterms.references | Ten Dam L, Frankhuizen WS, Linssen WHJP, et al. Autosomal recessive limb-girdle and Miyoshi muscular dystrophies in the Netherlands: The clinical and molecular spectrum of 244 patients. Clin Genet. 2019;96(2):126-133. doi:10.1111/cge.13544 | eng |
dcterms.references | Illa I, Serrano-Munuera C, Gallardo E, et al. Distal anterior compartment myopathy: a dysferlin mutation causing a new muscular dystrophy phenotype. Ann Neurol. 2001;49(1):130-134. | eng |
dcterms.references | Paradas C, González-Quereda L, De Luna N, et al. A new phenotype of dysferlinopathy with congenital onset. Neuromuscul Disord. 2009;19(1):21-25. doi:10.1016/j.nmd.2008.09.015 | eng |
dcterms.references | Mayhew AG, James MK, Moore U, et al. Assessing the Relationship of Patient Reported Outcome Measures With Functional Status in Dysferlinopathy: A Rasch Analysis Approach. Front Neurol. 2022;13:828525. Published 2022 Mar 10. doi:10.3389/fneur.2022.828525 | eng |
dcterms.references | Takahashi T, Aoki M, Suzuki N, et al. Clinical features and a mutation with late onset of limb girdle muscular dystrophy 2B. J Neurol Neurosurg Psychiatry. 2013;84(4):433-440. doi:10.1136/jnnp-2011-301339 | eng |
dcterms.references | Moore U, Fernandez-Torron R, Jacobs M, et al. Cardiac and pulmonary findings in dysferlinopathy: A 3-year, longitudinal study. Muscle Nerve. 2022;65(5):531-540. doi:10.1002/mus.27524 | eng |
dcterms.references | Nishikawa A, Mori-Yoshimura M, Segawa K, et al. Respiratory and cardiac function in japanese patients with dysferlinopathy. Muscle Nerve. 2016;53(3):394-401. doi:10.1002/mus.24741 | eng |
dcterms.references | Gayathri N, Alefia R, Nalini A, et al. Dysferlinopathy: spectrum of pathological changes in skeletal muscle tissue. Indian J Pathol Microbiol. 2011;54(2):350-354. doi:10.4103/0377-4929.81636 | eng |
dcterms.references | Becker N, Moore SA, Jones KA. The inflammatory pathology of dysferlinopathy is distinct from calpainopathy, Becker muscular dystrophy, and inflammatory myopathies. Acta Neuropathol Commun. 2022;10(1):17. Published 2022 Feb 8. doi:10.1186/s40478-022-01320-z | eng |
dcterms.references | Gallardo E, Rojas-García R, de Luna N, Pou A, Brown RH Jr, Illa I. Inflammation in dysferlin myopathy: immunohistochemical characterization of 13 patients. Neurology. 2001;57(11):2136-2138. doi:10.1212/wnl.57.11.2136 | eng |
dcterms.references | Yin X, Wang Q, Chen T, et al. CD4+ cells, macrophages, MHC-I and C5b-9 involve the pathogenesis of dysferlinopathy. Int J Clin Exp Pathol. 2015;8(3):3069-3075. Published 2015 Mar 1. | eng |
dcterms.references | Tagawa K, Ogawa M, Kawabe K, et al. Protein and gene analyses of dysferlinopathy in a large group of Japanese muscular dystrophy patients. J Neurol Sci. 2003;211(1-2):23-28. doi:10.1016/s0022-510x(03)00041-8 | eng |
dcterms.references | Rosales XQ, Gastier-Foster JM, Lewis S, et al. Novel diagnostic features of dysferlinopathies. Muscle Nerve. 2010;42(1):14-21. doi:10.1002/mus.21650 | eng |
dcterms.references | Bardakov SN, Tsargush VA, Carlier PG, et al. Magnetic resonance imaging pattern variability in dysferlinopathy. Acta Myol. 2021;40(4):158-171. Published 2021 Dec 31. doi:10.36185/2532-1900-059 | eng |
dcterms.references | Díaz J, Woudt L, Suazo L, et al. Broadening the imaging phenotype of dysferlinopathy at different disease stages. Muscle Nerve. 2016;54(2):203-210. doi:10.1002/mus.25045 | eng |
dcterms.references | Diaz-Manera J, Fernandez-Torron R, LLauger J, et al. Muscle MRI in patients with dysferlinopathy: pattern recognition and implications for clinical trials. J Neurol Neurosurg Psychiatry. 2018;89(10):1071-1081. doi:10.1136/jnnp-2017-317488 | eng |
dcterms.references | Nguyen K, Bassez G, Bernard R, et al. Dysferlin mutations in LGMD2B, Miyoshi myopathy, and atypical dysferlinopathies. Hum Mutat. 2005;26(2):165. doi:10.1002/humu.9355 | eng |
dcterms.references | Bashir R, Britton S, Strachan T, et al. A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat Genet. 1998;20(1):37-42. doi:10.1038/1689 | eng |
dcterms.references | Liu J, Aoki M, Illa I, et al. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet. 1998;20(1):31-36. doi:10.1038/1682 | eng |
dcterms.references | Cooper ST, Head SI. Membrane Injury and Repair in the Muscular Dystrophies. Neuroscientist.2015;21(6):653-668.doi:10.1177/1073858414558336 | eng |
dcterms.references | Han R, Campbell KP. Dysferlin and muscle membrane repair. Curr Opin Cell Biol. 2007;19(4):409-416. doi: 10.1016/j.ceb.2007.07.001 | eng |
dcterms.references | Sula A, Cole AR, Yeats C, Orengo C, Keep NH. Crystal structures of the human Dysferlin inner DysF domain. BMC Struct Biol. 2014; 14:3. Published 2014 Jan 17. doi:10.1186/1472-6807-14-3 | eng |
dcterms.references | Dominguez MJ, McCord JJ, Sutton RB. Redefining the architecture of ferlin proteins: Insights into multi-domain protein structure and function. PLoS One. 2022;17(7):e0270188. Published 2022 Jul 28. doi: 10.1371/journal.pone.0270188 | eng |
dcterms.references | Bansal D, Campbell KP. Dysferlin and the plasma membrane repair in muscular dystrophy. Trends Cell Biol. 2004;14(4):206-213. doi: 10.1016/j.tcb.2004.03.001 | eng |
dcterms.references | Cárdenas AM, González-Jamett AM, Cea LA, Bevilacqua JA, Caviedes P. Dysferlin function in skeletal muscle: Possible pathological mechanisms and therapeutical targets in dysferlinopathies. Exp Neurol. 2016;283(Pt A):246-254. doi: 10.1016/j.expneurol.2016.06.026 | eng |
dcterms.references | Glover L, Brown RH Jr. Dysferlin in membrane trafficking and patch repair. Traffic. 2007;8(7):785-794. doi:10.1111/j.1600-0854.2007.00573.x | eng |
dcterms.references | Lee JJA, Maruyama R, Duddy W, Sakurai H, Yokota T. Identification of Novel Antisense-Mediated Exon Skipping Targets in DYSF for Therapeutic Treatment of Dysferlinopathy. Mol Ther Nucleic Acids. 2018;13:596-604. doi:10.1016/j.omtn.2018.10.004 | eng |
dcterms.references | Bittel DC, Chandra G, Tirunagri LMS, et al. Annexin A2 Mediates Dysferlin Accumulation and Muscle Bittel DC, Chandra G, Tirunagri LMS, et al. Annexin A2 Mediates Dysferlin Accumulation and Muscle Cell Membrane Repair. Cells. 2020;9(9):1919. Published 2020 Aug 19. doi:10.3390/cells9091919 | eng |
dcterms.references | Corbalan-Garcia S, Gómez-Fernández JC. Signaling through C2 domains: more than one lipid target. Biochim Biophys Acta. 2014;1838(6):1536-1547. doi:10.1016/j.bbamem.2014.01.008 | eng |
dcterms.references | Ho M, Gallardo E, McKenna-Yasek D, De Luna N, Illa I, Brown RH Jr. A novel, blood-based diagnostic assay for limb girdle muscular dystrophy 2B and Miyoshi myopathy. Ann Neurol. 2002;51(1):129-133. doi:10.1002/ana.10080 | eng |
dcterms.references | Barefield DY, Sell JJ, Tahtah I, Kearns SD, McNally EM, Demonbreun AR. Loss of dysferlin or myoferlin results in differential defects in excitation-contraction coupling in mouse skeletal muscle. Sci Rep. 2021;11(1):15865. Published 2021 Aug 5. doi:10.1038/s41598-021-95378-9 | eng |
dcterms.references | Uniprot (2022). Disponible en: https://www.uniprot.org/uniprotkb/O75923/entry [Revisado el 23 de octubre del 2022] | eng |
dcterms.references | Dominov JA, Uyan Ö, McKenna-Yasek D, et al. Correction of pseudoexon splicing caused by a novel intronic dysferlin mutation. Ann Clin Transl Neurol. 2019;6(4):642-654. Published 2019 Mar 3. doi:10.1002/acn3.738 | eng |
dcterms.references | Pramono ZA, Tan CL, Seah IA, et al. Identification and characterisation of human dysferlin transcript variants: implications for dysferlin mutational screening and isoforms. Hum Genet. 2009;125(4):413-420. doi:10.1007/s00439-009-0632-y | eng |
dcterms.references | Ballouhey O, Courrier S, Kergourlay V, et al. The Dysferlin Transcript Containing the Alternative Exon 40a is Essential for Myocyte Functions. Front Cell Dev Biol. 2021;9:754555. Published 2021 Nov 23. doi:10.3389/fcell.2021.754555 | eng |
dcterms.references | Defour A, Van der Meulen JH, Bhat R, et al. Dysferlin regulates cell membrane repair by facilitating injury-triggered acid sphingomyelinase secretion. Cell Death Dis. 2014;5(6):e1306. Published 2014 Jun 26. doi:10.1038/cddis.2014.272 | eng |
dcterms.references | McDade JR, Michele DE. Membrane damage-induced vesicle-vesicle fusion of dysferlin-containing vesicles in muscle cells requires microtubules and kinesin. Hum Mol Genet. 2014;23(7):1677-1686. doi:10.1093/hmg/ddt557 | eng |
dcterms.references | Barthélémy F, Defour A, Lévy N, Krahn M, Bartoli M. Muscle Cells Fix Breaches by Orchestrating a Membrane Repair Ballet. J Neuromuscul Dis. 2018;5(1):21-28. doi:10.3233/JND-170251 | eng |
dcterms.references | Matsuda C, Miyake K, Kameyama K, et al. The C2A domain in dysferlin is important for association with MG53 (TRIM72). PLoS Curr. 2012;4: e5035add8caff4. Published 2012 Nov 5. doi:10.1371/5035add8caff4 | eng |
dcterms.references | Barthélémy F, Wein N, Krahn M, Lévy N, Bartoli M. Translational research and therapeutic perspectives in dysferlinopathies. Mol Med. 2011;17(9-10):875-882. doi:10.2119/molmed.2011.00084 | eng |
dcterms.references | Blandin G, Marchand S, Charton K, et al. A human skeletal muscle interactome centered on proteins involved in muscular dystrophies: LGMD interactome. Skelet Muscle. 2013;3(1):3. Published 2013 Feb 15. doi:10.1186/2044-5040-3-3 | eng |
dcterms.references | Han R. Muscle membrane repair and inflammatory attack in dysferlinopathy. Skelet Muscle. 2011;1(1):10. Published 2011 Mar 1. doi:10.1186/2044-5040-1-10 | eng |
dcterms.references | Baek JH, Many GM, Evesson FJ, Kelley VR. Dysferlinopathy Promotes an Intramuscle Expansion of Macrophages with a Cyto-Destructive Phenotype. Am J Pathol. 2017;187(6):1245-1257. doi:10.1016/j.ajpath.2017.02.011Barthélémy F, Wein N, Krahn M, Lévy N, Bartoli M. Translational research and therapeutic perspectives in dysferlinopathies. Mol Med. 2011;17(9-10):875-882. doi:10.2119/molmed.2011.00084 | eng |
dcterms.references | Vainzof M, Anderson LV, McNally EM, et al. Dysferlin protein analysis in limb-girdle muscular dystrophies. J Mol Neurosci. 2001;17(1):71-80. doi:10.1385/JMN:17:1:71 | spa |
dcterms.references | Tagawa K, Ogawa M, Kawabe K, et al. Protein and gene analyses of dysferlinopathy in a large group of Japanese muscular dystrophy patients. J Neurol Sci. 2003;211(1-2):23-28. doi:10.1016/s0022-510x(03)00041-8 | eng |
dcterms.references | De Luna N, Freixas A, Gallano P, et al. Dysferlin expression in monocytes: a source of mRNA for mutation analysis. Neuromuscul Disord. 2007; 17(1):69-76. doi:10.1016/j.nmd.2006.09.006 | eng |
dcterms.references | Ankala A, Nallamilli BR, Rufibach LE, Hwang E, Hegde MR. Diagnostic overview of blood-based dysferlin protein assay for dysferlinopathies. Muscle Nerve. 2014; 50(3):333-339. doi:10.1002/mus.24195 | eng |
dcterms.references | Sánchez-Chapul L, Ángel-Muñoz MD, Ruano-Calderón L, et al. Dysferlin quantification in monocytes for rapid screening for dysferlinopathies. Muscle Nerve. 2016; 54(6):1064-1071. doi:10.1002/mus.25156 | eng |
dcterms.references | Anderson LV, Davison K, Moss JA, et al. Dysferlin is a plasma membrane protein and is expressed early in human development. Hum Mol Genet. 1999;8(5):855-861. doi:10.1093/hmg/8.5.855 | eng |
dcterms.references | Ho M, Gallardo E, McKenna-Yasek D, De Luna N, Illa I, Brown RH Jr. A novel, blood-based diagnostic assay for limb girdle muscular dystrophy 2B and Miyoshi myopathy. Ann Neurol. 2002 Jan;51(1):129-33 | eng |
dcterms.references | Cox D, Henderson M, Straub V, Barresi R. A simple and rapid immunoassay predicts dysferlinopathies in peripheral blood film. Neuromuscul Disord. 2019;29(11):874-880. doi:10.1016/j.nmd.2019.09.008 | eng |
dcterms.references | Lo HP, Cooper ST, Evesson FJ, et al. Limb-girdle muscular dystrophy: diagnostic evaluation, frequency and clues to pathogenesis. Neuromuscul Disord. 2008;18(1):34-44. doi:10.1016/j.nmd.2007.08.009. | eng |
dcterms.references | Gallardo E, de Luna N, Diaz-Manera J, Rojas-García R, Gonzalez- Quereda L, Flix B, de Morrée A, van der Maarel S, Illa I. Comparison of dysferlin expression in human skeletal muscle with that in monocytes for the diagnosis of dysferlin myopathy. PLoS One. 2011;6(12):e29061. | eng |
dcterms.references | Wein N, Krahn M, Courrier S, et al. Immunolabelling and flow cytometry as new tools to explore dysferlinopathies. Neuromuscul Disord. 2010; 20(1):57-60. doi:10.1016/j.nmd.2009.08.004 | eng |
dcterms.references | Aoki M, Liu J, Richard I, et al. Genomic organization of the dysferlin gene and novel mutations in Miyoshi myopathy. Neurology. 2001; 57(2):271-278. doi:10.1212/wnl.57.2.271 | eng |
dcterms.references | Krahn M, Borges A, Navarro C, et al. Identification of different genomic deletions and one duplication in the dysferlin gene using multiplex ligation-dependent probe amplification and genomic quantitative PCR. Genet Test Mol Biomarkers. 2009;13(4):439-442. doi:10.1089/gtmb.2009.0010 | eng |
dcterms.references | Nigro V, Savarese M. Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta Myol. 2014;33(1):1-12. | eng |
dcterms.references | Kulkantrakorn K, Sangruchi T. Discordant manifestation in brothers with Miyoshi myopathy. J Neurol Sci. 2017;373:86-87. doi:10.1016/j.jns.2016.12.032 | eng |
dcterms.references | Shioya A, Takuma H, Takahashi T, Ishii A, Aoki M, Tamaoka A. Radiological findings in siblings with dysferlin mutation with diverse phenotype. J Neurol Sci. 2020;409:116579. doi:10.1016/j.jns.2019.116579 | eng |
dcterms.references | Rekik S, Sakka S, Romdhane SB, et al. Novel splicing dysferlin mutation causing myopathy with intra-familial heterogeneity. Mol Biol Rep. 2020;47(8):5755-5761. doi:10.1007/s11033-020-05643-9 | eng |
dcterms.references | Guo QF, Ye ZX, Qiu LL, et al. Dysferlinopathy in a cohort of Chinese patients: clinical features, mutation spectrum, and imaging findings. Chin Med J (Engl). 2021;134(5):622-624. Published 2021 Feb 8. doi:10.1097/CM9.0000000000001343 | eng |
dcterms.references | Umakhanova ZR, Bardakov SN, Mavlikeev MO, Chernova ON, Magomedova RM, Akhmedova PG, Yakovlev IA, Dalgatov GD, Fedotov VP, Isaev AA, Deev RV. Twenty-Year Clinical Progression of Dysferlinopathy in Patients from Dagestan. Front Neurol. 2017 Mar 8;8:77. doi: 10.3389/fneur.2017.00077. | eng |
dcterms.references | Weiler T, Bashir R, Anderson LV, et al. Identical mutation in patients with limb girdle muscular dystrophy type 2B or Miyoshi myopathy suggests a role for modifier gene(s). Hum Mol Genet. 1999;8(5):871-877. doi:10.1093/hmg/8.5.871 | eng |
dcterms.references | Gallardo E, Ankala A, Núñez-Álvarez Y, et al. Genetic and epigenetic determinants of low dysferlin expression in monocytes. Hum Mutat. 2014; (8):990-997. doi:10.1002/humu.22591 | eng |
dcterms.references | The Human gene Database (HGMD) (2022). Instituto de Genética Médica de la Universidad de Cardiff. Disponible en: https://www.hgmd.cf.ac.uk/ac/index.php [Revisado el 10 de noviembre del 2022] | spa |
dcterms.references | Spadafora P, Qualtieri A, Cavalcanti F, Di Palma G, Gallo O, De Benedittis S, Cerantonio A, Citrigno L. A Novel Homozygous Variant in DYSF Gene Is Associated with Autosomal Recessive Limb Girdle Muscular Dystrophy R2/2B. Int J Mol Sci. 2022 Aug 11;23(16):8932. doi: 10.3390/ijms23168932. PMID: 36012197; PMCID: PMC9408934. | eng |
dcterms.references | Verwey N, Gazzoli I, Krause S, Mamchaoui K, Mouly V, Aartsma-Rus A. Antisense-Mediated Skipping of Dysferlin Exons in Control and Dysferlinopathy Patient-Derived Cells. Nucleic Acid Ther. 2020;30(2):71-79. doi:10.1089/nat.2019.0788. | eng |
dcterms.references | Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583-589. doi:10.1038/s41586-021-03819-2 | eng |
dcterms.references | Buel GR, Walters KJ. Can AlphaFold2 predict the impact of missense mutations on structure?. Nat Struct Mol Biol. 2022;29(1):1-2. doi:10.1038/s41594-021-00714-2 | eng |
dcterms.references | Varadi M, Anyango S, Deshpande M, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50(D1): D439-D444. doi:10.1093/nar/gkab1061 | eng |
dcterms.references | Ligabue-Braun R, Borguesan B, Verli H, Krause MJ, Dorn M. Everyone Is a Protagonist: Residue Conformational Preferences in High-Resolution Protein Structures. J Comput Biol. 2018;25(4):451-465. doi:10.1089/cmb.2017.0182 | eng |
dcterms.references | Goujon M, McWilliam H, Li W, et al. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 2010;38(Web Server issue):W695-W699. doi:10.1093/nar/gkq313 | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | spa |
sb.programa | Maestría en Genética | spa |
sb.sede | Sede Barranquilla | spa |