Evaluación genómica, caracterización del potencial probiótico y antimicrobiano de Lactiplantibacillus plantarum y Limosilactobacillus reuteri aislados del estiércol de cerdo zungo costeño (sus scrofa domesticus)
datacite.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.contributor.advisor | Acosta Hoyos, Antonio | |
dc.contributor.advisor | Machado Sierra, Elwi | |
dc.contributor.author | Díaz Fajardo, Mauricio José | |
dc.date.accessioned | 2025-03-31T22:43:50Z | |
dc.date.available | 2025-03-31T22:43:50Z | |
dc.date.issued | 2025 | |
dc.description.abstract | La presente tesis doctoral abordó la creciente problemática de la resistencia antimicrobiana en la producción porcina, derivada del uso extensivo de antibióticos, y la consecuente necesidad de encontrar alternativas sostenibles. En este contexto, se evaluó el potencial probiótico y antimicrobiano de Lactiplantibacillus plantarum y Limosilactobacillus reuteri, bacterias ácido-lácticas (BAL) obtenidas de muestras de estiércol de cerdo zungo costeño (Sus scrofa domesticus), una raza criolla colombiana, buscando ofrecer una solución a esta problemática. Se procedió al aislamiento y cultivo de las bacterias a partir de muestras de estiércol porcino, empleando agar MRS como medio selectivo. La identificación molecular de las cepas purificadas se realizó mediante PCR convencional y espectrometría de masas MALDI-TOF, técnicas que permitieron confirmar su identidad y caracterizar su perfil proteico. Se investigó in vitro su capacidad de resistir condiciones adversas, simulando el ambiente gastrointestinal: elevadas concentraciones de bilis y NaCl, temperaturas extremas y pH ácido, evaluando así su viabilidad como potenciales probióticos. La caracterización de las bacteriocinas producidas, se llevo a cabo a través de métodos de ultrafiltración y precipitación química con sulfato de amonio. Se evaluó la interacción de estas bacterias con E. coli y S. aureus, patógenos comunes en la producción porcina, mediante ensayos de inhibición en placa, determinando así su potencial antimicrobiano. Se llevó a cabo un estudio genómico completo, utilizando secuenciación de nueva generación (NGS) y herramientas bioinformáticas para ensamblar, anotar y analizar los genomas de las cepas seleccionadas. Dentro del análisis genómico, se determinó el pangenoma de L. plantarum HCA1, se realizó una búsqueda exhaustiva de genes de virulencia y resistencia a antibióticos, y se llevó a cabo un análisis filogenómico para establecer sus relaciones evolutivas. Se predijo la estructura tridimensional de las bacteriocinas identificadas, empleando el modelo computacional AlphaFold 3, para comprender mejor su mecanismo de acción. Los resultados revelaron una notable adaptabilidad y resistencia de las cepas a las condiciones simuladas del tracto gastrointestinal, características esenciales para su viabilidad como probióticos. Se observó una considerable actividad antimicrobiana, atribuida a bacteriocinas estables y eficaces, entre ellas las plantaricinas de L. plantarum, cuyos genes clave fueron identificados y caracterizados. El estudio genómico confirmó la seguridad de las cepas, al no detectarse genes de virulencia ni de resistencia a antibióticos, y reveló un pangenoma abierto en L. plantarum HCA1, indicativo de diversidad genética y potencial de adaptación. Estos hallazgos sugieren que las cepas de L. plantarum y L. reuteri estudiadas podrían constituir una alternativa probiótica y antimicrobiana a los antibióticos en la producción porcina. Las bacteriocinas, y en particular las plantaricinas, presentan propiedades que justifican una investigación más profunda para su potencial aplicación en la industria alimentaria y porcina, con el objetivo de contribuir a la producción de alimentos más seguros, una producción animal más sostenible y una mejora de la salud animal y humana. Se sientan así las bases para futuras investigaciones y el desarrollo de aplicaciones biotecnológicas de estas cepas, con un enfoque en la mejora de la salud y la producción animal | spa |
dc.description.abstract | This doctoral thesis addressed the growing problem of antimicrobial resistance in swine production, stemming from the extensive use of antibiotics, and the consequent need to find sustainable alternatives. In this context, the probiotic and antimicrobial potential of Lactiplantibacillus plantarum and Limosilactobacillus reuteri, lactic acid bacteria (LAB) obtained from fecal samples of zungo costeño pigs (Sus scrofa domesticus), a Colombian Creole breed, was evaluated, seeking to offer a solution to this problem. The isolation and cultivation of bacteria from porcine fecal samples were carried out using MRS agar as a selective medium. Molecular identification of the purified strains was performed by conventional PCR and MALDI-TOF mass spectrometry, techniques that allowed confirmation of their identity and characterization of their protein profile. Their ability to withstand adverse conditions, simulating the gastrointestinal environment (high concentrations of bile and NaCl, extreme temperatures, and acidic pH), was investigated in vitro, thus evaluating their viability as potential probiotics. The characterization of the produced bacteriocins was carried out through ultrafiltration and chemical precipitation methods with ammonium sulfate. The interaction of these bacteria with E. coli and S. aureus, common pathogens in swine production, was evaluated by plate inhibition assays, thus determining their antimicrobial potential. A comprehensive genomic study was conducted, using next-generation sequencing (NGS) and bioinformatics tools to assemble, annotate, and analyze the genomes of the selected strains. Within the genomic analysis, the pangenome of L. plantarum HCA1 was determined, an exhaustive search for virulence and antibiotic resistance genes was performed, and a phylogenomic analysis was carried out to establish their evolutionary relationships. The three-dimensional structure of the identified bacteriocins was predicted using the AlphaFold 3 computational model to better understand their mechanism of action. The results revealed a remarkable adaptability and resistance of the strains to the simulated conditions of the gastrointestinal tract, essential characteristics for their viability as probiotics. Considerable antimicrobial activity was observed, attributed to stable and effective bacteriocins, including plantaricins from L. plantarum, whose key genes were identified and characterized. The genomic study confirmed the safety of the strains, as no virulence or antibiotic resistance genes were detected, and revealed an open pangenome in L. plantarum HCA1, indicative of genetic diversity and adaptation potential. These findings suggest that the L. plantarum and L. reuteri strains studied could constitute a probiotic and antimicrobial alternative to antibiotics in swine production. Bacteriocins, and plantaricins in particular, exhibit properties that warrant further investigation for their potential application in the food and swine industries, with the aim of contributing to safer food production, more sustainable animal production, and improved animal and human health. This lays the foundation for future research and the development of biotechnological applications of these strains, with a focus on improving animal health and production. | eng |
dc.format.mimetype | ||
dc.identifier.uri | https://hdl.handle.net/20.500.12442/16412 | |
dc.language.iso | spa | |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias Básicas y Biomédicas | spa |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | eng |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | |
dc.subject | Actividad antimicrobiana | spa |
dc.subject | Bacteria ácido-láctica | spa |
dc.subject | Industria porcina | spa |
dc.subject | Pangenoma abierto | spa |
dc.subject | Plantaricinas | spa |
dc.subject | Probióticos | spa |
dc.subject | Resistencia antimicrobiana | spa |
dc.subject.keywords | Antimicrobial activity | eng |
dc.subject.keywords | Lactic acid bacteria | eng |
dc.subject.keywords | Swine industry | eng |
dc.subject.keywords | Open pangenome | eng |
dc.subject.keywords | Plantaricins | eng |
dc.subject.keywords | Probiotics | eng |
dc.subject.keywords | Antimicrobial resistance | eng |
dc.title | Evaluación genómica, caracterización del potencial probiótico y antimicrobiano de Lactiplantibacillus plantarum y Limosilactobacillus reuteri aislados del estiércol de cerdo zungo costeño (sus scrofa domesticus) | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
dc.type.spa | Tesis de doctorado | |
dcterms.references | Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J., Bambrick, J., Bodenstein, S. W., Evans, D. A., Hung, C.-C., O’Neill, M., Reiman, D., Tunyasuvunakool, K., Wu, Z., Žemgulytė, A., Arvaniti, E., … Jumper, J. M. (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 630(8016), 493-500. https://doi.org/10.1038/s41586-024-07487-w | eng |
dcterms.references | Abriouel, H., Franz, C. M. A. P., Ben Omar, N., & Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews, 35(1), 201-232. https://doi.org/10.1111/j.1574-6976.2010.00244.x | eng |
dcterms.references | Agudelo-Flórez, P., Restrepo, B. N., & Palacio, L. G. (2009). Conocimiento y Prácticas sobre Teniasis-cisticercosis en una Comunidad Colombiana. Revista de Salud Pública, 11, 191-199. https://www.scielosp.org/article/rsap/2009.v11n2/191-199/es/ | spa |
dcterms.references | Aguirre, M., & Collins, M. D. (1993). Lactic acid bacteria and human clinical infection. Journal of Applied Bacteriology, 75(2), 95-107. | eng |
dcterms.references | Aguirre-Guzmán, Y. E. (2016). Estabilidad fisico-química de la bacteriocina producida por el aislado A1 ante la exposición a diferentes surfactantes [Master’s Thesis]. Instituto Politécnico Nacional | spa |
dcterms.references | Ahaddin, A. Y., Budiarti, S., Mustopa, A. Z., Darusman, H. S., & Triratna, L. (2021). Short Communication: Acute toxicity study of plantaricin from Lactobacillus plantarum S34 and its antibacterial activity. Biodiversitas Journal of Biological Diversity, 22(1), Article 1. https://doi.org/10.13057/biodiv/d220128 | eng |
dcterms.references | Aihara, N., Tazuma, S., & Kajiyama, G. (1995). Hydrophilic bile salts and liposomes inhibit hydrophobic bile salt-induced release of glycoprotein by guinea- pig gall -bladder. Journal of Gastroenterology and Hepatology, 10(1), 42-46. https://doi.org/10.1111/j.1440-1746.1995.tb01045.x | eng |
dcterms.references | Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. IEEE Transactions on Automatic Control. https://doi.org/10.1109/TAC.1974.1100705 | eng |
dcterms.references | Alcock, B. P., Huynh, W., Chalil, R., Smith, K. W., Raphenya, A. R., Wlodarski, M. A., Edalatmand, A., Petkau, A., Syed, S. A., Tsang, K. K., Baker, S. J. C., Dave, M., McCarthy, M. C., Mukiri, K. M., Nasir, J. A., Golbon, B., Imtiaz, H., Jiang, X., Kaur, K., … McArthur, A. G. (2023). CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Research, 51(D1), D690-D699. https://doi.org/10.1093/nar/gkac920 | eng |
dcterms.references | Alejandra Tello, N. L., Flores, L., Usca, J. E., & Moreno, I. (2021). Lactobacillus and Its Probiotic Role in the Digestive and Nutritional Processes of Pigs: A Review. Espoch Congresses the Ecuadorian Journal of S T E a M. https://doi.org/10.18502/espoch.v1i5.9587 | eng |
dcterms.references | Ali, M. S., Lee, E.-B., Hsu, W. H., Suk, K., Sayem, S. A. J., Ullah, H. M. A., Lee, S.-J., & Park, S.-C. (2023). Probiotics and Postbiotics as an Alternative to Antibiotics: An Emphasis on Pigs. Pathogens (Basel, Switzerland), 12(7), 874. https://doi.org/10.3390/pathogens12070874 | eng |
dcterms.references | Ali, W. S., & Musleh, R. M. (2015). Purification and Characterization of Plantaricinvgw8, A Bacteriocin Produced by Lactobacillus Plantarum VGW8. Journal of Biology, Agriculture and Healthcare, 5(1), 147. https://iiste.org/Journals/index.php/JBAH/article/view/19507 | eng |
dcterms.references | Al-kaabi, H. Q. M., & Chelab, R. L. (2024). Whole genome sequence of Lactiplantibacillus plantarum strain HA9 isolated from conventional Iraqi cheese: First report. Advancements in Life Sciences, 11(2), Article 2. https://doi.org/10.62940/als.v11i2.2649 | eng |
dcterms.references | Al-Kaseem, M., Al-Assaf, Z., & Karabet, F. (2013). Rapid and Simple Extraction Method for Volatile N-Nitrosamines in Meat Products. Pharmacology & Pharmacy, 04(08), 611-618. https://doi.org/10.4236/pp.2013.48087 | eng |
dcterms.references | Alquicira Páez, L. (2006, marzo). Determinación del mecanismo de resistencia a la acción inhibitoria de la bacteriocina producida por Pediococcus parvulus MXVK 133. Universidad Autónoma Metropolitana. https://doi.org/10.24275/uami.q237hs18x | spa |
dcterms.references | Al-Shawi, S. G., Dang, D., YOUSIF, A. Y., Al-Younis, Z. K., Najm, T. A., & Matarneh, S. K. (2020). The Potential Use of Probiotics to Improve Animal Health, Efficiency, and Meat Quality: A Review. Agriculture. https://doi.org/10.3390/agriculture10100452 | eng |
dcterms.references | Álvarez Ordóñez, A., Martínez Lobo, F. J., Argüello Rodríguez, H., Carvajal Urueña, A. M., & Rubio Nistal, P. M. (2015). Disentería porcina: Etiología, patogenicidad, factores determinantes para la transmisión y lucha contra la enfermedad. Avances en tecnología porcina, 12(117), 8-25. https://dialnet.unirioja.es/servlet/articulo?codigo=5024877 | spa |
dcterms.references | Alvarez-Sieiro, P., Montalbán-López, M., Mu, D., & Kuipers, O. P. (2016). Bacteriocins of lactic acid bacteria: Extending the family. Applied Microbiology and Biotechnology, 100(7), 2939-2951. https://doi.org/10.1007/s00253-016-7343-9 | eng |
dcterms.references | Amador Hernández, J. U. (2019, julio 17). Análisis de las interacciones fisicoquímicas y ecológicas en los mecanismos de antagonismo entre hongos ocratoxigénicos presentes en cerezas de café y bacterias ácido lácticas. Universidad Autónoma Metropolitana. https://doi.org/10.24275/uami.w6634388s | spa |
dcterms.references | Amat, S., Lantz, H., Munyaka, P. M., & Willing, B. P. (2020). Prevotella in Pigs: The Positive and Negative Associations with Production and Health. Microorganisms, 8(10), Article 10. https://doi.org/10.3390/microorganisms8101584 | eng |
dcterms.references | Amórtegui Díaz, J. E. (2013). Purificación y caracterización de bacteriocinas producidas por dos cepas nativas de Lactobacillus plantarum. http://repository.javeriana.edu.co/handle/10554/11844 | spa |
dcterms.references | Anderssen, E., Diep, D. B., Nes, I. F., Eijsink, V. G. H., & Nissen‐Meyer, J. (1998). Antagonistic Activity Of <i>Lactobacillus Plantarum</I> C11: Two New Two-Peptide Bacteriocins, Plantaricins EF and JK, and the Induction Factor Plantaricin A. Applied and Environmental Microbiology. https://doi.org/10.1128/aem.64.6.2269-2272.1998 | eng |
dcterms.references | Andino-Molina, M., & Quesada-Gómez, C. (2022). Clostridioides (Clostridium) difficile en porcinos: Caracterización, consideraciones epidemiológicas y resistencia a los antimicrobianos. Veterinaria (Montevideo), 58(217). https://doi.org/10.29155/vet.58.217.2 | spa |
dcterms.references | Andrade, C. R. G., Souza, M. R., Penna, C. F. a. M., Acurcio, L. B., Sant’Anna, F. M., Castro, R. D., & Oliveira, D. L. S. (2014). Propriedades probióticas in vitro de Lactobacillus spp. Isolados de queijos minas artesanais da Serra da Canastra —MG. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 66, 1592-1600. https://doi.org/10.1590/1678-6781 | spa |
dcterms.references | Angel-Isaza, J. A., Mesa-Salgado, N., & Narváez-Solarte, W. (2019). Ácidos Orgánicos, Una Alternativa en La Nutrición Avícola: Una Revisión. Ces Medicina Veterinaria Y Zootecnia. https://doi.org/10.21615/cesmvz.14.2.4 | spa |
dcterms.references | Anumudu, C. K., Omoregbe, O., Hart, A., Miri, T., Eze, U. A., & Onyeaka, H. (2022). Applications of Bacteriocins of Lactic Acid Bacteria in Biotechnology and Food Preservation: A Bibliometric Review. The Open Microbiology Journal, 16(1). https://doi.org/10.2174/18742858-v16-e2206300 | eng |
dcterms.references | Argüello, H., Estellé, J., Leonard, F. C., Crispie, F., Cotter, P. D., O’Sullivan, O., Lynch, H., Walia, K., Duffy, G., Lawlor, P. G., & Gardiner, G. E. (2019). Influence of the Intestinal Microbiota on Colonization Resistance to Salmonella and the Shedding Pattern of Naturally Exposed Pigs. mSystems, 4(2), 10.1128/msystems.00021-19. https://doi.org/10.1128/msystems.00021-19 | eng |
dcterms.references | Argüello Rodríguez, H. (2013). Salmonelosis porcina en España: Factores de riesgo en reproductores, estrategias de control en cerdos de cebo y la importancia del sacrificio [Http://purl.org/dc/dcmitype/Text, Universidad de León]. https://dialnet.unirioja.es/servlet/tesis?codigo=39948 | spa |
dcterms.references | Arief, I. I., Budiman, C., Jenie, B. S. L., Andreas, E., & Yuneni, A. (2015). Plantaricin IIA-1A5 from Lactobacillus plantarum IIA-1A5 displays bactericidal activity against Staphylococcus aureus. Beneficial Microbes, 6(4), 603-613. https://doi.org/10.3920/BM2014.0064 | eng |
dcterms.references | Aroche-Ginarte, R., Martínez-Aguilar, Y., Ayala-González, L., Rodríguez-Bertot, R., & Rodríguez-Fraga, Y. (2017). Comportamiento productivo e incidencia de diarrea en cerdos posdestete suplementados con polvo mixto de hojas de plantas con propiedades nutracéuticas. Ciencia y Agricultura, 14(2), Article 2. https://doi.org/10.19053/01228420.v14.n2.2017.7145 | spa |
dcterms.references | Arroyo, P. L. C., Hurtado, C. A. B., & Pérez, E. P. (2018). Caracterización de microorganismos con potencial probiótico aislados de estiércol de terneros Brahman en Sucre, Colombia. Revista de Investigaciones Veterinarias del Perú, 29(2), Article 2. https://doi.org/10.15381/rivep.v29i2.14482 | spa |
dcterms.references | Ashraf, M. (2019). Detection of antibiotic resistance genes in Lactobacillus and its role in transferring these genes to Salmonella. Pure and Applied Biology, 8. https://doi.org/10.19045/bspab.2019.80145 | eng |
dcterms.references | Ayyash, M. M., Abdalla, A. K., AlKalbani, N. S., Baig, M. A., Turner, M. S., Liu, S.-Q., & Shah, N. P. (2021). Invited review: Characterization of new probiotics from dairy and nondairy products—Insights into acid tolerance, bile metabolism and tolerance, and adhesion capability. Journal of Dairy Science, 104(8), 8363-8379. https://doi.org/10.3168/jds.2021-20398 | eng |
dcterms.references | Azhar, M. A., Abdul Munaim, P. Dr. M. S., Hasan, M., & Zularisam, A. W. (2020). Viability and Gastrointestinal Tolerance of Commercial Probiotic Products. International Journal of Pharma Medicine and Biological Sciences, 9, 117-121. https://doi.org/10.18178/ijpmbs.9.3.117-121 | eng |
dcterms.references | Aziz, T., Naveed, M., Makhdoom, S. I., Ali, U., Mughal, M. S., Sarwar, A., Khan, A. A., Zhennai, Y., Sameeh, M. Y., Dablool, A. S., Alharbi, A. A., Shahzad, M., Alamri, A. S., & Alhomrani, M. (2023). Genome Investigation and Functional Annotation of Lactiplantibacillus plantarum YW11 Revealing Streptin and Ruminococcin-A as Potent Nutritive Bacteriocins against Gut Symbiotic Pathogens. Molecules, 28(2), Article 2. https://doi.org/10.3390/molecules28020491 | eng |
dcterms.references | Aziz, T., Naveed, M., Sarwar, A., Makhdoom, S. I., Mughal, M. S., Ali, U., Yang, Z., Shahzad, M., Sameeh, M. Y., Alruways, M. W., Dablool, A. S., Almalki, A. A., Alamri, A. S., & Alhomrani, M. (2022). Functional Annotation of Lactiplantibacillus plantarum 13-3 as a Potential Starter Probiotic Involved in the Food Safety of Fermented Products. Molecules, 27(17), Article 17. https://doi.org/10.3390/molecules27175399 | eng |
dcterms.references | Azizi, A. F. N., Uemura, R., Omori, M., Sueyoshi, M., & Yasuda, M. (2022). Effects of Probiotics on Growth and Immunity of Piglets. Animals : an Open Access Journal from MDPI, 12(14), 1786. https://doi.org/10.3390/ani12141786 | eng |
dcterms.references | Azizi, F., & Habibi Najafi, M. B. (2017). The Biodiversity of Lactobacillus Spp. From Iranian Raw Milk Motal Cheese and Antibacterial Evaluation Based on Bacteriocin-Encoding Genes. Amb Express. https://doi.org/10.1186/s13568-017-0474-2 | eng |
dcterms.references | Baca-Castañón, M. L., De la Garza-Ramos, M. A., Alcázar-Pizaña, A. G., Grondin, Y., Coronado-Mendoza, A., Sánchez-Najera, R. I., Cárdenas-Estrada, E., Medina-De la Garza, C. E., & Escamilla-García, E. (2015). Antimicrobial Effect of Lactobacillus reuteri on Cariogenic Bacteria Streptococcus gordonii, Streptococcus mutans, and Periodontal Diseases Actinomyces naeslundii and Tannerella forsythia. Probiotics and Antimicrobial Proteins, 7(1), 1-8. https://doi.org/10.1007/s12602-014-9178-y | eng |
dcterms.references | Bai, Z., Ma, L., Jin, S., Ma, W., Velthof, G. L., Oenema, O., Liu, L., Chadwick, D. R., & Zhang, F. (2016). Nitrogen, Phosphorus, and Potassium Flows Through the Manure Management Chain in China. Environmental Science & Technology. https://doi.org/10.1021/acs.est.6b03348 | eng |
dcterms.references | Ballester, M., Jové-Juncà, T., Pascual, A., López-Serrano, S., Crespo-Piazuelo, D., Hernández-Banqué, C., González-Rodríguez, O., Ramayo-Caldas, Y., & Quintanilla, R. (2023). Genetic architecture of innate and adaptive immune cells in pigs. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1058346 | eng |
dcterms.references | Ballester, M., Ramayo-Caldas, Y., González-Rodríguez, O., Pascual, M., Reixach, J., Díaz, M., Blanc, F., López-Serrano, S., Tibau, J., & Quintanilla, R. (2020). Genetic parameters and associated genomic regions for global immunocompetence and other health-related traits in pigs. Scientific Reports, 10(1), 18462. https://doi.org/10.1038/s41598-020-75417-7 | eng |
dcterms.references | Baños Arjona, A. (2016). Aplicación de la tecnología de las barreras en el desarrollo de as-48 como bioconservante alimentario. Estudio de probiosis de una cepa productora de as-48 [Http://purl.org/dc/dcmitype/Text, Universidad de Granada]. https://dialnet.unirioja.es/servlet/tesis?codigo=70998 | spa |
dcterms.references | Barbosa, J., Albano, H., Silva, B., Almeida, M. H., Nogueira, T., & Teixeira, P. (2021). Characterization of a Lactiplantibacillus plantarum R23 Isolated from Arugula by Whole-Genome Sequencing and Its Bacteriocin Production Ability. International Journal of Environmental Research and Public Health, 18(11), Article 11. https://doi.org/10.3390/ijerph18115515 | eng |
dcterms.references | Barros, M. M., Castro, J., Araújo, D., Campos, A. M., Oliveira, R., Silva, S., Outor-Monteiro, D., & Almeida, C. (2023). Swine Colibacillosis: Global Epidemiologic and Antimicrobial Scenario. Antibiotics (Basel, Switzerland), 12(4), 682. https://doi.org/10.3390/antibiotics12040682 | eng |
dcterms.references | Basa, E. L. U., Abinawanto, A., Sophian, A., Julendra, H., & Sofyan, A. (2020). The detection of plantaricin-encoding genes and their amino acid profiles in Lactobacillus plantarum AKK30 isolated from Indonesian native chicken. Biodiversitas Journal of Biological Diversity, 21(12), Article 12. https://doi.org/10.13057/biodiv/d211241 | eng |
dcterms.references | Bastani, P., Homayouni, A., Norouzi-Panahi, L., Tondhoush, A., Norouzi, S., Mehrabany, E., & Kasaie, Z. (2016). The Mechanisms of Immune System Regulation by Probiotics in Immune-Related Diseases. Journal of Pharmacy and Nutrition Sciences, 6(3), Article 3. https://doi.org/10.6000/1927-5951.2016.06.03.4 | eng |
dcterms.references | Bastos, M. do C. de F., Coelho, M. L. V., & Santos, O. C. da S. (2015). Resistance to bacteriocins produced by Gram-positive bacteria. Microbiology (Reading, England), 161(Pt 4), 683-700. https://doi.org/10.1099/mic.0.082289-0 | eng |
dcterms.references | Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493-496. | eng |
dcterms.references | Baumans, V. (2004). Use of animals in experimental research: An ethical dilemma? Gene Therapy, 11(1), S64-S66. https://doi.org/10.1038/sj.gt.3302371 | eng |
dcterms.references | Bautista, A. G., & Barrado, A. G. (s. f.). Bacteriocinas como bioconservador alimentario: Características generales y aplicación en alimentos. Recuperado 13 de noviembre de 2023, de https://pubsaude.com.br/wp-content/uploads/2023/02/366 -Bacteriocinas-como-bioconservador-alimentario.pdf | spa |
dcterms.references | Bautista, A. G., & Barrado, A. G. (2023). Bacteriocinas como bioconservador alimentario: Características generales y aplicación en alimentos. PubSaúde, 12, 1-9. https://doi.org/10.31533/pubsaude12.a366 | spa |
dcterms.references | Bauza, R., Silva, D., Bratschi, C., & Barreto, R. (2018). Respuesta productiva de cerdos en engorde a la sustitución de maíz por sorgo en su dieta. Agrociencia Uruguay, 22(1), Article 1. https://doi.org/10.31285/AGRO.22.1.13 | spa |
dcterms.references | Begley, M., Sleator, R. D., Gahan, C. G., & Hill, C. (2005). Contribution of Three Bile-Associated Loci, bsh, pva, and btlB, to Gastrointestinal Persistence and Bile Tolerance of Listeria monocytogenes. Infection and Immunity, 73(2), 894-904. https://doi.org/10.1128/iai.73.2.894-904.2005 | eng |
dcterms.references | Beltran-Alcrudo, D., Falco, J. R., Raizman, E. A., & Dietze, K. (2019). Transboundary Spread of Pig Diseases: The Role of International Trade and Travel. BMC Veterinary Research. https://doi.org/10.1186/s12917-019-1800-5 | eng |
dcterms.references | Benkerroum, N., Ghouati, Y., Sandine, W. E., & Ouhssine, M. (1993). A simple technique for the detection of bacteriocin production by lactic acid bacteria. Journal of Applied Bacteriology, 74(3), 243-247. | eng |
dcterms.references | Berebon, D., Ofokansi, K., Attama, A., Osita, E., Restus, C., Ugwu, C., Eze, C., & Evurani, S. (2019). Evaluation of Lactobacillus spp. Isolated from locally consumed probiotic food in Nsukka, Enugu State, Nigeria for antimicrobial activity utilizing agar well diffusion and pH tolerance tests. African Journal of Biotechnology, 18, 1091-1097. https://doi.org/10.5897/AJB2019.16924 | eng |
dcterms.references | Bernatek, M., Żukiewicz-Sobczak, W., Lachowicz-Wiśniewska, S., & Piątek, J. (2022). Factors Determining Effective Probiotic Activity: Evaluation of Survival and Antibacterial Activity of Selected Probiotic Products Using an “In Vitro” Study. Nutrients, 14(16), Article 16. https://doi.org/10.3390/nu14163323 | eng |
dcterms.references | Berra, M. A. S., Ortiz, J. A. G., Aldana, F. H., Lara, M. H., Santos, J. A. Y., & Ramírez, M. L. C. (2023). Resistencia de Lactobacillus spp. A malatión 1000. Revista Internacional de Contaminación Ambiental, 39, 1-10. https://doi.org/10.20937/RICA.54183 | spa |
dcterms.references | Betancur, C., Martínez, Y., Tellez-Isaias, G., Avellaneda, M. C., & Velázquez-Martí, B. (2020). In Vitro Characterization of Indigenous Probiotic Strains Isolated from Colombian Creole Pigs. Animals, 10(7), Article 7. https://doi.org/10.3390/ani10071204 | eng |
dcterms.references | Betancur, C., Martínez, Y., Tellez-Isaias, G., Castillo, R., & Ding, X. (2021). Effect of Oral Administration With Lactobacillus Plantarum CAM6 Strain on Sows During Gestation-Lactation and the Derived Impact on Their Progeny Performance. Mediators of Inflammation. https://doi.org/10.1155/2021/6615960 | eng |
dcterms.references | Bhattacharya, A., Joishy, T. K., & Khan, M. R. (2024). Exploring the probiotic potential, antioxidant capacity, and healthy aging based on whole genome analysis of Lactiplantibacillus plantarum LPJBC5 isolated from fermented milk product (p. 2024.03.14.584937). bioRxiv. https://doi.org/10.1101/2024.03.14.584937 | eng |
dcterms.references | Bin, P., Tang, Z., Liu, S., Chen, S., Xia, Y., Liu, J., Wu, H., & Zhu, G. (2018). Intestinal microbiota mediates Enterotoxigenic Escherichia coli-induced diarrhea in piglets. BMC Veterinary Research, 14(1), 385. https://doi.org/10.1186/s12917-018-1704-9 | eng |
dcterms.references | Bittman, S., Worth, D. E., Hunt, D., Spiegal, S., A. Kleinman, P. J., Nanayakkara, S., Vendramin, J., Silveira, M. L., Flynn, C., Reid, K., Martin, T. A., VanderZaag, A., & Javorek, S. (2023). Distribution of Livestock Sectors in Canada: Implications for Manureshed Management. Journal of Environmental Quality. https://doi.org/10.1002/jeq2.20457 | eng |
dcterms.references | Blin, K., Shaw, S., Augustijn, H. E., Reitz, Z. L., Biermann, F., Alanjary, M., Fetter, A., Terlouw, B. R., Metcalf, W. W., Helfrich, E. J. N., van Wezel, G. P., Medema, M. H., & Weber, T. (2023). antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Research, 51(W1), W46-W50. https://doi.org/10.1093/nar/gkad344 | eng |
dcterms.references | Blum, J. E., Fischer, C. N., Miles, J., & Handelsman, J. (2013). Frequent Replenishment Sustains the Beneficial Microbiome of Drosophila Melanogaster. Mbio. https://doi.org/10.1128/mbio.00860-13 | eng |
dcterms.references | Boeckel, T. V., Brower, C., Gilbert, M., Grenfell, B. B., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global Trends in Antimicrobial Use in Food Animals. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1503141112 | eng |
dcterms.references | Bolibrukh, M., & Rublenko, I. (2023). Influence of Factors on the gastrointestinal microbiota of Pigs. Ukrainian Journal of Veterinary and Agricultural Sciences, 6(1), Article 1. https://doi.org/10.32718/ujvas6-1.11 | eng |
dcterms.references | Boranbayeva, T. (2024). Probiotic properties of lactic acid bacteria isolated from mare’s milk. Bulletin of Shakarim University Technical Sciences, 1(13), 258-265. https://doi.org/10.53360/2788-7995-2024-1(13)-32 | eng |
dcterms.references | Borrás-Sandoval, L. M., Valiño-Cabrera, E. C., & Rodríguez-Molano, C. E. (2017). Preparado microbiano con actividad ácido láctica como acelerante biológico en los procesos de fermentación para alimento animal. Ciencia y Agricultura, 14(1), Article 1. https://doi.org/10.19053/01228420.v14.n1.2017.6083 | spa |
dcterms.references | Botta, C., Acquadro, A., Greppi, A., Barchi, L., Bertolino, M., Cocolin, L., & Rantsiou, K. (2017). Genomic assessment in Lactobacillus plantarum links the butyrogenic pathway with glutamine metabolism. Scientific Reports, 7(1), 15975. https://doi.org/10.1038/s41598-017-16186-8 | eng |
dcterms.references | Botteldoorn, N., Heyndrickx, M., Rijpens, N., Grijspeerdt, K., & Herman, L. (2003). Salmonella on pig carcasses: Positive pigs and cross contamination in the slaughterhouse. Journal of Applied Microbiology, 95(5), 891-903. https://doi.org/10.1046/j.1365-2672.2003.02042.x | eng |
dcterms.references | Bouteille, R., Gaudet, M., Lecanu, B., & This, H. (2013). Monitoring lactic acid production during milk fermentation by in situ quantitative proton nuclear magnetic resonance spectroscopy. Journal of Dairy Science, 96(4), 2071-2080. https://doi.org/10.3168/jds.2012-6092 | eng |
dcterms.references | Breda, L. van, Mitchell, P., & Cutler, R. S. (2019). Antimicrobial Stewardship in the Australian Pork Industry. Australian Veterinary Journal. https://doi.org/10.1111/avj.12838 | eng |
dcterms.references | Bu, Y., Liu, Y., Li, J., Liu, T., Gong, P., Zhang, L., Wang, Y., & Yi, H. (2021). Analyses of plantaricin Q7 synthesis by Lactobacillus plantarum Q7 based on comparative transcriptomics. Food Control, 124, 107909. https://doi.org/10.1016/j.foodcont.2021.107909 | eng |
dcterms.references | Buntin, N., Hongpattarakere, T., Ritari, J., Douillard, F. P., Paulin, L., Boeren, S., Shetty, S. A., & de Vos, W. M. (2016). An Inducible Operon Is Involved in Inulin Utilization in Lactobacillus plantarum Strains, as Revealed by Comparative Proteogenomics and Metabolic Profiling. Applied and Environmental Microbiology, 83(2), e02402-16. https://doi.org/10.1128/AEM.02402-16 | eng |
dcterms.references | Burrough, E. R. (2017). Swine Dysentery: Etiopathogenesis and Diagnosis of a Reemerging Disease. Veterinary Pathology, 54(1), 22-31. https://doi.org/10.1177/0300985816653795 | eng |
dcterms.references | Caicedo, W., Pérez, M., Sanchez, J., Flores, A., & Duchitanga, E. (2019). Contenido de fenoles totales y actividad antioxidante del follaje de anís silvestre (Piper auritum Kunth) y su efecto nutracéutico para cerdos en posdestete. Revista de Investigaciones Veterinarias del Perú, 30(4), 1470-1480. https://doi.org/10.15381/rivep.v30i4.17264 | eng |
dcterms.references | Calabia, B., & Tokiwa, Y. (2007). Production of d-lactic acid from sugarcane molasses, sugarcane juice and sugar beet juice by lactobacillus delbrueckii. Biotechnology Letters, 29(9), 1329-1332. https://doi.org/10.1007/s10529-007-9408-4 | eng |
dcterms.references | Calderón A., A., Calle E., S., Torres A., M., Morales C., S., & Pinto J., C. (2009). Frecuencia de serorreactores a Lawsonia intracellularis en granjas porcinas tecnificadas. Revista de Investigaciones Veterinarias del Perú, 20(2), 327-331. http://www.scielo.org.pe/scielo.php?script=sci_abstract&pid=S1609 -91172009000200026&lng=es&nrm=iso&tlng=es | spa |
dcterms.references | Calderón, V. M. T., & Díaz, J. C. (2020). Modelo logístico para determinar la velocidad máxima y tiempo de fermentación láctica en residuos sólidos de pescado. TAYACAJA, 3(2), Article 2. https://doi.org/10.46908/rict.v3i2.110 | spa |
dcterms.references | Calle-García, J., Ramayo-Caldas, Y., Zingaretti, L. M., Quintanilla, R., Ballester, M., & Pérez-Enciso, M. (2023). On the holobiont ‘predictome’ of immunocompetence in pigs. Genetics Selection Evolution, 55(1), 29. https://doi.org/10.1186/s12711-023-00803-4 | eng |
dcterms.references | Callewaert, R., Holo, H., Devreese, B., Van Beeumen, J., Nes, I., & De Vuyst, L. (1999). Characterization and production of amylovorin L471, a bacteriocin purified from Lactobacillus amylovorus DCE 471 by a novel three-step methodThe GenBank/EMBL/DDBJ accession number for the sequence reported in this paper is P81927. Microbiology, 145(9), 2559-2568. https://doi.org/10.1099/00221287-145-9-2559 | eng |
dcterms.references | Camacho-Luque, R., Peña-Monje, A., Montiel, N., Barbancho, A., & Garcia, F. (2015). Maldi-tof mass spectrometry as a routine technique for identification of typical and atypical mycobacteria in the laboratory of clinical microbiology. Actualidad Médica, 100(796), 121-123. https://doi.org/10.15568/am.2015.796.or02 | eng |
dcterms.references | Campedelli, I., Mathur, H., Salvetti, E., Clarke, S., Rea, M. C., Torriani, S., Ross, R. P., Hill, C., & O’Toole, P. W. (2018). Genus-Wide Assessment of Antibiotic Resistance in Lactobacillus spp. Applied and Environmental Microbiology, 85(1), e01738-18. https://doi.org/10.1128/AEM.01738-18 | eng |
dcterms.references | Campos, J., Mourão, J., Peixe, L., & Antunes, P. (2019). Non-Typhoidal Salmonella in the Pig Production Chain: A Comprehensive Analysis of Its Impact on Human Health. Pathogens. https://doi.org/10.3390/pathogens8010019 | eng |
dcterms.references | Canibe, N., O’Dea, M., & Abraham, S. (2019). Potential relevance of pig gut content transplantation for production and research. Journal of Animal Science and Biotechnology, 10(1), 55. https://doi.org/10.1186/s40104-019-0363-4 | eng |
dcterms.references | Cantalapiedra, C. P., Hernandez-Plaza, A., Letunic, I., Bork, P., & Huerta-Cepas, J. (2021). eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. bioRxiv. https://doi.org/10.1101/2021.06.03.446934 | eng |
dcterms.references | Carattoli, A., Villa, L., Feudi, C., Curcio, L., Orsini, S., Luppi, A., Pezzotti, G., & Magistrali, C. F. (2017). Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Eurosurveillance, 22(31), 30589. https://doi.org/10.2807/1560-7917.ES.2017.22.31.30589 | eng |
dcterms.references | Cardelle-Cobas, A., Coy-Girón, L., Cepeda, A., & Nebot, C. (2023). Swine Production: Probiotics as an Alternative to the Use of Antibiotics. https://doi.org/10.5772/intechopen.108308 | eng |
dcterms.references | Cardona-Arengas, M. A., López-Marín, B. E., Cardona-Arengas, M. A., & López-Marín, B. E. (2019). Los probióticos: Alimentos funcionales para lactantes. Medicas UIS, 32(2), 31-39. https://doi.org/10.18273/revmed.v32n2-2019004 | spa |
dcterms.references | Cardoso, M. de las M. E. (2010). Caracterización y purificación parcial de sustancias tipo bacteriocinas producidas por cepas de Enterococcus [Tesis de Maestría]. Universidad Nacional del Litoral, Facultad de Ingeniería Química. | spa |
dcterms.references | Carlos G. Germán Alarcón, J. G. S., Julio César Camacho Ronquillo. (2005). Manual del participante: Producción de Cerdos. Institución de Enseñanza e Investigación en Ciencias Agrícolas | spa |
dcterms.references | Carpi, F. M., Coman, M. M., Silvi, S., Picciolini, M., Verdenelli, M. C., & Napolioni, V. (2022). Comprehensive pan‐genome analysis of Lactiplantibacillus plantarum complete genomes. Journal of Applied Microbiology, 132(1), 592-604. https://doi.org/10.1111/jam.15199 | eng |
dcterms.references | Carrasco, J., & Alcázar, P. (2017). Capacidad probiótica de bacterias lácticas aisladas de chicha de molle. Revista De La Sociedad Química Del Perú, 83(4), 391-402. https://doi.org/10.37761/rsqp.v83i4.212 | spa |
dcterms.references | Casaburi, A., Di Martino, V., Ferranti, P., Picariello, G., & Villani, F. (2015). Antimicrobial activity of strain-specific bacteriocin-producing lactobacillus plantarum, lactobacillus paraplantarum, and lactobacillus fermentum isolates from turkish sucuk. Food Control, 51, 276-281. | eng |
dcterms.references | Castellanos-Rozo, J., López, J. A. G., Pulido, R. P., Burgos, M. J. G., Lucas, R., & Gálvez, A. (2022). Las bacteriocinas y su efecto sinérgico con tecnologías emergentes en alimentos. Revista Mutis, 12(2). https://doi.org/10.21789/22561498.1841 | spa |
dcterms.references | Castillo, C., Brito, G., Tello, L., & Flores, L. (2022). Biochemical Characterization of Lactic Acid Bacteria from the Small Intestine of Piglets as Possible Probiotic Strains. ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M., 3-13. https://doi.org/10.18502/espoch.v2i1.11179 | eng |
dcterms.references | Castillo García, W. E., Sánchez Suárez, H. A., & Ochoa Mogollón, G. M. (2019). Evaluación del ensilado de residuos de pescado y de cabeza de langostinofermentado con Lactobacillus fermentus aislado de cerdo. Revista de Investigaciones Veterinarias del Perú, 30(4), 1456-1469. https://doi.org/10.15381/rivep.v30i4.17165 | spa |
dcterms.references | Castro, J., Barros, M. M., Araújo, D., Campos, A. M., Oliveira, R., Silva, S., & Almeida, C. (2022). Swine enteric colibacillosis: Current treatment avenues and future directions. Frontiers in Veterinary Science, 9, 981207. https://doi.org/10.3389/fvets.2022.981207 | eng |
dcterms.references | Castro, L. G., & Castillo, A. Y. G. (2016). Uso de probióticos en alimentación animal. Revista Sistemas de Producción Agroecológicos, 7(2), 43-55. https://doi.org/10.22579/22484817.687 | spa |
dcterms.references | Chaimanee, V., Sakulsingharoj, C., Deejing, S., Seetakoses, P., & Niamsup, P. (2009). Screening and characterisation of bacteriocin-producing bacteria capable of inhibiting the growth of bovine mastitis. Maejo International Journal of Science and Technology. https://www.semanticscholar.org/paper/Screening-and-characterisation-of-bacteria-capable-Chaimanee-Sakulsingharoj/8e83e8b40602ddeca50e66c6d38654790ac0f395 | eng |
dcterms.references | Chen, C., Yu, L., Tian, F., Zhao, J., & Zhai, Q. (2022). Identification of Novel Bile Salt-Tolerant Genes in Lactobacillus Using Comparative Genomics and Its Application in the Rapid Screening of Tolerant Strains. Microorganisms, 10(12), Article 12. https://doi.org/10.3390/microorganisms10122371 | eng |
dcterms.references | Chen, L., Xu, Y., Chen, X., Fang, C., Zhao, L., & Chen, F. (2017). The Maturing Development of Gut Microbiota in Commercial Piglets during the Weaning Transition. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01688 | eng |
dcterms.references | Chen, L., Zheng, D., Liu, B., Yang, J., & Jin, Q. (2015). VFDB 2016: Hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Research, 44(Database issue), D694. https://doi.org/10.1093/nar/gkv1239 | eng |
dcterms.references | Chen, X., Guo, J., Liu, Y., Chai, S., Ma, R., & Munguntsetseg, B. (2019). Characterization and adsorption of a Lactobacillus plantarum virulent phage. Journal of Dairy Science, 102(5), 3879-3886. https://doi.org/10.3168/jds.2018-16019 | eng |
dcterms.references | Chen, Y. S., Wang, Y. C., Chow, Y. S., Yanagida, F., Liao, C. C., & Chiu, C. M. (2014). Purification and Characterization of Plantaricin Y, a Novel Bacteriocin Produced by Lactobacillus Plantarum 510. Archives of Microbiology. https://doi.org/10.1007/s00203-014-0958-2 | eng |
dcterms.references | Cherrington, C. A., & Hinton, M. (1990). Stress responses of Salmonella. Journal of Applied Bacteriology, 68(1), 61-72. | eng |
dcterms.references | Choi, W., Son, D. B., Hong, J., Jeong, D., Kim, H.-C., Lee, H., & Suh, J.-W. (2021). The Effect of Fermented Kefir as Functional Feed Additive in Post-Weaned Pigs. Fermentation, 7(1), Article 1. https://doi.org/10.3390/fermentation7010023 | eng |
dcterms.references | Choi, Y. J. & Otros. (2023). Investigation of bacteriocins produced by Lactiplantibacillus plantarum. Nombre de la revista, Número del volumen, Páginas. https://doi.org/DOI | eng |
dcterms.references | Choudhury, R., Middelkoop, A., de Souza, J. G., van Veen, L. A., Gerrits, W. J. J., Kemp, B., Bolhuis, J. E., & Kleerebezem, M. (2021). Impact of early-life feeding on local intestinal microbiota and digestive system development in piglets. Scientific Reports, 11(1), 4213. https://doi.org/10.1038/s41598-021-83756-2 | eng |
dcterms.references | Chuah, L.-O., Foo, H. L., Loh, T. C., Mohammed Alitheen, N. B., Yeap, S. K., Abdul Mutalib, N. E., Abdul Rahim, R., & Yusoff, K. (2019). Postbiotic metabolites produced by Lactobacillus plantarum strains exert selective cytotoxicity effects on cancer cells. BMC Complementary and Alternative Medicine, 19(1), 114. https://doi.org/10.1186/s12906-019-2528-2 | eng |
dcterms.references | Cock, L. S., & Valencia, C. E. E. (2013). Actividad antimicrobiana de Weissella confusa y sus metabolitos frente a Escherichia coli y Klebsiella pneumoniae. Revista Colombiana de Biotecnología, 15(2), Article 2. https://doi.org/10.15446/rev.colomb.biote.v15n2.34979 | spa |
dcterms.references | Coconnier, M.-H., Liévin, V., Lorrot, M., & Servin, A. L. (2000). Antagonistic Activity of Lactobacillus acidophilus LB against Intracellular Salmonella enterica Serovar Typhimurium Infecting Human Enterocyte-Like Caco-2/TC-7 Cells. Applied and Environmental Microbiology, 66(3), 1152-1157. https://doi.org/10.1128/AEM.66.3.1152-1157.2000 | eng |
dcterms.references | Contessa, C. R., Souza, N. B. de, Gonçalo, G. B., Almeida, L. dos S., Manera, A. P., & Moraes, C. C. (2018). ESTUDO DE RESISTÊNCIA A CLORETO DE SÓDIO DE BACTERIOCINA DE Lactobacillus sakei. Revista do Congresso Sul Brasileiro de Engenharia de Alimentos, 4(1), Article 1. https://doi.org/10.5965/24473650412018081 | ptg |
dcterms.references | Cosentino, S., Larsen, M. V., Aarestrup, F. M., & Lund, O. (2013). PathogenFinder—Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data. PLOS ONE, 8(10), e77302. https://doi.org/10.1371/journal.pone.0077302 | eng |
dcterms.references | Coss, A. L., Bárcena-Gama, J. R., Guerra-Medina, C. E., Montañez-Valdez, O. D., Pérez-López, S., Barrientos-Niño, E., Bran, R. A. A., & Escobar-España, J. C. (2023). Síntesis de proteína mediante la fermentación de la caña de azúcar adicionada con urea y un cultivo ácido láctico. Revista de Investigaciones Veterinarias del Perú, 34(1), Article 1. https://doi.org/10.15381/rivep.v34i1.22993 | spa |
dcterms.references | Cotter, P. D., Hill, C., & Ross, R. P. (2013). Bacteriocins: Developing innate immunity for food. Nature Reviews Microbiology, 11(10), 777-788 | eng |
dcterms.references | Cragg, G. M., & Newman, D. J. (2013). Natural products: A continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA) - General Subjects, 1830(6), 3670-3695. https://doi.org/10.1016/j.bbagen.2013.02.008 | eng |
dcterms.references | Cragg, G. M., Newman, D. J., & Snader, K. M. (1997). Natural Products in Drug Discovery and Development. Journal of Natural Products, 60(1), 52-60. https://doi.org/10.1021/np9604893 | eng |
dcterms.references | Cruz, J. U. G. la, Rodríguez-Palma, J. J. J., Escalante-Herrera, K. S., Gutiérrez, L. de la T., Pérez-Morales, R., & Cruz-Leyva, M. C. de la. (2021). Identificación genética de bacterias ácido lácticas nativas en leche cruda de vaca y queso Poro artesanal. Manglar, 18(1), Article 1. https://doi.org/10.17268/manglar.2021.001 | spa |
dcterms.references | Cueto, C., & Aragón, S. (2012). Evaluación del potencial probiótico de bacterias ácido lácticas para reducir el colesterol in vitro. Scientia Agropecuaria, 3(1), Article 1. https://doi.org/10.17268/sci.agropecu.2012.01.06 | spa |
dcterms.references | Cueto-Vigil, M. C., Acuña-Monsalve, Y., & Valenzuela-Riaño, J. (2010). Evaluación in vitro del potencial probiótico de bacterias ácido lácticas aisladas de suero costeño. Actualidades Biológicas, 32(93), Article 93. https://doi.org/10.17533/udea.acbi.13809 | spa |
dcterms.references | Cui, H., Wu, S., & Duan, Z. (2022). Complete Genome Sequence of Limosilactobacillus reuteri Strain VHProbi M07, Isolated from Breast Milk. Microbiology Resource Announcements, 11(11), e00764-22. https://doi.org/10.1128/mra.00764-22 | eng |
dcterms.references | Daeschel, M. A., McKenney, M. C., & McDonald, L. C. (1990). Bacteriocidal Activity ofLactobacillus Plantarum C-11. Food Microbiology. https://doi.org/10.1016/0740-0020(90)90014-9 | eng |
dcterms.references | Danladi, Y., Loh, T. C., Foo, H. L., Akit, H., Md Tamrin, N. A., & Azizi, M. N. (2022). Effects of Postbiotics and Paraprobiotics as Replacements for Antibiotics on Growth Performance, Carcass Characteristics, Small Intestine Histomorphology, Immune Status and Hepatic Growth Gene Expression in Broiler Chickens. Animals. https://doi.org/10.3390/ani12070917 | eng |
dcterms.references | de Groot, N., Meneguzzi, M., de Souza, B., & de O. Costa, M. (2022). In Vitro Screening of Non-Antibiotic Components to Mitigate Intestinal Lesions Caused by Brachyspira hyodysenteriae, Lawsonia intracellularis and Salmonella enterica Serovar Typhimurium. Animals, 12(18), Article 18. https://doi.org/10.3390/ani12182356 | eng |
dcterms.references | De Koster, S., Ringenier, M., Lammens, C., Stegeman, A., Tobias, T., Velkers, F., Vernooij, H., Kluytmans-van den Bergh, M., Kluytmans, J., Dewulf, J., Goossens, H., & on behalf of the i-4-1-Health Study Group. (2021). ESBL-Producing, Carbapenem - and Ciprofloxacin-Resistant Escherichia coli in Belgian and Dutch Broiler and Pig Farms: A Cross-Sectional and Cross-Border Study. Antibiotics, 10(8), Article 8. https://doi.org/10.3390/antibiotics10080945 | eng |
dcterms.references | de Paula, A. T., Jeronymo-Ceneviva, A. B., Silva, L. F., Todorov, S. D., Franco, B. D. G. M., & Penna, A. L. B. (2015). Leuconostoc mesenteroides SJRP55: A potential probiotic strain isolated from Brazilian water buffalo mozzarella cheese. Annals of Microbiology, 65(2), 899-910. https://doi.org/10.1007/s13213-014-0933-9 | eng |
dcterms.references | De Vuyst, L., & Leroy, F. (2007). Bacteriocins from Lactic Acid Bacteria: Production, Purification, and Food Applications. Journal of Molecular Microbiology and Biotechnology, 13(4), 194-199. https://doi.org/10.1159/000104752 | eng |
dcterms.references | Delgado, A. M., Brito, D., Fevereiro, P., Peres, C., & Marques, J. F. (2001). Antimicrobial Activity of <i>L. Plantarum</I>, Isolated From a Traditional Lactic Acid Fermentation of Table Olives. Dairy Science & Technology. https://doi.org/10.1051/lait:2001124 | eng |
dcterms.references | Delgado, S., O’Sullivan, E., Fitzgerald, G., & Mayo, B. (2007). Subtractive Screening for Probiotic Properties of Lactobacillus Species from the Human Gastrointestinal Tract in the Search for New Probiotics. Journal of Food Science, 72(8), M310-M315. https://doi.org/10.1111/j.1750-3841.2007.00479.x | eng |
dcterms.references | Desmond, C., Fitzgerald, G., Stanton, C., & Ross, R. (2004). Improved Stress Tolerance of GroESL-Overproducing Lactococcus lactis and Probiotic Lactobacillus paracasei NFBC 338. Applied and Environmental Microbiology, 70(10), 5929-5936. https://doi.org/10.1128/AEM.70.10.5929-5936.2004 | eng |
dcterms.references | Diep, D. B., Straume, D., Kjos, M., Torres, C., & Nes, I. F. (2009). An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum. Peptides, 30(8), 1562-1574. https://doi.org/10.1016/j.peptides.2009.05.014 | eng |
dcterms.references | Diez-Echave, P., Martín-Cabrejas, I., Garrido-Mesa, J., Langa, S., Vezza, T., Landete, J. M., Hidalgo-García, L., Algieri, F., Mayer, M. J., Narbad, A., García-Lafuente, A., Medina, M., Rodríguez-Nogales, A., Rodríguez-Cabezas, M. E., Gálvez, J., & Arqués, J. L. (2021). Probiotic and Functional Properties of Limosilactobacillus reuteri INIA P572. Nutrients, 13(6), Article 6. https://doi.org/10.3390/nu13061860 | eng |
dcterms.references | Ding, W. k., & Shah, N. p. (2009). Effect of Various Encapsulating Materials on the Stability of Probiotic Bacteria. Journal of Food Science, 74(2), M100-M107. https://doi.org/10.1111/j.1750-3841.2009.01067.x | eng |
dcterms.references | Dominguez-Vara, I. A., Gómez-Galeana, A. E., Pescador-Salas, N., & González-Ronquillo, M. (2017). Fermentación cecal in vitro de cerdos Pelón Mexicano y Cuino Mexicano suplementados con cromo. Ecosistemas y Recursos Agropecuarios, 4(11), Article 11. https://doi.org/10.19136/era.a4n11.1116 | spa |
dcterms.references | Drago, L., Mattina, R., Nicola, L., Rodighiero, V., & De Vecchi, E. (2011). Macrolide resistance and In Vitro selection of resistance to antibiotics in Lactobacillus isolates. The Journal of Microbiology, 49(4), 651-656. https://doi.org/10.1007/s12275-011-0470-1 | eng |
dcterms.references | Ekblad, B., & Kristiansen, P. E. (2019). NMR structures and mutational analysis of the two peptides constituting the bacteriocin plantaricin S. Scientific Reports, 9(1), Article 1. https://doi.org/10.1038/s41598-019-38518-6 | eng |
dcterms.references | Ekblad, B., Kyriakou, P. K., Oppegård, C., Nissen-Meyer, J., Kaznessis, Y. N., & Kristiansen, P. E. (2016). Structure–Function Analysis of the Two-Peptide Bacteriocin Plantaricin EF. Biochemistry, 55(36), 5106-5116. https://doi.org/10.1021/acs.biochem.6b00588 | eng |
dcterms.references | Eren, A. M., Kiefl, E., Shaiber, A., Veseli, I., Miller, S. E., Schechter, M. S., Fink, I., Pan, J. N., Yousef, M., Fogarty, E. C., Trigodet, F., Watson, A. R., Esen, Ö. C., Moore, R. M., Clayssen, Q., Lee, M. D., Kivenson, V., Graham, E. D., Merrill, B. D., … Willis, A. D. (2021). Community-led, integrated, reproducible multi-omics with anvi’o. Nature Microbiology, 6(1), 3-6. https://doi.org/10.1038/s41564-020-00834-3 | eng |
dcterms.references | Ermurat, Y., Öztürk, M., Önal, C., & Kılıçsaymaz, Z. (2022). Effects of Structural Changes in Bile Salt Hydrolase Enzyme on Biocatalytic Efficiency and Activation Energy at Working pH and Temperature Conditions. Kemija u Industriji, 7-8. https://doi.org/10.15255/KUI.2021.075 | eng |
dcterms.references | Estupiñan, K., Barba, C. J., Martínez, A., & Delgado, J. V. (2020). Caracterización genética del porcino Criollo de Ecuador. Archivos de Zootecnia, 69(268), Article 268. https://doi.org/10.21071/az.v69i268.5385 | spa |
dcterms.references | Fatmarani, R., Arief, I. I., & Budiman, C. (2018). Purification of Bacteriocin from Lactobacillus plantarum IIA-1A5 Grown in Various Whey Cheese Media Under Freeze Dried Condition. Tropical Animal Science Journal, 41(1), Article 1. https://doi.org/10.5398/tasj.2018.41.1.53 | eng |
dcterms.references | Fayol-Messaoudi, D., Berger, C. N., Coconnier-Polter, M.-H., Liévin-Le Moal, V., & Servin, A. L. (2005). pH-, Lactic Acid-, and Non-Lactic Acid-Dependent Activities of Probiotic Lactobacilli against Salmonella enterica Serovaryphimurium. Applied and Environmental Microbiology, 71(10), 6008-6013. https://doi.org/10.1128/AEM.71.10.6008-6013.2005 | eng |
dcterms.references | Feng, C., Zhang, F., Wang, B., Gao, J., Wang, Y., & Shao, Y. (2019). Evaluación de la resistencia a la kanamicina y la neomicina en Lactobacillus plantarum mediante evolución experimental y secuenciación del genoma completo. Food Control, 98, 262-267. https://doi.org/10.1016/j.foodcont.2018.11.030 | spa |
dcterms.references | Fernandes, A., & Jobby, R. (2022). Bacteriocins from lactic acid bacteria and their potential clinical applications. Applied Biochemistry and Biotechnology, 194(10), 4377-4399. https://doi.org/10.1007/s12010-022-03870-3 | eng |
dcterms.references | Fernandes, L., Centeno, M., Belas, A., Nunes, T., Lopes Alves, P., Couto, N., & Pomba, C. (2012). Immediate after birth transmission of epidemic Salmonella enterica Typhimurium monophasic strains in pigs is a likely event. Journal of Antimicrobial Chemotherapy, 67(12), 3012-3014. https://doi.org/10.1093/jac/dks334 | eng |
dcterms.references | Fernández Ramírez, M. D., Smid, E. J., Abee, T., & Nierop Groot, M. N. (2015). Caracterización de biopelículas formadas por Lactobacillus plantarum WCFS1 y aislados de deterioro de alimentos. International Journal of Food Microbiology, 207, 23-29. https://doi.org/10.1016/j.ijfoodmicro.2015.04.030 | eng |
dcterms.references | Festing, M. F. (2003). Reduction of animal use: Experimental design and quality of experiments. Laboratory Animals, 37(Suppl 1), 47-53. https://doi.org/10.1258/00236770360564165 | eng |
dcterms.references | Fevria, R., & Hartanto, I. (2020). Isolation and characterization of lactic acid bacteria (lactobacillus sp.) from sauerkraut. https://doi.org/10.2991/absr.k.200807.018 | eng |
dcterms.references | Field, D., Fernandez de Ullivarri, M., Ross, R. P., & Hill, C. (2023). After a century of nisin research—Where are we now? FEMS Microbiology Reviews, 47(3), fuad023. https://doi.org/10.1093/femsre/fuad023 | eng |
dcterms.references | Fimland, N., Rogne, P., Fimland, G., Nissen-Meyer, J., & Kristiansen, P. E. (2008). Three-dimensional structure of the two peptides that constitute the two-peptide bacteriocin plantaricin EF. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1784(11), 1711-1719. https://doi.org/10.1016/j.bbapap.2008.05.003 | eng |
dcterms.references | Firdaus, R., Kasim, A., & Kasim, F. (2024). Resistance of Lactobacillus fermentum InaCC B1295 Encapsulated in Microcrystalline Cellulose from Palm Leaf Waste to Acidic Conditions Across Various Temperatures and Storage Durations". AJARCDE (Asian Journal of Applied Research for Community Development and Empowerment), 140-147. https://doi.org/10.29165/ajarcde.v8i2.412 | eng |
dcterms.references | Florensa, A. F., Kaas, R. S., Clausen, P. T. L. C., Aytan-Aktug, D., & Aarestrup, F. M. (2022). ResFinder – an open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microbial Genomics, 8(1), 000748. https://doi.org/10.1099/mgen.0.000748 | eng |
dcterms.references | Flores-Mancheno, L. G., García-Hernández, Y., Caicedo-Quinche, W. O., & Usca-Méndez, J. E. (2017). Influencia de dos aditivos en la respuesta productiva y sanitaria de cerdos en crecimiento -ceba. Ciencia y Agricultura, 14(1), Article 1. https://doi.org/10.19053/01228420.v14.n1.2017.6089 | spa |
dcterms.references | Flórez, A. B., & Mayo, B. (2018). Genome Analysis of Lactobacillus plantarum LL441 and Genetic Characterisation of the Locus for the Lantibiotic Plantaricin C. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01916 | eng |
dcterms.references | Flori, L., Gao, Y., Laloë, D., Lemonnier, G., Leplat, J.-J., Teillaud, A., Cossalter, A.-M., Laffitte, J., Pinton, P., Vaureix, C. de, Bouffaud, M., Mercat, M.-J., Lefèvre, F., Oswald, I. P., Bidanel, J.-P., & Rogel-Gaillard, C. (2011). Immunity Traits in Pigs: Substantial Genetic Variation and Limited Covariation. PLOS ONE, 6(7), e22717. https://doi.org/10.1371/journal.pone.0022717 | eng |
dcterms.references | Foster, J. W. (2003). Stress responses in pathogenic bacteria. Molecular Microbiology, 48(3), 709-717 | eng |
dcterms.references | French, K., Evans, J., Tanner, H., Gossain, S., & Hussain, A. (2016). The Clinical Impact of Rapid, Direct MALDI-ToF Identification of Bacteria from Positive Blood Cultures. PLOS ONE, 11(12), e0169332. https://doi.org/10.1371/journal.pone.0169332 | eng |
dcterms.references | Gadde, U., Oh, S. T., Lee, Y. S., Davis, E., Zimmerman, N., Rehberger, T., & Lillehoj, H. S. (2017). The Effects of Direct-fed Microbial Supplementation, as an Alternative to Antibiotics, on Growth Performance, Intestinal Immune Status, and Epithelial Barrier Gene Expression in Broiler Chickens. Probiotics and Antimicrobial Proteins, 9(4), 397-405. https://doi.org/10.1007/s12602-017-9275-9 | eng |
dcterms.references | Gámez, H. J., & Argoti, C. F. (2017). Determinación del efecto probiótico In vitro de Lactobacillus gasseri sobre una cepa de Staphylococcus epidermidis. Biosalud, 16(2), Article 2. https://doi.org/10.17151/biosa.2017.16.2.6 | spa |
dcterms.references | Ganoza, E. M., Morales, J. J., & Castro, M. W. L. de. (2016). ESTABILIZACIÓN DE HECES HUMANAS PROVENIENTES DE BAÑOS SECOS POR UN PROCESO DE FERMENTACIÓN ÁCIDO LÁCTICA. Ecología Aplicada, 15(2), Article 2. https://doi.org/10.21704/rea.v15i2.754 | spa |
dcterms.references | Gao, X., Xu, K., Ahmad, N., Qin, L., & Li, C. (2021). Recent advances in engineering of microbial cell factories for intelligent pH regulation and tolerance. Biotechnology Journal, 16(9), 2100151. https://doi.org/10.1002/biot.202100151 | eng |
dcterms.references | García Feliz, C. (2011). Salmonelosis porcina en España: Prevalencia, factores de riesgo y resistencia antimicrobiana = Swine salmonellosis in Spain: prevalence, risk factors and antimicrobial resistance. https://doi.org/10.18002/10612/1508 | spa |
dcterms.references | García, P., Allende, F., Legarraga, P., Huilcaman, M., & Solari, S. (2012). Bacterial identification based on protein mass spectrometry: A new insight at the microbiology of the 21st century. Revista chilena de infectología, 29(3), 263-272. https://doi.org/10.4067/S0716-10182012000300003 | eng |
dcterms.references | García-Martín, A. B., Roder, T., Schmitt, S., Zeeh, F., Bruggmann, R., & Perreten, V. (2022). Whole-genome analyses reveal a novel prophage and cgSNPs-derived sublineages of Brachyspira hyodysenteriae ST196. BMC Genomics, 23(1), 131. https://doi.org/10.1186/s12864-022-08347-5 | eng |
dcterms.references | García-Meniño, I., García, V., Mora, A., Díaz-Jiménez, D., Flament-Simon, S. C., Alonso, M. P., Blanco, J. E., Blanco, M., & Blanco, J. (2018). Swine Enteric Colibacillosis in Spain: Pathogenic Potential of mcr -1 ST10 and ST131 E. coli Isolates. Frontiers in Microbiology, 9, 2659. https://doi.org/10.3389/fmicb.2018.02659 | eng |
dcterms.references | Giraldo-Carmona, J., Narváez-Solarte, W., & Díaz-López, E. (2015). Probióticos en Cerdos: Resultados Contradictorios. Biosalud. https://doi.org/10.17151/biosa.2015.14.9 | spa |
dcterms.references | Gong, H. S., Meng, X. C., & Wang, H. (2010). Plantaricin MG active against Gram-negative bacteria produced by Lactobacillus plantarum KLDS1.0391 isolated from “Jiaoke”, a traditional fermented cream from China. Food Control, 21(1), 89-96. https://doi.org/10.1016/j.foodcont.2009.04.005 | eng |
dcterms.references | Gracheva, O. A., Mukhutdinova, D. M., Shageeva, A. R., Zukhrabova, Z. M., Shamsutdinova, N. V., Gertman, A. M., Kalyuzhny, I. I., & Nikulin, I. A. (2023). Breeding Store Pigs with Probiotics. En A. Beskopylny, M. Shamtsyan, & V. Artiukh (Eds.), XV International Scientific Conference “INTERAGROMASH 2022” (pp. 1836-1843). Springer International Publishing. https://doi.org/10.1007/978-3-031-21432-5_200 | eng |
dcterms.references | Grageola, F., Ly, J., Caro, Y., Lemus, C., & Mireles, S. (2022). Follaje de Albizia lebbeck (L.) Benth. Para alimentar cerdos. 2. Digestibilidad del tracto total y salida fecal de materiales. Revista Bio Ciencias, 9, 11 pág-11 pág. https://doi.org/10.15741/revbio.09.e1195 | spa |
dcterms.references | Grant, J. R., Enns, E., Marinier, E., Mandal, A., Herman, E. K., Chen, C., Graham, M., Van Domselaar, G., & Stothard, P. (2023). Proksee: In-depth characterization and visualization of bacterial genomes. Nucleic Acids Research, 51(W1), W484-W492. https://doi.org/10.1093/nar/gkad326 | eng |
dcterms.references | Grissa, I., Vergnaud, G., & Pourcel, C. (2007). CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Research, 35(Web Server issue), W52. https://doi.org/10.1093/nar/gkm360 | eng |
dcterms.references | Grosu, I. A., Marin, D. E., & Țăranu, I. (2022). The pig gut microbiota analysis techniques, a comparison. Archiva Zootechnica, 25(1), 90-115. https://doi.org/10.2478/azibna-2022-0007 | eng |
dcterms.references | Grześkowiak, Ł., Dadi, T. H., Zentek, J., & Vahjen, W. (2019). Developing Gut Microbiota Exerts Colonisation Resistance to Clostridium (syn. Clostridioides) difficile in Piglets. Microorganisms, 7(8), 218. https://doi.org/10.3390/microorganisms7080218 | eng |
dcterms.references | Grześkowiak, Ł., Saliu, E.-M., Wessels, A. G., Martínez-Vallespín, B., Männer, K., Cerón, J. J., Vahjen, W., & Zentek, J. (2023). Clostridioides difficile-mesocolonic oedema in neonatal suckling piglets develops regardless of the fibre composition in sow’s diets. animal, 17(2), 100697. https://doi.org/10.1016/j.animal.2022.100697 | eng |
dcterms.references | Guerra-Ordaz, A. A., González-Ortiz, G., La Ragione, R. M., Woodward, M. J., Collins, J. W., Pérez, J. F., & Martín-Orúe, S. M. (2014). Lactulose and Lactobacillus plantarum, a Potential Complementary Synbiotic To Control Postweaning Colibacillosis in Piglets. Applied and Environmental Microbiology, 80(16), 4879-4886. https://doi.org/10.1128/AEM.00770-14 | eng |
dcterms.references | Guevarra, R. B., Lee, J. H., Lee, S. H., Seok, M.-J., Kim, D. W., Kang, B. N., Johnson, T. J., Isaacson, R. E., & Kim, H. B. (2019). Piglet gut microbial shifts early in life: Causes and effects. Journal of Animal Science and Biotechnology, 10(1), 1. https://doi.org/10.1186/s40104-018-0308-3 | eng |
dcterms.references | Guo, H., Pan, L., Li, L., Lu, J., Kwok, L., Menghe, B., Zhang, H., & Zhang, W. (2017). Characterization of Antibiotic Resistance Genes from Lactobacillus Isolated from Traditional Dairy Products. Journal of Food Science, 82(3), 724-730. https://doi.org/10.1111/1750-3841.13645 | eng |
dcterms.references | Hanidah, I.-I., Putri, I. L. K., Putranto, W. S., Nurhadi, B., & Sumanti, D. M. (2019). Characterization of Probiotic Bacterial Candidates from Jatinangor-Indonesia Breast Milk. International Journal on Advanced Science, Engineering and Information Technology, 9(5), Article 5. https://doi.org/10.18517/ijaseit.9.5.10124 | eng |
dcterms.references | Hernández, A. Á., Munguía, C. A. G., Munguía, A. M. G., Ortíz, J. R. O., Vásquez, Á. C. S., & Flores, S. M. (2020). Sistema de producción del Cerdo Pelón Mexicano en la Península de Yucatán. Nova Scientia, 12(24), Article 24. https://doi.org/10.21640/ns.v12i24.2234 | spa |
dcterms.references | Hernández, D., Cardell, E., & Zárate, V. (2005). Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese: Initial characterization of plantaricin TF711, a bacteriocin-like substance produced by Lactobacillus plantarum TF711. Journal of Applied Microbiology, 99(1), 77-84. https://doi.org/10.1111/j.1365-2672.2005.02576.x | eng |
dcterms.references | Holo, H., Jeknic, Z., Daeschel, M., Stevanovic, S., & Nes, I. F. (2001). Plantaricin W from Lactobacillus plantarum belongs to a new family of two-peptide lantibioticsThe GenBank accession number for the sequence reported in this paper is AY007251. Microbiology, 147(3), 643-651. https://doi.org/10.1099/00221287-147-3-643 | eng |
dcterms.references | Hu, J., Nie, Y., Chen, J., Zhang, Y., Wang, Z., Fan, Q., & Yan, X. (2016). Gradual Changes of Gut Microbiota in Weaned Miniature Piglets. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01727 | eng |
dcterms.references | Hu, M., Zhao, H., Zhang, C., Yu, J., & Lu, Z. (2013). Purification and Characterization of Plantaricin 163, a Novel Bacteriocin Produced by Lactobacillus plantarum 163 Isolated from Traditional Chinese Fermented Vegetables. Journal of Agricultural and Food Chemistry, 61(47), 11676-11682. https://doi.org/10.1021/jf403370y | eng |
dcterms.references | Huang, C.-H., Chen, C.-C., Lin, Y.-C., Chen, C.-H., Lee, A.-Y., Liou, J.-S., Gu, C.-T., & Huang, L. (2021). The mutL Gene as a Genome-Wide Taxonomic Marker for High Resolution Discrimination of Lactiplantibacillus plantarum and Its Closely Related Taxa. Microorganisms, 9(8), Article 8. https://doi.org/10.3390/microorganisms9081570 | eng |
dcterms.references | Huang, C.-H., & Lee, F.-L. (2011). The dnaK gene as a molecular marker for the classification and discrimination of the Lactobacillus casei group. Antonie van Leeuwenhoek, 99(2), 319-327. https://doi.org/10.1007/s10482-010-9493-6 | eng |
dcterms.references | Huang, D., Liu, Y., & Liang, Y. (2014). Isolation and screening of salt-tolerance lactic acid bacteria strain and study on its characteristic producing lactic acid. Advanced Materials Research, 881-883, 746-750. https://doi.org/10.4028/www.scientific.net/amr.881-883.746 | eng |
dcterms.references | Hubrecht, R. C., & Carter, E. (2019). The 3Rs and Humane Experimental Technique: Implementing Change. Animals: An Open Access Journal from MDPI, 9(10), 754. https://doi.org/10.3390/ani9100754 | eng |
dcterms.references | Humam, A. M., Loh, T. C., Foo, H. L., Samsudin, A. A., Noordin, M. M., Zulkifli, I., & Izuddin, W. I. (2019). Effects of Feeding Different Postbiotics Produced by Lactobacillus Plantarum on Growth Performance, Carcass Yield, Intestinal Morphology, Gut Microbiota Composition, Immune Status, and Growth Gene Expression in Broilers Under Heat Stress. Animals. https://doi.org/10.3390/ani9090644 | eng |
dcterms.references | Hutkins, R. W., & Nannen, N. L. (1993). Ph homeostasis in lactic acid bacteria. Journal of Dairy Science, 76(8), 2354-2365. https://doi.org/10.3168/jds.s0022-0302(93)77573-6 | eng |
dcterms.references | Islam, M. A., Neuhoff, C., Rony, S. A., Große-Brinkhaus, C., Uddin, M. J., Hölker, M., Tesfaye, D., Tholen, E., Schellander, K., & Pröll-Cornelissen, M. J. (2019). PBMCs transcriptome profiles identified breed-specific transcriptome signatures for PRRSV vaccination in German Landrace and Pietrain pigs. PLOS ONE, 14(9), e0222513. https://doi.org/10.1371/journal.pone.0222513 | eng |
dcterms.references | Item 1006/103 | Repositorio CIAD. (2017, marzo 1). http://ciad.repositorioinstitucional.mx/jspui/handle/1006/103 | spa |
dcterms.references | Jacobson, M., Fellström, C., Lindberg, R., Wallgren, P., & Jensen-Waern, M. (2004). Experimental swine dysentery: Comparison between infection models. Journal of Medical Microbiology, 53(Pt 4), 273-280. https://doi.org/10.1099/jmm.0.05323-0 | eng |
dcterms.references | Jamaluddin, N., Ariff, A. B., & Wong, F. W. F. (2019). Purification of a Bacteriocin-Like Inhibitory Substance Derived from Pediococcus acidilactici Kp10 by an Aqueous Micellar Two-Phase System. Biotechnology Progress, 35(1), e2719. https://doi.org/10.1002/btpr.2719 | eng |
dcterms.references | Javes, C. H., & Sánchez, Y. V. (2021). Bacteriophage Growth Promoters in Poultry. ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M., 1288-1300. https://doi.org/10.18502/espoch.v1i5.9566 | eng |
dcterms.references | Jena, P. K., Trivedi, D., Thakore, K., Chaudhary, H., Giri, S. S., & Seshadri, S. (2013). Isolation and characterization of probiotic properties of Lactobacilli isolated from rat fecal microbiota. Microbiology and Immunology, 57(6), 407-416. https://doi.org/10.1111/1348-0421.12054 | eng |
dcterms.references | Jennings, M. (2011). Animal models of human disease: Challenges in enabling translation. Biochemical Pharmacology, 81(12), 1641-1648. https://doi.org/10.1016/j.bcp.2011.03.001 | eng |
dcterms.references | Jensen, A. N., Dalsgaard, A., Stockmarr, A., Nielsen, E. M., & Baggesen, D. L. (2006). Survival and Transmission of Salmonella enterica Serovar Typhimurium in an Outdoor Organic Pig Farming Environment. Applied and Environmental Microbiology, 72(3), 1833-1842. https://doi.org/10.1128/AEM.72.3.1833-1842.2006 | eng |
dcterms.references | Jensen, B. (1998). The impact of feed additives on the microbialecology of the gut in young pigs. Journal of Animal and Feed Sciences, 7(Suppl. 1), 45-64. https://doi.org/10.22358/jafs/69955/1998 | eng |
dcterms.references | Jiang, H., Tang, X., Zhou, Q., Zou, J., Li, P., Breukink, E., & Gu, Q. (2018). Plantaricin NC8 from Lactobacillus plantarum causes cell membrane disruption to Micrococcus luteus without targeting lipid II. Applied Microbiology and Biotechnology, 102(17), 7465-7473. https://doi.org/10.1007/s00253-018-9182-3 | eng |
dcterms.references | Jiang, Y., Zhang, J., Zhao, X., Zhao, W., Yu, Z., Chen, C., & Yang, Z. (2018). Complete genome sequencing of exopolysaccharide-producing Lactobacillus plantarum K25 provides genetic evidence for the probiotic functionality and cold endurance capacity of the strain. Bioscience, Biotechnology, and Biochemistry, 82(7), 1225-1233. https://doi.org/10.1080/09168451.2018.1453293 | eng |
dcterms.references | Jiang, Z., Paudyal, N., Xu, Y., Deng, T., Li, F., Pan, H., Peng, X., He, Q., & Yue, M. (2019). Antibiotic Resistance Profiles of Salmonella Recovered From Finishing Pigs and Slaughter Facilities in Henan, China. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2019.01513 | eng |
dcterms.references | Jiménez-Dı́az, R., Ruiz-Barba, J. L., Cathcart, D. P., Holo, H., Nes, I. F., Sletten, K., & Warner, P. J. (1995). Purification and Partial Amino Acid Sequence of Plantaricin S, a Bacteriocin Produced by Lactobacillus Plantarum LPCO10, the Activity of Which Depends on the Complementary Action of Two Peptides. Applied and Environmental Microbiology. https://doi.org/10.1128/aem.61.12.4459-4463.1995 | eng |
dcterms.references | Jo, H. E., Kwon, M.-S., Whon, T. W., Kim, D. W., Yun, M., Lee, J., Shin, M., Kim, S.-H., & Choi, H.-J. (2021). Alteration of Gut Microbiota After Antibiotic Exposure in Finishing Swine. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2021.596002 | eng |
dcterms.references | Jonach, B., Boye, M., Stockmarr, A., & Jensen, T. K. (2014). Fluorescence in situ hybridization investigation of potentially pathogenic bacteria involved in neonatal porcine diarrhea. BMC Veterinary Research, 10(1), 68. https://doi.org/10.1186/1746-6148-10-68 | eng |
dcterms.references | Jurado, H., Aguirre, D., & Ramírez, C. (2009). Caracterización de bacterias probióticas aisladas del intestino grueso de cerdos como alternativa al uso de antibióticos. Revista MVZ Córdoba, 14(2), Article 2. https://doi.org/10.21897/rmvz.356 | spa |
dcterms.references | Kang, M.-S., Oh, J.-S., Lee, H.-C., Lim, H.-S., Lee, S.-W., Yang, K.-H., Choi, N.-K., & Kim, S.-M. (2011). Inhibitory effect of Lactobacillus reuteri on periodontopathic and cariogenic bacteria. The Journal of Microbiology, 49(2), 193-199. https://doi.org/10.1007/s12275-011-0252-9 | eng |
dcterms.references | Kapustin, A. V., Laishevtcev, A. I., Aliper, T. I., Verkhovskiy, O. A., Kotelnikov, A. P., Mishin, A. M., Kunakov, K. Y., & Shemelkov, E. V. (2017). THE RESULTS OF CLINICAL STUDIES OF SAFETY, ANTIGENIC ACTIVITY AND EFFECTIVENESS OF INACTIVATED VACCINE «VERRES-KOLIKLOST» AGAINST ESCHERICHIOSIS AND CLOSTRIDIOSIS OF PIGS. Russian Journal of Agricultural and Socio-Economic Sciences, 66, 352-360. https://doi.org/10.18551/rjoas.2017-06.42 | eng |
dcterms.references | Karaffová, V., Teleky, J., Pintarič, M., Langerholc, T., Mudroňová, D., Hudec, E., & Ševčíková, Z. (2023). Application of Lactobacillus reuteri B1/1 (Limosilactobacillus reuteri) Improves Immunological Profile of the Non-Carcinogenic Porcine-Derived Enterocytes. Life, 13(5), Article 5. https://doi.org/10.3390/life13051090 | ptg |
dcterms.references | Karaseva, O., Ozhegov, G., Khusnutdinova, D., Siniagina, M., Anisimova, E., Akhatova, F., Fakhrullin, R., & Yarullina, D. (2023). Whole Genome Sequencing of the Novel Probiotic Strain Lactiplantibacillus plantarum FCa3L. Microorganisms, 11(5), Article 5. https://doi.org/10.3390/microorganisms11051234 | eng |
dcterms.references | Kassym, A. & Otros. (2024). Antimicrobial activity of phenolic compounds derived from honey. Nombre de la revista, Número del volumen, Páginas. https://doi.org/DOI | eng |
dcterms.references | Kebreab, E., Liedke, A., Caro, D., Deimling, S., Binder, M., & Finkbeiner, M. (2016). Environmental Impact of Using Specialty Feed Ingredients in Swine and Poultry Production: A Life Cycle Assessment1. Journal of Animal Science. https://doi.org/10.2527/jas.2015-9036 | eng |
dcterms.references | Keerthi, R., Pokharel, B., & Abunamous, Z. (2023). Probiotics: Production, Characterization, Types, and Health Benefits. | eng |
dcterms.references | Kemperman, R., Kuipers, A., Karsens, H., Nauta, A., Kuipers, O., & Kok, J. (2003). Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Applied and Environmental Microbiology, 69(3), 1589-1597. https://doi.org/10.1128/AEM.69.3.1589-1597.2003 | eng |
dcterms.references | Kim, E., Yang, S.-M., Lim, B., Park, S. H., Rackerby, B., & Kim, H.-Y. (2020). Design of PCR assays to specifically detect and identify 37 Lactobacillus species in a single 96 well plate. BMC Microbiology, 20, 96. https://doi.org/10.1186/s12866-020-01781-z | eng |
dcterms.references | Kim, J. W., Kim, J. H., & Kil, D. Y. (2015). Dietary organic acids for broiler chickens: A review. Revista Colombiana de Ciencias Pecuarias, 28(2), Article 2. https://doi.org/10.17533/udea.rccp.324917 | eng |
dcterms.references | Kırmusaoğlu, S. (2018). The role of probiotics in the regulation of microbial load in green detox smootie to prevent foodborne and gastrointestinal infections. Turkish Journal of Clinics and Laboratory, 9(2), Article 2. https://doi.org/10.18663/tjcl.300738 | eng |
dcterms.references | Klewicka, E., & Klewicki, R. (2009). In vitro fermentation of galactosyl derivatives of polyols by lactobacillus strains. Czech Journal of Food Sciences, 27(1), 65-70. https://doi.org/10.17221/176/2008-cjfs | eng |
dcterms.references | Knight, A. (2007). Systematic reviews of animal experiments demonstrate poor human clinical and toxicological utility. Alternatives to Laboratory Animals: ATLA, 35(6), 641-659. https://doi.org/10.1177/026119290703500610 | eng |
dcterms.references | Ko, H. I., Jeong, C. H., Hong, S. W., Eun, J.-B., & Kim, T.-W. (2022). Optimizing Conditions in the Acid Tolerance Test for Potential Probiotics Using Response Surface Methodology. Microbiology Spectrum, 10(4), e0162522. https://doi.org/10.1128/spectrum.01625-22 | eng |
dcterms.references | Konstantinidis, K. T., & Tiedje, J. M. (2005). Genomic insights that advance the species definition for prokaryotes. Proceedings of the National Academy of Sciences, 102(7), 2567-2572. https://doi.org/10.1073/pnas.0409727102 | eng |
dcterms.references | Kranker, S., Alban, L., Boes, J., & Dahl, J. (2003). Longitudinal Study of Salmonella enterica Serotype Typhimurium Infection in Three Danish Farrow-to-Finish Swine Herds. Journal of Clinical Microbiology, 41(6), 2282-2288. https://doi.org/10.1128/jcm.41.6.2282-2288.2003 | eng |
dcterms.references | Kristiansen, P. E., Fimland, G., Mantzilas, D., & Nissen-Meyer, J. (2005). Structure and Mode of Action of the Membrane-permeabilizing Antimicrobial Peptide Pheromone Plantaricin A. Journal of Biological Chemistry, 280(24), 22945-22950. https://doi.org/10.1074/jbc.M501620200 | eng |
dcterms.references | Kumar, R. V. J., Seo, B. J., Mun, M. R., Kim, C.-J., Lee, I., Kim, H., & Park, Y.-H. (2010). Putative probiotic Lactobacillus spp. From porcine gastrointestinal tract inhibit transmissible gastroenteritis coronavirus and enteric bacterial pathogens. Tropical Animal Health and Production, 42(8), 1855-1860. https://doi.org/10.1007/s11250-010-9648-5 | eng |
dcterms.references | Kurushima, J., Nakane, D., Nishizaka, T., & Tomita, H. (2014). Bacteriocin Protein BacL1 of Enterococcus faecalis Targets Cell Division Loci and Specifically Recognizes l-Ala2-Cross-Bridged Peptidoglycan. Journal of Bacteriology, 197(2), 286-295. https://doi.org/10.1128/jb.02203-14 | eng |
dcterms.references | Kuus, K., Kramarenko, T., Sõgel, J., Mäesaar, M., Fredriksson-Ahomaa, M., & Roasto, M. (2021). Prevalence and Serotype Diversity of Salmonella enterica in the Estonian Meat Production Chain in 2016–2020. Pathogens, 10(12), Article 12. https://doi.org/10.3390/pathogens10121622 | eng |
dcterms.references | Kwon, Y. J., Chun, B. H., Jung, H. S., Chu, J., Joung, H., Park, S. Y., Kim, B. K., & Jeon, C. O. (2021). Safety Assessment of Lactiplantibacillus (formerly Lactobacillus) plantarum Q180. 31(10), 1420-1429. https://doi.org/10.4014/jmb.2106.06066 | eng |
dcterms.references | Kyrkou, I., Byth Carstens, A., Ellegaard-Jensen, L., Kot, W., Zervas, A., Djurhuus, A. M., Neve, H., Hansen, M., & Hestbjerg Hansen, L. (2019). Expanding the Diversity of Myoviridae Phages Infecting Lactobacillus plantarum—A Novel Lineage of Lactobacillus Phages Comprising Five New Members. Viruses, 11(7), Article 7. https://doi.org/10.3390/v11070611 | eng |
dcterms.references | Kyrkou, I., Carstens, A. B., Ellegaard-Jensen, L., Kot, W., Zervas, A., Djurhuus, A. M., Neve, H., Franz, C. M. A. P., Hansen, M., & Hansen, L. H. (2020). Isolation and characterisation of novel phages infecting Lactobacillus plantarum and proposal of a new genus, “Silenusvirus”. Scientific Reports, 10(1), 8763. https://doi.org/10.1038/s41598-020-65366-6 | eng |
dcterms.references | Lallès, J.-P., Bosi, P., Smidt, H., & Stokes, C. R. (2007). Nutritional management of gut health in pigs around weaning. Proceedings of the Nutrition Society, 66(2), 260-268. https://doi.org/10.1017/S0029665107005484 | eng |
dcterms.references | Lapierre, L., Toro, C., & Martín, B. S. (2012). Estudio de la resistencia a antimicrobianos en cepas de Enterococcus spp, aisladas de aves y cerdos de producción. Avances en Ciencias Veterinarias, 25(1-2), Article 1-2. https://doi.org/10.5354/acv.v25i1-2.18284 | spa |
dcterms.references | Lata, P., & . S. (2023). Probiotics and human health. Research Journal of Biotechnology, 18. | eng |
dcterms.references | Lata, S., Mishra, N. K., & Raghava, G. P. (2010). AntiBP2: Improved version of antibacterial peptide prediction. BMC Bioinformatics, 11(1), S19. https://doi.org/10.1186/1471-2105-11-S1-S19 | eng |
dcterms.references | Lauková, A., Tomáška, M., Fraqueza, M. J., Szabóová, R., Bino, E., Ščerbová, J., Pogány Simonová, M., & Dvorožňáková, E. (2022). Bacteriocin-Producing Strain Lactiplantibacillus plantarum LP17L/1 Isolated from Traditional Stored Ewe’s Milk Cheese and Its Beneficial Potential. Foods, 11(7), Article 7. https://doi.org/10.3390/foods11070959 | eng |
dcterms.references | Leblanc, D., Raymond, Y., Lemay, M.-J., Champagne, C. P., & Brassard, J. (2022). Effect of probiotic bacteria on porcine rotavirus OSU infection of porcine intestinal epithelial IPEC-J2 cells. Archives of Virology, 167(10), 1999-2010. https://doi.org/10.1007/s00705-022-05510-x | eng |
dcterms.references | Lee, H. K., Choi, S.-H., Lee, C. R., Lee, S. H., Park, M. R., Kim, Y., Lee, M.-K., & Kim, G.-B. (2015). Screening and Characterization of Lactic Acid Bacteria Strains with Anti-inflammatory Activities through in vitro and Caenorhabditis elegans Model Testing. Korean Journal for Food Science of Animal Resources, 35(1), 91-100. https://doi.org/10.5851/kosfa.2015.35.1.91 | eng |
dcterms.references | Lee, I., Ouk Kim, Y., Park, S.-C., & Chun, J. (2016). OrthoANI: An improved algorithm and software for calculating average nucleotide identity. International Journal of Systematic and Evolutionary Microbiology, 66(2), 1100-1103. https://doi.org/10.1099/ijsem.0.000760 | eng |
dcterms.references | Lee, J.-H., Kim, Y.-J., Hwang, J., Kim, Y.-Y., Kim, H.-S., & Park, D.-Y. (2024). The Beneficial Effect of Lactiplantibacillus Plantarum DM083 on Restoring the Hyperglycemia in High-Sucrose Diet-Fed Drosophila. Journal of Diabetes and Treatment. https://www.gavinpublishers.com/article/view/the-beneficial-effect-of-lactiplantibacillus-plantarum--dm083-on-restoring-the-hyperglycemia-in-high-sucrose-diet-fed-drosophila | eng |
dcterms.references | Lee, J.-Y., Han, G. G., Choi, J., Jin, G.-D., Kang, S.-K., Chae, B. J., Kim, E. B., & Choi, Y.-J. (2017). Pan-Genomic Approaches in Lactobacillus reuteri as a Porcine Probiotic: Investigation of Host Adaptation and Antipathogenic Activity. Microbial Ecology, 74(3), 709-721. https://doi.org/10.1007/s00248-017-0977-z | eng |
dcterms.references | Legarraga, P., Moraga, M., Lam, M., Geoffroy, E., Zumarán, C., & García, P. (2013). Impact of mass spectrometry by MALDI-TOF MS for the rapid identification of aerobic and anaerobic bacteria of clinical importance. Revista chilena de infectología, 30(2), 140-146. https://doi.org/10.4067/S0716-10182013000200004 | eng |
dcterms.references | Lekagul, A., Tangcharoensathien, V., Liverani, M., Mills, A., Rushton, J., & Yeung, S. (2021). Understanding antibiotic use for pig farming in Thailand: A qualitative study. Antimicrobial Resistance & Infection Control, 10(1), 3. https://doi.org/10.1186/s13756-020-00865-9 | eng |
dcterms.references | Leverrier, P., Dimova, D., Pichereau, V., Auffray, Y., Boyaval, P., & Jan, G. (2003). Susceptibility and Adaptive Response to Bile Salts in Propionibacterium freudenreichii: Physiological and Proteomic Analysis. Applied and Environmental Microbiology, 69(7), 3809-3818. https://doi.org/10.1128/AEM.69.7.3809-3818.2003 | eng |
dcterms.references | Li, R., Li, L., Hong, P., Lang, W., Hui, J., Yang, Y., & Zheng, X. (2019). β-Carotene prevents weaning-induced intestinal inflammation by modulating gut microbiota in piglets. Animal Bioscience, 34(7), 1221-1234. https://doi.org/10.5713/ajas.19.0499 | eng |
dcterms.references | Li, S., Zhang, Y., Yin, P., Zhang, K., Liu, Y., Gao, Y., Li, Y., Wang, T., Lu, S., & Li, B. (2021). Probiotic potential of γ-aminobutyric acid (GABA)–producing yeast and its influence on the quality of cheese. Journal of Dairy Science, 104(6), 6559-6576. https://doi.org/10.3168/jds.2020-19845 | eng |
dcterms.references | Li, S.-J., & So, J.-S. (2021). In Vitro Characterization of Cell Surface Properties of 14 Vaginal Lactobacillus Strains as Potential Probiotics. Advances in Microbiology, 11(2), Article 2. https://doi.org/10.4236/aim.2021.112010 | eng |
dcterms.references | Li, X., Gu, Q., Lou, X., Zhang, X., Song, D., Shen, L., & Zhao, Y. (2013). Complete Genome Sequence of the Probiotic Lactobacillus plantarum Strain ZJ316. Genome Announcements, 1(2), 10.1128/genomea.00094-13. https://doi.org/10.1128/genomea.00094-13 | eng |
dcterms.references | Li, Y., He, L., Zhao, Q., & Bo, T. (2022). Microbial and metabolic profiles of bronchopulmonary dysplasia and therapeutic effects of potential probiotics Limosilactobacillus reuteri and Bifidobacterium bifidum. Journal of Applied Microbiology, 133(2), 908-921. https://doi.org/10.1111/jam.15602 | eng |
dcterms.references | Limanska, N., Merlich, A., Zlatohurska, M., Galkin, M., Korotaieva, N., Ivanytsia, T., Choiset, Y., Ivanytsia, V., & Haertlé, T. (2022). BACTERIOCIN ASSOCIATED GENES IN FRENCH AND UKRAINIAN FERMENTED VEGETABLE ISOLATES OF LACTIPLANTIBACILLUS PLANTARUM: Short Communication. Journal of Microbiology, Biotechnology and Food Sciences, 12(1), Article 1. https://doi.org/10.55251/jmbfs.5871 | eng |
dcterms.references | Lin, C., Wan, J., Su, Y., & Zhu, W. (2018). Effects of Early Intervention with Maternal Fecal Microbiota and Antibiotics on the Gut Microbiota and Metabolite Profiles of Piglets. Metabolites, 8(4), Article 4. https://doi.org/10.3390/metabo8040089 | eng |
dcterms.references | Linares, V., Linares, L., & Mendoza, G. (2011). Caracterización etnozootécnica y potencial carnicero de Sus scrofa “cerdo criollo” en Latinoamérica. Scientia Agropecuaria, 2(2), Article 2. https://doi.org/10.17268/sci.agropecu.2011.02.05 | spa |
dcterms.references | Liu, C.-J., Wang, R., Gong, F.-M., Liu, X.-F., Zheng, H.-J., Luo, Y.-Y., & Li, X.-R. (2015). Secuencias genómicas completas y análisis comparativo del genoma de la cepa 5-2 de Lactobacillus plantarum aislada de soja fermentada. Genomics, 106(6), 404-411. https://doi.org/10.1016/j.ygeno.2015.07.007 | spa |
dcterms.references | Liu, H., Zhang, L., Yi, H., Han, X., & Chi, C. (2016). Identification and characterization of plantaricin Q7, a novel plantaricin produced by Lactobacillus plantarum Q7. LWT - Food Science and Technology, 71, 386-390. https://doi.org/10.1016/j.lwt.2016.04.009 | eng |
dcterms.references | Liu, J., Qiao, B., Cai, Y., Tan, Z., & Deng, N. (2023). Diarrhea accompanies intestinal inflammation and intestinal mucosal microbiota dysbiosis during fatigue combined with a high-fat diet. BMC Microbiology, 23(1), 151. https://doi.org/10.1186/s12866-023-02896-9 | eng |
dcterms.references | Liu, S., Ma, Y., Zheng, Y., Zhao, W., Zhao, X., Luo, T., & Yang, Z. (2020). Cold-stress response of probiotic Lactobacillus plantarum K25 by iTRAQ proteomic analysis. Journal of Microbiology and Biotechnology, 30(2), 187-195. https://doi.org/10.4014/jmb.1909.09021 | eng |
dcterms.references | Liu, W. C., Kang, J. S., & Kim, I. H. (2018). Dietary Lactobacillus Plantarum GB805 Supplementation Improves Growth Performance and Nutrient Digestibility in Weaning Pigs. Indian Journal of Animal Research. https://doi.org/10.18805/ijar.b-852 | eng |
dcterms.references | Liu, Y., Li, Y., Lu, Q., Sun, L., Du, S., Liu, T., Hou, M., Ge, G., Wang, Z., & Jia, Y. (2022). Effects of Lactic Acid Bacteria Additives on the Quality, Volatile Chemicals and Microbial Community of Leymus Chinensis Silage During Aerobic Exposure. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2022.938153 | eng |
dcterms.references | Lu, X., Zhang, M., Ma, Y., Li, G., Zhao, X., & Qian, W. (2023). Protective effect of Limosilactobacillus reuteri-fermented yogurt on mouse intestinal barrier injury induced by enterotoxigenic Escherichia coli. Journal of the Science of Food and Agriculture, 103(15), 7494-7505. https://doi.org/10.1002/jsfa.12836 | eng |
dcterms.references | Luo, H., Li, P., Wang, H., Roos, S., Ji, B., & Nielsen, J. (2021). Genome-scale insights into the metabolic versatility of Limosilactobacillus reuteri. BMC Biotechnology, 21(1), 46. https://doi.org/10.1186/s12896-021-00702-w | eng |
dcterms.references | Luo, K., Wang, M., Li, Y., Pan, M., Xie, Y., Qin, G., Liu, Y., Li, L., Liu, Q., & Tian, X. (2022). Evaluation of Potential Probiotic Properties of a Strain of Lactobacillus Plantarum for Shrimp Farming: From Beneficial Functions to Safety Assessment. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2022.854131 | eng |
dcterms.references | Luo, M., Zhou, W., Tao, W., Xing, J., Li, J., Yang, Y., & Guo, Y. (2023). Whole-Genome Sequencing of Lactiplantibacillus plantarum YY-112 and Investigation of Its Immune-Modulating Abilities In Vivo. Fermentation, 9(12), Article 12. https://doi.org/10.3390/fermentation9120996 | eng |
dcterms.references | Ma, J., Chen, J., Gan, M., Chen, L., Zhao, Y., Zhu, Y., Niu, L., Zhang, S., Zhu, L., & Shen, L. (2022). Gut Microbiota Composition and Diversity in Different Commercial Swine Breeds in Early and Finishing Growth Stages. Animals, 12(13), Article 13. https://doi.org/10.3390/ani12131607 | eng |
dcterms.references | Machuca-Guevara, J. I., Suárez-Peña, E. A., Darricau, E. M., & Mialhe-Matonnier, E. L. (2019). Caracterización molecular de los microorganismos presentes durante el proceso fermentativo de los granos de cacao (Theobroma cacao). Revista Peruana de Biología, 26(4), Article 4. https://doi.org/10.15381/rpb.v26i4.17220 | spa |
dcterms.references | Macias-Diaz, A., Lopez, J. J., Bravo, M., Jardín, I., Garcia-Jimenez, W. L., Blanco-Blanco, F. J., Cerrato, R., & Rosado, J. A. (2024). Postbiotics of Lacticaseibacillus paracasei CECT 9610 and Lactiplantibacillus plantarum CECT 9608 attenuates store-operated calcium entry and FAK phosphorylation in colorectal cancer cells. Molecular Oncology, 18(5), 1123-1142. https://doi.org/10.1002/1878-0261.13629 | eng |
dcterms.references | Mahgoub, M. A., Abbass, A. A. G., Abaza, A. F., & Shoukry, M. S. (2023). Probiotic lactic acid bacteria as a means of preventing in vitro urinary catheter colonization and biofilm formation. Journal of the Egyptian Public Health Association, 97(1), 30. https://doi.org/10.1186/s42506-022-00124-2 | eng |
dcterms.references | Malmo, C., Giordano, I., & Mauriello, G. (2021). Effect of Microencapsulation on Survival at Simulated Gastrointestinal Conditions and Heat Treatment of a Non Probiotic Strain, Lactiplantibacillus plantarum 48M, and the Probiotic Strain Limosilactobacillus reuteri DSM 17938. Foods, 10(2), Article 2. https://doi.org/10.3390/foods10020217 | eng |
dcterms.references | Mann, E., Schmitz-Esser, S., Zebeli, Q., Wagner, M., Ritzmann, M., & Metzler-Zebeli, B. U. (2014). Mucosa-Associated Bacterial Microbiome of the Gastrointestinal Tract of Weaned Pigs and Dynamics Linked to Dietary Calcium-Phosphorus. PLOS ONE, 9(1), e86950. https://doi.org/10.1371/journal.pone.0086950 | eng |
dcterms.references | Manzano A, C., Estupiñán G, D., & Poveda E, E. (2012). CLINICAL EFECTS OF PROBIOTICS: WHAT DOES THE EVIDENCE SAYS. Revista chilena de nutrición, 39(1), 98-110. https://doi.org/10.4067/S0717-75182012000100010 | eng |
dcterms.references | Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal, 17(1), Article 1. https://doi.org/10.14806/ej.17.1.200 | eng |
dcterms.references | Martino, M. E., Bayjanov, J. R., Caffrey, B. E., Wels, M., Joncour, P., Hughes, S., Gillet, B., Kleerebezem, M., van Hijum, S. A. F. T., & Leulier, F. (2016). Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats. Environmental Microbiology, 18(12), 4974-4989. https://doi.org/10.1111/1462-2920.13455 | eng |
dcterms.references | Matsuura S., A., Morales C., S., Calle E., S., & Ara G., M. (2010). Susceptibilidad a antibacterianos in vitro de Salmonella enterica aislada de cuyes de crianza familiar-comercial en la provincia de Carhuaz, Áncash. Revista de Investigaciones Veterinarias del Perú, 21(1), 93-99. http://www.scielo.org.pe/scielo.php?script=sci_abstract&pid=S1609-91172010000100014&lng=es&nrm=iso&tlng=es | eng |
dcterms.references | McCormack, U. M., Curião, T., Buzoianu, S. G., Prieto, M. L., Ryan, T., Varley, P., Crispie, F., Magowan, E., Metzler-Zebeli, B. U., Berry, D., O’Sullivan, O., Cotter, P. D., Gardiner, G. E., & Lawlor, P. G. (2017). Exploring a Possible Link between the Intestinal Microbiota and Feed Efficiency in Pigs. Applied and Environmental Microbiology, 83(15), e00380-17. https://doi.org/10.1128/AEM.00380-17 | eng |
dcterms.references | McFarland, L. V., Evans, C. T., & Goldstein, E. J. C. (2018). Strain-Specificity and Disease-Specificity of Probiotic Efficacy: A Systematic Review and Meta-Analysis. Frontiers in Medicine, 5. https://doi.org/10.3389/fmed.2018.00124 | eng |
dcterms.references | McNaught, C., Woodcock, N. P., MacFie, J., & Mitchell, C. J. (2002). A Prospective Randomised Study of the Probiotic Lactobacillus Plantarum 299V on Indices of Gut Barrier Function in Elective Surgical Patients. Gut. https://doi.org/10.1136/gut.51.6.827 | eng |
dcterms.references | Meier-Kolthoff, J. P., Carbasse, J. S., Peinado-Olarte, R. L., & Göker, M. (2022). TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Research, 50(D1), D801-D807. https://doi.org/10.1093/nar/gkab902 | eng |
dcterms.references | Mejía-Martínez, K., Lemus-Flores, C., & Zambrano-Zaragoza, J. F. (2010). Estudio comparativo en la respuesta inmune humoral de Ig M e Ig G en cerdo criollo mexicano y comercial. Archivos de Zootecnia, 59(226), Article 226. https://doi.org/10.21071/az.v59i226.4732 | spa |
dcterms.references | Meléndez Gélvez, I., Pardo Pérez, E., Cavadía Martinez, T. I., Meléndez Gélvez, I., Pardo Pérez, E., & Cavadía Martinez, T. I. (2015). Variación genética en cerdo doméstico (Sus scrofa domestica) de Córdoba-Colombia basada en marcadores microsatélites. Revista mexicana de ciencias pecuarias, 6(4), 443-452. http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S2007-11242015000400443&lng=es&nrm=iso&tlng=es | spa |
dcterms.references | Méndez, B., & Lira-Saldivar, R. (2023). Beneficios Potenciales de la Nanotecnología Para una Producción Animal Más Eficiente. International Journal of Biological and Natural Sciences, 3, 2-19. https://doi.org/10.22533/at.ed.813332327037 | spa |
dcterms.references | Meng, F., Zhu, X., Lu, F., Bie, X., & Lu, Z. (2017). Functional Analysis of Plantaricin E and Its Mutant by Heterologous Expression in Escherichia coli. Applied Biochemistry and Biotechnology, 182(1), 311-323. https://doi.org/10.1007/s12010-016-2328-9 | eng |
dcterms.references | Meng, Q., Luo, Z., Cao, C., Sun, S., Ma, Q., Li, Z., Shi, B., & Shan, A. (2020). Weaning Alters Intestinal Gene Expression Involved in Nutrient Metabolism by Shaping Gut Microbiota in Pigs. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00694 | eng |
dcterms.references | Messens, W., & De Vuyst, L. (2002). Inhibitory substances produced by lactobacilli isolated from sourdoughs—A review. International Journal of Food Microbiology, 72(1-2), 31-43. | eng |
dcterms.references | Mikkelsen, L. L., Naughton, P. J., Hedemann, M. S., & Jensen, B. B. (2004). Effects of Physical Properties of Feed on Microbial Ecology and Survival of Salmonella enterica Serovar Typhimurium in the Pig Gastrointestinal Tract. Applied and Environmental Microbiology, 70(6), 3485-3492. https://doi.org/10.1128/AEM.70.6.3485-3492.2004 | eng |
dcterms.references | Mikkili, I. (2012). Purification and Characterization of Bacteriocin Produced by Lactobacillus plantarum Isolated from Cow Milk. | eng |
dcterms.references | Milanović, V., Osimani, A., Garofalo, C., Belleggia, L., Maoloni, A., Cardinali, F., Mozzon, M., Foligni, R., Aquilanti, L., & Clementi, F. (2020). Selection of cereal-sourced lactic acid bacteria as candidate starters for the baking industry. PLOS ONE, 15(7), e0236190. https://doi.org/10.1371/journal.pone.0236190 | eng |
dcterms.references | Milioni, C., Martínez, B., Degl’Innocenti, S., Turchi, B., Fratini, F., Cerri, D., & Fischetti, R. (2015). A novel bacteriocin produced by Lactobacillus plantarum LpU4 as a valuable candidate for biopreservation in artisanal raw milk cheese. Dairy Science & Technology, 95(4), 479-494. https://doi.org/10.1007/s13594-015-0230-9 | eng |
dcterms.references | Minh, B. Q., Nguyen, M. A. T., & Von Haeseler, A. (2013). Ultrafast Approximation for Phylogenetic Bootstrap. Molecular Biology and Evolution, 30(5), 1188-1195. https://doi.org/10.1093/molbev/mst024 | eng |
dcterms.references | Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 37(5), 1530-1534. https://doi.org/10.1093/molbev/msaa015 | eng |
dcterms.references | Miranda Hevia, R., Mencía Ares, Ó., Gómez García, M., Carvajal Urueña, A. M., & Rubio Nistal, P. M. (2017). Etiología y control de la colibacilosis porcina. Albéitar: publicación veterinaria independiente, 207, 16-18. https://dialnet.unirioja.es/servlet/articulo?codigo=6058174 | spa |
dcterms.references | Miranda-Yuquilema, J. E., Marin-Cárdenas, A., Sánchez-Macías, D., & García-Hernández, Y. (2018). Obtención, caracterización y evaluación de dos preparados candidatos a probióticos desarrollados con residuos agroindustriales. Revista MVZ Córdoba, 23(1), Article 1. https://doi.org/10.21897/rmvz.1243 | spa |
dcterms.references | Mogollon, C., Mogollón, G., Aguilera, R., Ortíz, J., & Suárez, H. (2021). Producción y evaluación de inóculos lácteos probióticos obtenidos del tracto digestivo de lechón (sus scrofa domesticus) propuestos para alimentación porcina. Revista Mexicana De Ciencias Pecuarias, 12(1), 120-137. https://doi.org/10.22319/rmcp.v12i1.5445 | spa |
dcterms.references | Mogollon, C. R., Mogollón, G. O., Aguilera, R. A., Ortíz, J. Q., & Súarez, H. S. (2021). Producción y evaluación de inóculos lácteos probióticos obtenidos del tracto digestivo de lechón (Sus scrofa domesticus) propuestos para alimentación porcina. Revista Mexicana de Ciencias Pecuarias, 12(1), Article 1. https://doi.org/10.22319/rmcp.v12i1.5445 | spa |
dcterms.references | Mohammaddoost Chakoosari, M., Faezi Ghasemi, M., Masiha, A., Kazemi Darsanaki, R., & Amini, A. (2015). Antimicrobial Effect of Lactic Acid Bacteria against Common Pathogenic Bacteria. Medical Laboratory Journal, 9(5), 4-1. https://doi.org/10.18869/acadpub.mlj.9.5.4 | eng |
dcterms.references | Mohania, D., Nagpal, R., Kumar, M., Bhardwaj, A., Yadav, M., Jain, S., Marotta, F., Singh, V., Parkash, O., & Yadav, H. (2008). Molecular approaches for identification and characterization of lactic acid bacteria. Journal of Digestive Diseases, 9(4), 190-198. https://doi.org/10.1111/j.1751-2980.2008.00345.x | eng |
dcterms.references | Molnár, L. (1996). Sensitivity of strains of Serpulina hyodysenteriae isolated in Hungary to chemotherapeutic drugs. Veterinary Record, 138(7), 158-160. https://doi.org/10.1136/vr.138.7.158 | eng |
dcterms.references | Monger, X. C., Gilbert, A.-A., Saucier, L., & Vincent, A. T. (2021). Antibiotic Resistance: From Pig to Meat. Antibiotics, 10(10), Article 10. https://doi.org/10.3390/antibiotics10101209 | eng |
dcterms.references | Morita, H., Toh, H., Fukuda, S., Horikawa, H., Oshima, K., Suzuki, T., Murakami, M., Hisamatsu, S., Kato, Y., Takizawa, T., Fukuoka, H., Yoshimura, T., Itoh, K., O’Sullivan, D. J., McKay, L. L., Ohno, H., Kikuchi, J., Masaoka, T., & Hattori, M. (2008). Comparative Genome Analysis of Lactobacillus reuteri and Lactobacillus fermentum Reveal a Genomic Island for Reuterin and Cobalamin Production. DNA Research, 15(3), 151-161. https://doi.org/10.1093/dnares/dsn009 | eng |
dcterms.references | Morita, S., Ikeda, N., Horikami, M., Soda, K., Ishihara, K., Teraoka, R., Terada, T., & Kitagawa, S. (2011). Effects of phosphatidylethanolamine N-methyltransferase on phospholipid composition, microvillus formation and bile salt resistance in LLC-PK1 cells. The FEBS Journal, 278(24), 4768-4781. https://doi.org/10.1111/j.1742-4658.2011.08377.x | eng |
dcterms.references | Morton, D. B., & Hawkins, P. (2007). Welfare assessment and humane endpoints. ILAR Journal, 48(3), 205-208. https://doi.org/10.1093/ilar.48.3.205 | eng |
dcterms.references | Mourad, K., Zadi‐Karam, H., & Karam, N. (2005). Detectionn and Activity of Plantaricin OL15 a Bacteriocin Produced by ≪i>Lactobacillus Plantarum</I> OL15 Isolated From Algerian Fermented Olives. Grasas Y Aceites. https://doi.org/10.3989/gya.2005.v56.i3.107 | eng |
dcterms.references | Mu, G., Zhang, Z., Wang, J., Jiang, S., Wang, H., Xu, Y., Li, X., Chi, L., Li, Y., Tuo, Y., & Zhu, X. (2022). Antigenicity and Safety Evaluation of Lactiplantibacillus plantarum 7-2 Screened to Reduce α-Casein Antigen. Foods, 11(1), Article 1. https://doi.org/10.3390/foods11010088 | eng |
dcterms.references | Mulumba‐Mfumu, L. K., Saegerman, C., Dixon, L. K., Madimba, K. C., Kazadi, E. K., Mukalakata, N. T., Oura, C. A. L., Chenais, E., Masembe, C., Ståhl, K., Thiry, É., & Penrith, M. (2019). African Swine Fever: Update on Eastern, Central and Southern Africa. Transboundary and Emerging Diseases. https://doi.org/10.1111/tbed.13187 | eng |
dcterms.references | Mutmainna, A., Arief, I. I., & Budiman, C. (2021). The growth and production of antimicrobial compounds from Lactobacillus plantarum IIA-1A5 on cheese whey medium. Journal of the Indonesian Tropical Animal Agriculture, 46(2), 173-184. https://doi.org/10.14710/jitaa.46.2.173-184 | eng |
dcterms.references | Nair, A. (2016). In-vitro Transit Tolerance of Probiotic Bacillus species in Human Gastrointestinal Tract. International Journal of Science and Research (IJSR). https://www.academia.edu/88785246/In_vitro_Transit_Tolerance_of_Probiotic_Bacillus_species_in_Human_Gastrointestinal_Tract | eng |
dcterms.references | Namrak, T., Raethong, N., Jatuponwiphat, T., Nitisinprasert, S., Vongsangnak, W., & Nakphaichit, M. (2022). Probing Genome-Scale Model Reveals Metabolic Capability and Essential Nutrients for Growth of Probiotic Limosilactobacillus reuteri KUB-AC5. Biology, 11(2), Article 2. https://doi.org/10.3390/biology11020294 | eng |
dcterms.references | Naquira, C. (2010). Las zoonosis parasitarias: Problema de salud pública en el Perú. Revista Peruana de Medicina Experimental y Salud Pública. https://doi.org/10.17843/rpmesp.2010.274.1518 | spa |
dcterms.references | Newman, D. J., Cragg, G. M., & Snader, K. M. (2003). Natural Products as Sources of New Drugs over the Period 1981−2002. Journal of Natural Products, 66(7), 1022-1037. https://doi.org/10.1021/np030096l | eng |
dcterms.references | Neyra, L. C. (2007). Alimentos funcionales. Biotempo, 7, 46-54. https://doi.org/10.31381/biotempo.v7i0.872 | spa |
dcterms.references | Nguyen, L.-T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution, 32(1), 268-274. https://doi.org/10.1093/molbev/msu300 | eng |
dcterms.references | Nurk, S., Meleshko, D., Korobeynikov, A., & Pevzner, P. A. (2017). metaSPAdes: A new versatile metagenomic assembler. Genome Research, 27(5), 824. https://doi.org/10.1101/gr.213959.116 | eng |
dcterms.references | Ocampo-Gallego, R. J. (2019). Análisis de diversidad genética en cerdo criollo san pedreño utilizando datos de pedigrí. Ecosistemas y Recursos Agropecuarios, 6(17), Article 17. https://doi.org/10.19136/era.a6n17.2049 | spa |
dcterms.references | Ochiai, S., Adachi, Y., Asano, T., Prapasarakul, N., Ogawa, Y., & Ochi, K. (2000). Presence of 22-kDa protein reacting with sera in piglets experimentally infected with Brachyspira hyodysenteriae. FEMS Immunology & Medical Microbiology, 28(1), 43-47. https://doi.org/10.1111/j.1574-695X.2000.tb01455.x | eng |
dcterms.references | Ogunbanwo, S. T., Sanni, A. I., & Onilude, A. A. (2003). Characterization of bacteriocin produced by Lactobacillus plantarum F1 and Lactobacillus brevis OG1. African Journal of Biotechnology, 2(8), Article 8. https://doi.org/10.5897/AJB2003.000-1045 | eng |
dcterms.references | Oh, M.-R., Jang, H.-Y., Lee, S.-Y., Jung, S. J., Chae, S.-W., Lee, S., & Park, B.-H. (2021). Lactobacillus Plantarum HAC01 Supplementation Improves Glycemic Control in Prediabetic Subjects: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients. https://doi.org/10.3390/nu13072337 | eng |
dcterms.references | Oh, W., Jung, J., & Joo, J. W. J. (2024). MR-GGI: Accurate inference of gene–gene interactions using Mendelian randomization. BMC Bioinformatics, 25(1), 192. https://doi.org/10.1186/s12859-024-05808-4 | eng |
dcterms.references | Oliveira, R. P. de S. (2017). Produtos de origem microbiana de interesse farmacêutico, alimentar e ambiental [Text, Universidade de São Paulo]. https://doi.org/10.11606/T.9.2020.tde-17022020-140940 | ptg |
dcterms.references | Oloton, E., & Obaseki, E. (2020). Quantitative assessment of available probiotic products in community pharmacies in Benin City, Nigeria. Tropical Journal of Pharmaceutical Research, 19(7), Article 7. https://doi.org/10.4314/tjpr.v19i7.25 | eng |
dcterms.references | Olson, R. D., Assaf, R., Brettin, T., Conrad, N., Cucinell, C., Davis, J. J., Dempsey, D. M., Dickerman, A., Dietrich, E. M., Kenyon, R. W., Kuscuoglu, M., Lefkowitz, E. J., Lu, J., Machi, D., Macken, C., Mao, C., Niewiadomska, A., Nguyen, M., Olsen, G. J., … Stevens, R. L. (2022). Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): A resource combining PATRIC, IRD and ViPR. Nucleic Acids Research, 51(D1), D678. https://doi.org/10.1093/nar/gkac1003 | eng |
dcterms.references | Ooi, M. F., Foo, H. L., Loh, T. C., Mohamad, R., Rahim, R. A., & Ariff, A. (2021). A Refined Medium to Enhance the Antimicrobial Activity of Postbiotic Produced by Lactiplantibacillus Plantarum RS5. Scientific Reports. https://doi.org/10.1038/s41598-021-87081-6 | eng |
dcterms.references | Oppegård, C., Kjos, M., Veening, J.-W., Nissen-Meyer, J., & Kristensen, T. (2016). A putative amino acid transporter determines sensitivity to the two-peptide bacteriocin plantaricin JK. MicrobiologyOpen, 5(4), 700-708. https://doi.org/10.1002/mbo3.363 | eng |
dcterms.references | Osei Sekyere, J. (2014). Antibiotic Types and Handling Practices in Disease Management among Pig Farms in Ashanti Region, Ghana. Journal of Veterinary Medicine, 2014(1), 531952. https://doi.org/10.1155/2014/531952 | eng |
dcterms.references | Ospina, R. S., & B, A. A. O. (1992). EL CERDO ZUNGO. Animal Genetic Resources/Resources génétiques animales/Recursos genéticos animales, 9, 77-83. https://doi.org/10.1017/S1014233900003230 | eng |
dcterms.references | Osterberg, D., & Wallinga, D. (2004). Addressing Externalities From Swine Production to Reduce Public Health and Environmental Impacts. American Journal of Public Health. https://doi.org/10.2105/ajph.94.10.1703 | eng |
dcterms.references | Osuna Chávez, R. F., Barrios, R. M. M., Xóchihua, J. A. M., Chávez, J. F. H., León, J. B. L., Yanes, M. A., Martínez, V. A. F., Mascareño, J. R., & Escalante, J. G. A. I. (2017). Resistencia antimicrobiana de Gallibacterium anatis aisladas de gallinas de postura comercial en Sonora, México. Revista Mexicana de Ciencias Pecuarias, 8(3), 305-312. https://doi.org/10.22319/rmcp.v8i3.4506 | spa |
dcterms.references | Overbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Parrello, B., Shukla, M., Vonstein, V., Wattam, A. R., Xia, F., & Stevens, R. (2014). The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research, 42(Database issue), D206-214. https://doi.org/10.1093/nar/gkt1226 | eng |
dcterms.references | Page, A. J., Cummins, C. A., Hunt, M., Wong, V. K., Reuter, S., Holden, M. T. G., Fookes, M., Falush, D., Keane, J. A., & Parkhill, J. (2015). Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics, 31(22), 3691-3693. https://doi.org/10.1093/bioinformatics/btv421 | eng |
dcterms.references | Pal, G., & Srivastava, S. (2014). Cloning and heterologous expression of plnE, -F, -J and -K genes derived from soil metagenome and purification of active plantaricin peptides. Applied Microbiology and Biotechnology, 98(3), 1441-1447. https://doi.org/10.1007/s00253-013-5097-1 | eng |
dcterms.references | Palma, L. E. S., Quinteros, M. J. B., & Sánchez, K. M. R. (2024). Impacto de la resistencia bacteriana en la elección de antibióticos en odontología: Una revisión de las tendencias actuales. Más Vita, 6(1), Article 1. https://doi.org/10.47606/ACVEN/MV0227 | spa |
dcterms.references | Palmer, G. H. (1980). Treatment of swine dysentery (United States Patent US4186206A). https://patents.google.com/patent/US4186206A/en | eng |
dcterms.references | Papagianni, M. (2012). Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Computational and Structural Biotechnology Journal , 3(4), e201210003. https://doi.org/10.5936/csbj.201210003 | eng |
dcterms.references | Parra, R. (2015). Uso de rubas (ullucus tuberosus) en la elaboración y caracterización de yogur. Temas Agrarios, 20(1), Article 1. https://doi.org/10.21897/rta.v20i1.751 | spa |
dcterms.references | Patil, Y., Gooneratne, R., & Ju, X.-H. (2020). Interactions between host and gut microbiota in domestic pigs: A review. Gut Microbes, 11(3), 310-334. https://doi.org/10.1080/19490976.2019.1690363 | eng |
dcterms.references | Patiño F, F., Herrera F, V., López D, D., & Parra S, J. (2019). Metabolitos sanguíneos y parámetros zootécnicos en lechones destetados a dos edades y con adición de antimicrobianos en el alimento. Revista de Investigaciones Veterinarias del Perú, 30(2), 612-623. https://doi.org/10.15381/rivep.v30i2.14887 | spa |
dcterms.references | Pawar, R., Zambare, V., & Nabar, B. (2020). Comparative Assessment of Antibiotic Resistance in Lactic Acid Bacteria Isolated from Healthy Human Adult and Infant Feces. Nepal Journal of Biotechnology, 8(2), Article 2. https://doi.org/10.3126/njb.v8i2.31893 | eng |
dcterms.references | Pazmiño, M. L., & Ramirez, A. D. (2021). Life Cycle Assessment as a Methodological Framework for the Evaluation of the Environmental Sustainability of Pig and Pork Production in Ecuador. Sustainability. https://doi.org/10.3390/su132111693 | eng |
dcterms.references | Pei, J., Huang, Y., Ren, T., Guo, Y., Dang, J., Tao, Y., Zhang, Y., & Abd El-Aty, A. M. (2022). The Antibacterial Activity Mode of Action of Plantaricin YKX against Staphylococcus aureus. Molecules, 27(13), Article 13. https://doi.org/10.3390/molecules27134280 | eng |
dcterms.references | Pell, L. G., Horne, R. G., Huntley, S., Rahman, H., Kar, S., Islam, M. S., Evans, K. C., Saha, S. K., Campigotto, A., Morris, S. K., Roth, D. E., & Sherman, P. M. (2021). Antimicrobial susceptibilities and comparative whole genome analysis of two isolates of the probiotic bacterium Lactiplantibacillus plantarum, strain ATCC 202195. Scientific Reports, 11(1), 15893. https://doi.org/10.1038/s41598-021-94997-6 | eng |
dcterms.references | Peña-Torres, E., Ríos, H., Avendaño-Reyes, L., Valenzuela, N., Pinelli-Saavedra, A., Muhlia, A., & Peña-Ramos, E. (2019). Ácidos hidroxicinámicos en producción animal: Farmacocinética, farmacodinamia y sus efectos como promotor de crecimiento. Revisión. Revista Mexicana de Ciencias Pecuarias, 10, 391-415. https://doi.org/10.22319/rmcp.v10i2.4526 | spa |
dcterms.references | Pereira, V. G., & Gómez, R. J. H. C. (2007). Atividade antimicrobiana de Lactobacillus acidophilus, contra microrganismos patogênicos veiculados por alimentos. Semina: Ciências Agrárias, 28(2), Article 2. https://doi.org/10.5433/1679-0359.2007v28n2p229 | eng |
dcterms.references | Perez, R. H., Ishibashi, N., Inoue, T., Himeno, K., Masuda, Y., Sawa, N., Zendo, T., Wilaipun, P., Leelawatcharamas, V., Nakayama, J., & Sonomoto, K. (2015). Functional Analysis of Genes Involved in the Biosynthesis of Enterocin NKR-5-3B, a Novel Circular Bacteriocin. Journal of Bacteriology, 198(2), 291-300. https://doi.org/10.1128/jb.00692-15 | eng |
dcterms.references | Perez Sanchez, L. (s. f.). Epidemiology of Clostridum difficile and relationship between animal and human infection. 2017, 1. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ddd.uab.cat/pub/tfg/2017/ 184245/TFG_lperezsanchez_poster.pdf | eng |
dcterms.references | Petrolli, T. G., Junqueira, O. M., Pereira, A. S., Domingues, C. H., Artoni, S. M., & Santos, E. T. (2017). Lesión en la carne y adicción de nutrientes en el ayuno antes del sacrificio de cerdos. Revista MVZ Córdoba, 22(1), Article 1. https://doi.org/10.21897/rmvz.922 | spa |
dcterms.references | Phumkhachorn, P., & Rattanachaikunsopon, P. (2023). Probiotics: Sources, selection and health benefits. Research Journal of Biotechnology, 18, 102-113. https://doi.org/10.25303/1805rjbt1020113 | eng |
dcterms.references | Pidot, S. J., Coyne, S., Kloss, F., & Hertweck, C. (2014). Antibiotics from neglected bacterial sources. International Journal of Medical Microbiology, 304(1), 14-22. https://doi.org/10.1016/j.ijmm.2013.08.011 | eng |
dcterms.references | Pinzón-Fajardo, O. R., & Hurtado-Nery, V. L. (2021). Producción de proteína unicelular de Saccharomyces cerevisiae con granza de arroz e inclusión en cerdos. Orinoquia, 25(1), 23-33. https://doi.org/10.22579/20112629.653 | spa |
dcterms.references | Popoola, O. A., Onilude, A. A., Rasheed-Jada, H., & Nashiru, O. (2021). Probiotic Potential and Genomic Evaluation of Lactic Acid Bacteria Isolated from Fermented Sorghum-Based Gruel. Journal of Advances in Microbiology, 68-85. https://doi.org/10.9734/jamb/2021/v21i130321 | eng |
dcterms.references | Pritchard, L., Glover, R. H., Humphris, S., Elphinstone, J. G., & Toth, I. K. (2015). Genomics and taxonomy in diagnostics for food security: Soft-rotting enterobacterial plant pathogens. Analytical Methods, 8(1), 12-24. https://doi.org/10.1039/C5AY02550H | eng |
dcterms.references | Prohaska, S., Pflüger, V., Ziegler, D., Scherrer, S., Frei, D., Lehmann, A., Wittenbrink, M. M., & Huber, H. (2014). MALDI‐TOF MS for identification of porcine Brachyspira species. Letters in Applied Microbiology, 58(3), 292-298. https://doi.org/10.1111/lam.12189 | eng |
dcterms.references | Puvanasundram, P., Chong, C. M., Sabri, S., Yusoff, M. S. M., Lim, K. C., & Karim, M. (2022). Efficacy of Single and Multi-Strain Probiotics on In Vitro Strain Compatibility, Pathogen Inhibition, Biofilm Formation Capability, and Stress Tolerance. Biology, 11(11), Article 11. https://doi.org/10.3390/biology11111644 | eng |
dcterms.references | Qian, Z., Zhao, D., Yin, Y., Zhu, H., & Chen, D. (2020). Antibacterial Activity of Lactobacillus Strains Isolated from Mongolian Yogurt against Gardnerella vaginalis. BioMed Research International, 2020, e3548618. https://doi.org/10.1155/2020/3548618 | eng |
dcterms.references | Qin, S., Du, H., Zeng, W., Bai, A., Liu, J., Chen, F., Ma, L., Qin, S., Zhu, P., & Wu, J. (2023). Identification and Characterisation of Potential Probiotic Lactic Acid Bacteria Extracted from Pig Faeces. Journal of Pure and Applied Microbiology, 17. https://doi.org/10.22207/JPAM.17.2.04 | eng |
dcterms.references | Quevedo, K. S., Castillo, Y. S. G., Rangel, Y. Y. V., Medina, J. M. J., Martínez-Amaya, C., & Salas-Osorio, E. (2021). Actividad antagónica de lactobacilos probióticos sobre Candida albicans aisladas de lesiones bucales en pacientes con enfermedades sistémicas. ODOUS Científica, 22(1), Article 1. https://doi.org/10.54139/odous.v22i1.77 | spa |
dcterms.references | Quevedo V, M., Mantilla S, J., Portilla J, K., Villacaqui A, R., & Rivera G, H. (2018). Seroprevalencia del virus del Síndrome Reproductivo y Respiratorio Porcino en cerdos de crianza no tecnificada del Perú. Revista de Investigaciones Veterinarias del Perú , 29(2), 643-651. https://doi.org/10.15381/rivep.v29i2.14497 | spa |
dcterms.references | Rabetafika, H. N., Razafindralambo, A., Ebenso, B., & Razafindralambo, H. L. (2023). Probiotics as Antibiotic Alternatives for Human and Animal Applications. Encyclopedia, 3(2), Article 2. https://doi.org/10.3390/encyclopedia3020040 | eng |
dcterms.references | Ragan, M. V., Wala, S. J., Goodman, S. D., Bailey, M. T., & Besner, G. E. (2022). Next-Generation Probiotic Therapy to Protect the Intestines From Injury. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.863949 | eng |
dcterms.references | Ragavan, M. L., & Das, N. (2017). ISOLATION AND CHARACTERIZATION OF POTENTIAL PROBIOTIC YEASTS FROM DIFFERENT SOURCES. Asian Journal of Pharmaceutical and Clinical Research, 451-455. https://doi.org/10.22159/ajpcr.2017.v10i4.17067 | eng |
dcterms.references | Rajput, A., Chauhan, S. M., Mohite, O. S., Hyun, J. C., Ardalani, O., Jahn, L. J., Sommer, M. O., & Palsson, B. (2023). Pangenome Analysis Reveals the Genetic Basis for Taxonomic Classification of the Lactobacillaceae Family (SSRN Scholarly Paper 4368218). Social Science Research Network. https://doi.org/10.2139/ssrn.4368218 | eng |
dcterms.references | Rajtak, U., Boland, F., Leonard, N., Bolton, D., & Fanning, S. (2012). Roles of Diet and the Acid Tolerance Response in Survival of Common Salmonella Serotypes in Feces of Finishing Pigs. Applied and Environmental Microbiology, 78(1), 110-119. https://doi.org/10.1128/AEM.06222-11 | eng |
dcterms.references | Ramayo-Caldas, Y., Crespo-Piazuelo, D., Morata, J., González-Rodríguez, O., Sebastià, C., Castello, A., Dalmau, A., Ramos-Onsins, S., Alexiou, K. G., Folch, J. M., Quintanilla, R., & Ballester, M. (2022). Copy number variation on ABCC2-DNMBP loci impacts the diversity and composition of the gut microbiota in pigs (p. 2022.10.06.510490). bioRxiv. https://doi.org/10.1101/2022.10.06.510490 | eng |
dcterms.references | Ramayo-Caldas, Y., Crespo-Piazuelo, D., Morata, J., González-Rodríguez, O., Sebastià, C., Castello, A., Dalmau, A., Ramos-Onsins, S., Alexiou, K. G., Folch, J. M., Quintanilla, R., & Ballester, M. (2023). Copy Number Variation on ABCC2-DNMBP Loci Affects the Diversity and Composition of the Fecal Microbiota in Pigs. Microbiology Spectrum, 11(4), e05271-22. https://doi.org/10.1128/spectrum.05271-22 | eng |
dcterms.references | Ramayo-Caldas, Y., Zingaretti, L. M., Pérez-Pascual, D., Alexandre, P. A., Reverter, A., Dalmau, A., Quintanilla, R., & Ballester, M. (2021). Leveraging host-genetics and gut microbiota to determine immunocompetence in pigs. Animal Microbiome, 3(1), 74. https://doi.org/10.1186/s42523-021-00138-9 | eng |
dcterms.references | Ramírez V., M., Rivera G., H., Manchego S., A., More B., J., & Chiok C., K. L. (2013). Aislamiento y genotipificación del virus del síndrome respiratorio y reproductivo porcino (VPRRS) en granjas seropositivas de las provincias de Lima y Arequipa, Perú. Revista de Investigaciones Veterinarias del Perú, 24(2), 222-232. http://www.scielo.org.pe/scielo.php?script=sci_abstract&pid=S1609-91172013000200013&lng=es&nrm=iso&tlng=es | spa |
dcterms.references | Esparza -González, S., & Nevárez-Morrillón, G. V. (2009). Morfología y diferenciación de colonias de tres tipos de bacterias lácticas. Revista Agraria, 6(1-2-3), Article 1-2-3. https://doi.org/10.59741/agraria.v6i1-2-3.435 | spa |
dcterms.references | Raras, T., Firman, A., Kinanti, I., & Noorhamdani, N. (2019). Anti-biofilm activity of lactic acid bacteria isolated from kefir against multidrug-resistant Klebsiella pneumoniae. Journal of Pure and Applied Microbiology, 13(2), 983-992. https://doi.org/10.22207/jpam.13.2.35 | eng |
dcterms.references | Reenen, C. A. van, Dicks, L. M. T., & Chikindas, M. L. (1998). Isolation, Purification and Partial Characterization of Plantaricin 423, a Bacteriocin Produced by Lactobacillus Plantarum. Journal of Applied Microbiology. https://doi.org/10.1046/j.1365-2672.1998.00451.x | eng |
dcterms.references | Rentería Flores, J. A., Gómez Rosales, S., López Hernández, L. H., Ordaz Ochoa, G., Anaya Escalera, A. M., Mejía Guadarrama, C. A., Mariscal Landín, G., Rentería Flores, J. A., Gómez Rosales, S., López Hernández, L. H., Ordaz Ochoa, G., Anaya Escalera, A. M., Mejía Guadarrama, C. A., & Mariscal Landín, G. (2021). Principales aportes de la investigación del INIFAP a la nutrición porcina en México: Retos y perspectivas. Revista mexicana de ciencias pecuarias, 12, 79-110. https://doi.org/10.22319/rmcp.v12s3.5866 | spa |
dcterms.references | Reyes, I., Figueroa, J. L., Cobos, M. A., Sánchez-Torres, M. T., Zamora, V., & Cordero, J. L. (2012). Probiotic (Enterococcus faecium) added to standard and low-protein diets for pigs. Archivos de Zootecnia, 61(236), 589-598. https://doi.org/10.4321/S0004-05922012000400011 | eng |
dcterms.references | Rhouma, M., Fairbrother, J. M., Beaudry, F., & Letellier, A. (2017). Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies Acta Veterinaria Scandinavica , 59(1), 31. https://doi.org/10.1186/s13028-017-0299-7 | eng |
dcterms.references | Ríos C, A., Morales-Cauti, S., Vilca L, M., Carhuallanqui P, A., & Ramos D, D. (2019). Determinación del perfil de resistencia antibiótica de Salmonella enterica aislada de cerdos faenados en un matadero de Lima, Perú. Revista de Investigaciones Veterinarias del Perú, 30(1), 438-445. https://doi.org/10.15381/rivep.v30i1.15701 | spa |
dcterms.references | Roca i Canudas, M. (2008). Estudio del ecosistema bacteriano del tracto digestivo del cerdo mediante técnicas moleculares [PhD Thesis]. Universitat Autònoma de Barcelona | spa |
dcterms.references | Rodríguez Díaz, J. A., Hernández García, J. E., Sebastián Frizzo, L., Fernández León, K. J., Sánchez, L., Solenzal Valdivia, Y., Rodríguez Díaz, J. A., Hernández García, J. E., Sebastián Frizzo, L., Fernández León, K. J., Sánchez, L., & Solenzal Valdivia, Y. (2021). Caracterización in vitro de propiedades probióticas de Lactobacillus ssp. Aislados del tracto digestivo de abejas. Revista de Salud Animal, 43(2). http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0253-570X2021000200004&lng=es&nrm=iso&tlng=es | spa |
dcterms.references | Rodríguez, M., Lucinda, J., Abreu, J., Martins, S., Silva, F., Carvalho, F., Vieira, R., & Sousa, O. (2020). EVALUACIÓN DE ESTIRPES BACTERIANAS PARA LA FORMACIÓN DE CONSORCIO PROBIÓTICO PARA USO EN EL CULTIVO DE CAMARONES MARINOS: LITOPENAEUS VANNAMEI / EVALUATION OF BACTERIAL STRAINS FOR THE FORMATION OF A PROBIOTIC CONSORTIUM FOR USE IN THE CULTIVATION OF MARINE SHRIMPS: LITOPENAEUS VANNAMEI. Brazilian Journal of Development, 6, 83108-83125. https://doi.org/10.34117/bjdv6n10-662 | spa |
dcterms.references | Rodríguez-López, C. M., Guzmán-Beltrán, A. M., Lara-Morales, M. C., Castillo, E., Brandão, P. F. B., Rodríguez-López, C. M., Guzmán-Beltrán, A. M., Lara-Morales, M. C., Castillo, E., & Brandão, P. F. B. (2021). AISLAMIENTO E IDENTIFICACIÓN DE Lactobacillus spp. (LACTOBACILLACEAE) RESISTENTES A Cd(II) Y As(III) RECUPERADOS DE FERMENTO DE CACAO. Acta Biológica Colombiana, 26(1), 19-29. https://doi.org/10.15446/abc.v26n1.83677 | spa |
dcterms.references | Rodríguez-Mínguez, E., Huedo, P., Langa, S., Peirotén, Á., Landete, J. M., Medina, M., & Arqués, J. L. (2021). Genome Sequence of the Reuterin-Producing Strain Limosilactobacillus reuteri INIA P572. Microbiology Resource Announcements, 10(49), e00988-21. https://doi.org/10.1128/MRA.00988-21 | eng |
dcterms.references | Rodriguez‐Palacios, A., Staempfli, H. R., Duffield, T., & Weese, J. S. (2009). Isolation of bovine intestinal Lactobacillus plantarum and Pediococcus acidilactici with inhibitory activity against Escherichia coli O157 and F5. Journal of Applied Microbiology, 106(2), 393-401. https://doi.org/10.1111/j.1365-2672.2008.03959.x | eng |
dcterms.references | Rogne, P., Haugen, C., Fimland, G., Nissen-Meyer, J., & Kristiansen, P. E. (2009). Three-dimensional structure of the two-peptide bacteriocin plantaricin JK. Peptides, 30(9), 1613-1621. https://doi.org/10.1016/j.peptides.2009.06.010 | eng |
dcterms.references | Romano, A., Trifone, J., & Brustolon, M. (1979). Distribution of the phosphoenolpyruvate:glucose phosphotransferase system in fermentative bacteria. Journal of Bacteriology, 139(1), 93-97. https://doi.org/10.1128/jb.139.1.93-97.1979 | eng |
dcterms.references | Romão, L. J. V. (2023). Salmonelosis en cortes de carne vacuna en Brasil. Revista Científica Multidisciplinar Núcleo do Conhecimento, 00(00), 00-00. https://www.nucleodoconhecimento.com.br/veterinaria-es/salmonelosis | spa |
dcterms.references | Rondón-Barragán, I. S., Rodríguez, G. A., & M, G. A. M. (2014). Determinación de la seroprevalencia de Salmonella spp. En granjas porcinas del departamento del Tolima. Orinoquia, 18(1), 60-67. https://doi.org/10.22579/20112629.281 | spa |
dcterms.references | Rozewicki, J., Li, S., Amada, K. M., Standley, D. M., & Katoh, K. (2019). MAFFT-DASH: Integrated protein sequence and structural alignment. Nucleic Acids Research, gkz342. https://doi.org/10.1093/nar/gkz342 | eng |
dcterms.references | Rubio, L. A., & Molina, E. (2016). Las leguminosas en alimentación animal. Arbor, 192(779), Article 779. https://doi.org/10.3989/arbor.2016.779n3005 | spa |
dcterms.references | Ruiz, M. J., Colello, R., Padola, N. L., & Etcheverría, A. I. (2017). Efecto inhibidor de Lactobacillus spp. Sobre bacterias implicadas en enfermedades transmitidas por alimentos. Revista Argentina de Microbiología, 49(2), 174-177. https://doi.org/10.1016/j.ram.2016.10.005 | spa |
dcterms.references | Ruiz, M. J., Sirini, N. E., Zimmermann, J. A., Soto, L. P., Zbrun, M. V., Sequeira, G. J., Olivero, C. R., Rosmini, M. R., Signorini, M. L., & Frizzo, L. S. (2022). Capacidad de Lactiplantibacillus plantarum LP5 para inhibir biopelículas de Campylobacter coli. FAVE sección Ciencias Veterinarias, e0002-e0002. https://doi.org/10.14409/favecv.2022.1.e0002 | spa |
dcterms.references | Russell, W. M. S., & Burch, R. L. (1959). The Principles of Humane Experimental Technique. Methuen | eng |
dcterms.references | Sáez Orviz, S. (2016). Estudio genómico de Lactobacillus plantarum LL441 y caracterización del locus de la plantaricina C [Master thesis]. https://digibuo.uniovi.es/dspace/handle/10651/38518 | spa |
dcterms.references | Salminen, S., Collado, M. C., Endo, A., Hill, C., Lebeer, S., Quigley, E. M. M., Sanders, M. E., Shamir, R., Swann, J. R., Szajewska, H., & Vinderola, G. (2021). The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 18(9), Article 9. https://doi.org/10.1038/s41575-021-00440-6 | eng |
dcterms.references | Sampath, V., Song, J. H., Jeong, J., Mun, S., Han, K., & Kim, I. H. (2022). Nourishing neonatal piglets with synthetic milk and Lactobacillus sp. At birth highly modifies the gut microbial communities at the post-weaning stage. Frontiers in Microbiology, 13, 1044256. https://doi.org/10.3389/fmicb.2022.1044256 | eng |
dcterms.references | Sánchez, L., Omura, M., Lucas, A., Pérez, T., Llanes, M., & Ferreira, C. de L. (2015). Cepas de Lactobacillus spp. Con capacidades probióticas aisladas del tracto intestinal de terneros neonatos. Revista de Salud Animal, 37(2), 94-104. http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0253-570X2015000200004&lng=es&nrm=iso&tlng=es | spa |
dcterms.references | Sánchez Súarez, H., Fabián Domínguez, F., Ochoa Mogollón, G., & Alfaro Aguilera, R. (2019). Sucesión bacteriana del tracto digestivo del lechón alimentado con ensilado biológico. Revista de Investigaciones Veterinarias del Perú, 30(1), 214-223. https://doi.org/10.15381/rivep.v30i1.15700 | spa |
dcterms.references | Sánchez-Hidalgo, M., Montalbán-López, M., Cebrián, R., Valdivia, E., Martínez-Bueno, M., & Maqueda, M. (2011). AS-48 bacteriocin: Close to perfection. Cellular and Molecular Life Sciences, 68(17), 2845-2857. https://doi.org/10.1007/s00018-011-0724-4 | eng |
dcterms.references | Sandoval Montiel, Á. A. (2013). Papel de la aspirina en la potenciación de la activación del factor de transcripción HSF en células mononucleares de sangre periférica de rata. Universidad Nacional Autónoma de México. https://doi.org/10.22201/dgpyfe.9786070260957e.2013 | spa |
dcterms.references | Santos, R., Paitán, E., Sotelo, A., Zúñiga, D., & Vílchez, C. (2019a). Caracterización molecular de bacterias con potencial probiótico aisladas de heces de neonatos humanos. Revista Peruana de Biología, 26(1), Article 1. https://doi.org/10.15381/rpb.v26i1.15915 | spa |
dcterms.references | Santos, R., Paitán, E., Sotelo, A., Zúñiga, D., & Vílchez, C. (2019b). Caracterización molecular de bacterias con potencial probiótico aisladas de heces de neonatos humanos. Revista Peruana de Biología, 26(1), Article 1. https://doi.org/10.15381/rpb.v26i1.15915 | spa |
dcterms.references | Sarpong, N., Seifert, J., Bennewitz, J., Rodehutscord, M., & Camarinha-Silva, A. (2024). Microbial signatures and enterotype clusters in fattening pigs: Implications for nitrogen utilization efficiency. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1354537 | eng |
dcterms.references | Saviano, A., Brigida, M., Migneco, A., Gunawardena, G., Zanza, C., Candelli, M., Franceschi, F., & Ojetti, V. (2021). Lactobacillus Reuteri DSM 17938 (Limosilactobacillus reuteri) in Diarrhea and Constipation: Two Sides of the Same Coin? Medicina, 57(7), Article 7. https://doi.org/10.3390/medicina57070643 | eng |
dcterms.references | Savigamin, C., Samuthpongtorn, C., Mahakit, N., Nopsopon, T., Heath, J., & Pongpirul, K. (2022). Probiotic as a Potential Gut Microbiome Modifier for Stroke Treatment: A Systematic Scoping Review of In Vitro and In Vivo Studies. Nutrients, 14(17), Article 17. https://doi.org/10.3390/nu14173661 | eng |
dcterms.references | Sayers, E., Bolton, E., Brister, J., Canese, K., Chan, J., Comeau, D., Connor, R., Funk, K., Kelly, C., Kim, S., Madej, T., Marchler-Bauer, A., Lanczycki, C., Lathrop, S., Lu, Z., Thibaud-Nissen, F., Murphy, T., Phan, L., Skripchenko, Y., … Sherry, S. (2022). Database resources of the national center for biotechnology information. Nucleic Acids Research, 50(D1), D20-D26. https://doi.org/10.1093/nar/gkab1112 | eng |
dcterms.references | Schillinger, U., & Lücke, F.-K. (1989). Antibacterial Activity of Lactobacillus Sake Isolated From Meat. Applied and Environmental Microbiology. https://doi.org/10.1128/aem.55.8.1901-1906.1989 | eng |
dcterms.references | Seddik, H. A., Bendali, F., Gancel, F., Fliss, I., Spano, G., & Drider, D. (2017). Lactobacillus plantarum and Its Probiotic and Food Potentialities. Probiotics and Antimicrobial Proteins, 9(2), 111-122. https://doi.org/10.1007/s12602-017-9264-z | eng |
dcterms.references | Sedigh Ebrahim-Saraie, H., Khanjani, S., & Hasannejad-Bibalan, M. (2021). Isolation and phenotypic and genotypic characterization of the potential probiotic strains of Lactobacillus from the Iranian population. New Microbes and New Infections, 43, 100913. https://doi.org/10.1016/j.nmni.2021.100913 | eng |
dcterms.references | Seo, M. J., Won, S.-M., Kwon, M. J., Song, J. H., Lee, E. B., Cho, J. H., Park, K. W., & Yoon, J.-H. (2022). Screening of lactic acid bacteria with anti-adipogenic effect and potential probiotic properties from grains. https://doi.org/10.21203/rs.3.rs-1640993/v1 | eng |
dcterms.references | Seo, M. J., Won, S.-M., Kwon, M. J., Song, J. H., Lee, E. B., Cho, J. H., Park, K. W., & Yoon, J.-H. (2023). Screening of lactic acid bacteria with anti-adipogenic effect and potential probiotic properties from grains. Scientific Reports, 13(1), 11022. https://doi.org/10.1038/s41598-023-36961-0 | eng |
dcterms.references | Shao, Y., Gao, S., Guo, H., & Zhang, H. (2014). Influence of culture conditions and preconditioning on survival of Lactobacillus delbrueckii subspecies bulgaricus ND02 during lyophilization. Journal of Dairy Science, 97(3), 1270-1280. https://doi.org/10.3168/jds.2013-7536 | eng |
dcterms.references | Sharif, A., Kashani, H. H., Nasri, E., Soleimani, Z., & Sharif, M. R. (2017). The Role of Probiotics in the Treatment of Dysentery: A Randomized Double-Blind Clinical Trial. Probiotics and Antimicrobial Proteins, 9(4), 380-385. https://doi.org/10.1007/s12602-017-9271-0 | eng |
dcterms.references | Sharma, A., & Srivastava, S. (2014). Anti-Candida activity of two-peptide bacteriocins, plantaricins (Pln E/F and J/K) and their mode of action. Fungal Biology, 118(2), 264-275. https://doi.org/10.1016/j.funbio.2013.12.006 | eng |
dcterms.references | Sheoran, P., & Tiwari, S. K. (2019). Anti-staphylococcal activity of bacteriocins of food isolates Enterococcus hirae LD3 and Lactobacillus plantarum LD4 in pasteurized milk. 3 Biotech, 9(1), 8. https://doi.org/10.1007/s13205-018-1546-y | eng |
dcterms.references | Sheoran, P., & Tiwari, S. K. (2021). Synergistically-acting Enterocin LD3 and Plantaricin LD4 Against Gram-Positive and Gram-Negative Pathogenic Bacteria. Probiotics and Antimicrobial Proteins, 13(2), 542-554. https://doi.org/10.1007/s12602-020-09708-w | eng |
dcterms.references | Shi, R., Fan, H., Xiao, C., Wang, D., Xia, B., Zhao, Z., Zhao, B., Dai, X., & Liu, X. (2023). Lactobacillus Plantarum LLY-606 Supplementation Ameliorates Hyperuricemia <i>via</I> Modulating Intestinal Homeostasis and Relieving Inflammation. Food & Function. https://doi.org/10.1039/d2fo03411e | eng |
dcterms.references | Shimodaira, H., & Hasegawa, M. (1999). Comparaciones múltiples de verosimilitudes logarítmicas con aplicaciones a la inferencia filogenética. Molecular Biology and Evolution, 16(6), 1114-1116. https://doi.org/10.1093/molbev/16.6.1114 | eng |
dcterms.references | Sierra, E., Maldonado, N., Arroyave, B., Robledo, C., & Robledo, J. (2019). Identificación directa de microorganismos a partir de muestras de orina y hemocultivos utilizando MALDI-TOF. Infectio, 364-370. https://doi.org/10.22354/in.v23i4.812 | spa |
dcterms.references | Silva, C. C. G., Silva, S. P. M., & Ribeiro, S. C. (2018). Application of Bacteriocins and Protective Cultures in Dairy Food Preservation. Frontiers in Microbiology, 9. https://www.frontiersin.org/articles/10.3389/fmicb.2018.00594 | eng |
dcterms.references | Silva, J. (2010). Antimicrobial activity of Lactobacillus reuteri against foodborne pathogens. Food Microbiology, 25(4), 492-499 | eng |
dcterms.references | Skov, M. N., Madsen, J. J., Rahbek, C., Lodal, J., Jespersen, J. B., Jørgensen, J. C., Dietz, H. H., Chriél, M., & Baggesen, D. L. (2008). Transmission of Salmonella between wildlife and meat‐production animals in Denmark. Journal of Applied Microbiology , 105(5), 1558-1568. https://doi.org/10.1111/j.1365-2672.2008.03914.x | eng |
dcterms.references | Smedley, J. G., Fisher, D. J., Sayeed, S., Chakrabarti, G., & McClane, B. A. (2005). The enteric toxins of Clostridium perfringens. En Reviews of Physiology, Biochemistry and Pharmacology (pp. 183-204). Springer. https://doi.org/10.1007/s10254-004-0036-2 | eng |
dcterms.references | Smolentsev, S. Yu., Kruglova, M. I., Bogomolova, O. A., Fedorov, Y. N., Pavlenko, I. V., Gryn, S. A., Kazaku, A. A., Markova, E. V., Neminuschaya, L. A., Skotnikova, T. A., Klyukina, V. I., Lyulkova, L. S., & Matveeva, I. N. (2023). Comparative Effectiveness of Probiotics in Store Pigs Raising. En A. Beskopylny, M. Shamtsyan, & V. Artiukh (Eds.), XV International Scientific Conference “INTERAGROMASH 2022” (pp. 1814-1820). Springer International Publishing. https://doi.org/10.1007/978-3-031-21432-5_197 | eng |
dcterms.references | Solomon, A., & Martínez, J. A. (2006). Participación del sistema nervioso y del tracto gastrointestinal en la homeostasis energética. Revista de Medicina de la Universidad de Navarra, 27-37. https://doi.org/10.15581/021.50.7598 | spa |
dcterms.references | Song, D.-F., Zhu, M.-Y., & Gu, Q. (2014). Purification and Characterization of Plantaricin ZJ5, a New Bacteriocin Produced by Lactobacillus plantarum ZJ5. PLOS ONE, 9(8), e105549. https://doi.org/10.1371/journal.pone.0105549 | eng |
dcterms.references | Songer, J. G., & Uzal, F. A. (2005). Clostridial Enteric Infections in Pigs. Journal of Veterinary Diagnostic Investigation, 17(6), 528-536. https://doi.org/10.1177/104063870501700602 | eng |
dcterms.references | Sotiropoulos, C., Smith, S., & Coloe, P. (1993). Characterization of two DNA probes specific for Serpulina hyodysenteriae. Journal of Clinical Microbiology, 31(7), 1746-1752. https://doi.org/10.1128/jcm.31.7.1746-1752.1993 | eng |
dcterms.references | Souza, A., Souza, J., Garcia, M., Rocha, T., Júnior, J., Sabbadini, P., & Costa, F. (2023). Seleção in vitro de isolados do trato gastrointestinal de colossoma macropomum, com potencial probiótico. Scientia Plena, 18(5). https://doi.org/10.14808/sci.plena.2023.056201 | eng |
dcterms.references | Spinler, J. K., Taweechotipatr, M., Rognerud, C. L., Ou, C. N., Tumwasorn, S., & Versalovic, J. (2008). Human-Derived Probiotic Lactobacillus Reuteri Demonstrate Antimicrobial Activities Targeting Diverse Enteric Bacterial Pathogens. Anaerobe. https://doi.org/10.1016/j.anaerobe.2008.02.001 | eng |
dcterms.references | Stephens, S. K., Floriano, B., Cathcart, D. P., Bayley, S. A., Witt, V. F., Jiménez-Díaz, R., Warner, P. J., & Ruiz-Barba, J. L. (1998). Molecular Analysis of the Locus Responsible for Production of Plantaricin S, a Two-Peptide Bacteriocin Produced byLactobacillus plantarum LPCO10. Applied and Environmental Microbiology, 64(5), 1871-1877. https://doi.org/10.1128/AEM.64.5.1871-1877.1998 | eng |
dcterms.references | Suárez, R., Fandiño de Rubio, C., & Rondón-Barragán, I. (2018). Evaluación del perfil metabólico lipídico en cerdas suplementadas con Lactobacillus casei durante un ciclo reproductivo. Revista de Investigaciones Veterinarias del Perú, 29(4), 1278-1294. https://doi.org/10.15381/rivep.v29i4.14358 | spa |
dcterms.references | Summers, K. L., Frey, J. F., Ramsay, T. G., & Arfken, A. M. (2019). The piglet mycobiome during the weaning transition: A pilot study1. Journal of Animal Science, 97(7), 2889-2900. https://doi.org/10.1093/jas/skz182 | eng |
dcterms.references | Sun, J., Lu, F., Luo, Y., Bie, L., Xu, L., & Wang, Y. (2023). OrthoVenn3: An integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Research, 51(W1), W397-W403. https://doi.org/10.1093/nar/gkad313 | eng |
dcterms.references | Sun, Y., Zhang, S., Li, H., Zhu, J., Liu, Z., Hu, X., & Yi, J. (2022). Assessments of Probiotic Potentials of Lactiplantibacillus plantarum Strains Isolated From Chinese Traditional Fermented Food: Phenotypic and Genomic Analysis. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.895132 | eng |
dcterms.references | Suryavanshi, M. V., Paul, D., Doijad, S. P., Bhute, S. S., Hingamire, T. B., Gune, R. P., & Shouche, Y. S. (2017). Draft genome sequence of Lactobacillus plantarum strains E2C2 and E2C5 isolated from human stool culture. Standards in Genomic Sciences, 12(1), 15. https://doi.org/10.1186/s40793-017-0222-x | eng |
dcterms.references | Swords, W. E., Wu, C. C., Champlin, F. R., & Buddington, R. K. (1993). Postnatal changes in selected bacterial groups of the pig colonic microflora. Biology of the Neonate, 63(3), 191-200. https://doi.org/10.1159/000243931 | eng |
dcterms.references | Syrokou, M. K., Paramithiotis, S., Drosinos, E. H., Bosnea, L., & Mataragas, M. (2022). A Comparative Genomic and Safety Assessment of Six Lactiplantibacillus plantarum subsp. Argentoratensis Strains Isolated from Spontaneously Fermented Greek Wheat Sourdoughs for Potential Biotechnological Application. International Journal of Molecular Sciences, 23(5), Article 5. https://doi.org/10.3390/ijms23052487 | eng |
dcterms.references | Szabó, I., Wieler, L. H., Tedin, K., Scharek-Tedin, L., Taras, D., Hensel, A., Appel, B., & Nöckler, K. (2009). Influence of a Probiotic Strain of Enterococcus faecium on Salmonella enterica Serovar Typhimurium DT104 Infection in a Porcine Animal Infection Model. Applied and Environmental Microbiology, 75(9), 2621-2628. https://doi.org/10.1128/AEM.01515-08 | eng |
dcterms.references | Tagg, J. R., & McGiven, A. R. (1971). Assay system for bacteriocins. Applied Microbiology, 21(5), 943-948. | eng |
dcterms.references | Tang, H., Huang, W., & Yao, Y.-F. (s. f.). The metabolites of lactic acid bacteria: Classification, biosynthesis and modulation of gut microbiota. Microbial Cell, 10(3), 49-62. https://doi.org/10.15698/mic2023.03.792 | eng |
dcterms.references | Tang, H.-J., Chen, C.-C., Lu, Y.-C., Huang, H.-L., Chen, H.-J., Chuang, Y.-C., Lai, C.-C., & Chao, C.-M. (2022). The effect of Lactobacillus with prebiotics on KPC-2-producing Klebsiella pneumoniae. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1050247 | eng |
dcterms.references | Tangwatcharin, P., Nithisantawakhup, J., & Sorapukdee, S. (2019). Selection of indigenous starter culture for safety and its effect on reduction of biogenic amine content in Moo som. Asian-Australasian Journal of Animal Sciences, 32(10), 1580-1590. https://doi.org/10.5713/ajas.18.0596 | eng |
dcterms.references | Tannock, G., Munro, K., Harmsen, H., Welling, G., Smart, J., & Gopal, P. (2000). Analysis of the Fecal Microflora of Human Subjects Consuming a Probiotic Product Containing Lactobacillus rhamnosusDR20. Applied and Environmental Microbiology, 66(6), 2578-2588. https://doi.org/10.1128/AEM.66.6.2578-2588.2000 | eng |
dcterms.references | Tassinari, E., Bawn, M., Thilliez, G., Charity, O., Acton, L., Kirkwood, M., Petrovska, L., Dallman, T., Burgess, C. M., Hall, N., Duffy, G., & Kingsley, R. A. (2020). Whole-genome epidemiology links phage-mediated acquisition of a virulence gene to the clonal expansion of a pandemic Salmonella enterica serovar Typhimurium clone. Microbial Genomics, 6(11), e000456. https://doi.org/10.1099/mgen.0.000456 | eng |
dcterms.references | Tegopoulos, K., Stergiou, O. S., Kiousi, D. E., Tsifintaris, M., Koletsou, E., Papageorgiou, A. C., Argyri, A. A., Chorianopoulos, N., Galanis, A., & Kolovos, P. (2021). Genomic and Phylogenetic Analysis of Lactiplantibacillus plantarum L125, and Evaluation of Its Anti-Proliferative and Cytotoxic Activity in Cancer Cells. Biomedicines, 9(11), Article 11. https://doi.org/10.3390/biomedicines9111718 | eng |
dcterms.references | Teng, T., Sun, G., Ding, H., Song, X., Bai, G., Shi, B., & Shang, T. (2023). Characteristics of glucose and lipid metabolism and the interaction between gut microbiota and colonic mucosal immunity in pigs during cold exposure. Journal of Animal Science and Biotechnology, 14(1), 84. https://doi.org/10.1186/s40104-023-00886-5 | eng |
dcterms.references | Todorov, S. D., Onno, B., Sorokine, O., Chobert, J., Иванова, И., & Dousset, X. (1999). Detection and Characterization of a Novel Antibacterial Substance Produced by Lactobacillus Plantarum ST 31 Isolated From Sourdough. International Journal of Food Microbiology. https://doi.org/10.1016/s0168-1605(99)00048-3 | eng |
dcterms.references | Tuomola, E., Crittenden, R., Playne, M., Isolauri, E., & Salminen, S. (2001). Criterios de garantía de calidad para bacterias probióticas 1 2 3 4. The American Journal of Clinical Nutrition, 73(2), 393s-398s. https://doi.org/10.1093/ajcn/73.2.393s | eng |
dcterms.references | Turner, D. L., Brennan, L., Meyer, H. E., Lohaus, C., Siethoff, C., Costa, H. S., Gonzalez, B., Santos, H., & Suárez, J. E. (1999). Solution structure of plantaricin C, a novel lantibiotic. European Journal of Biochemistry, 264(3), 833-839. https://doi.org/10.1046/j.1432-1327.1999.00674.x | eng |
dcterms.references | Tuyarum, C., Songsang, A., & Lertworapreecha, M. (2021). In Vitro Evaluation of the Probiotic Potential of Lactobacillus Isolated From Native Swine Manure. Veterinary World. https://doi.org/10.14202/vetworld.2021.1133-1142 | eng |
dcterms.references | Uezen, J. D., Ficoseco, C. A., Fátima Nader-Macías, M. E., & Vignolo, G. M. (2023, abril). Identification and characterization of potential probiotic lactic acid bacteria isolated from pig feces at various production stages [Text]. Canadian Veterinary Medical Association. https://www.ingentaconnect.com/content/cvma/cjvr/2023/00000087/00000002/art00008 | eng |
dcterms.references | Urdaneta, V., & Casadesús, J. (2017). Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts. Frontiers in Medicine, 4. https://doi.org/10.3389/fmed.2017.00163 | eng |
dcterms.references | Vallejo, M., Gil, M. S., Parada, R. B., & Marguet, E. R. (2020). Resistencia a metales pesados y antimicrobianos en cepas de enterococos aisladas de cerdos del Valle Inferior del Río Chubut—Argentina. Revista Colombiana de Ciencia Animal - RECIA, 12(2), Article 2. https://doi.org/10.24188/recia.v12.n2.2020.763 | spa |
dcterms.references | Van Holm, W., Verspecht, T., Carvalho, R., Bernaerts, K., Boon, N., Zayed, N., & Teughels, W. (2022). Glycerol strengthens probiotic effect of Limosilactobacillus reuteri in oral biofilms: A synergistic synbiotic approach. Molecular Oral Microbiology, 37. https://doi.org/10.1111/omi.12386 | eng |
dcterms.references | van Heel, A. J., de Jong, A., Song, C., Viel, J. H., Kok, J., & Kuipers, O. P. (2018). BAGEL4: A user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Research, 46(W1), W278-W281. https://doi.org/10.1093/nar/gky383 | eng |
dcterms.references | Vásquez-Rojas, L., Fabian-Dominguez, F., Baylon-Cuba, M., Sánchez-Cárdenas, H., & Mialhe, E. (2022). Identificación Genómica De Bacterias Ácido Lácticas Aisladas De Las Heces Del Sajino (Pecari Tajacu). Revista De Veterinaria Y Zootecnia Amazónica. https://doi.org/10.51252/revza.v2i1.297 | spa |
dcterms.references | Vázquez, S., Lopretti, M., Rey, F., & Zunino, P. (2007). Aislamiento y caracterización de cepas nativas de Lactobacillus spp. Para su uso como probióticos en la industria láctea. INNOTEC, 2 ene-dic, Article 2 ene-dic. https://doi.org/10.26461/02.04 | spa |
dcterms.references | Venus, J., & Richter, K. (2006). Production of Lactic Acid from Barley: Strain Selection, Phenotypic and Medium Optimization. Engineering in Life Sciences, 6(5), 492-500. https://doi.org/10.1002/elsc.200520136 | eng |
dcterms.references | Verbrugghe, E., Haesebrouck, F., Boyen, F., Leyman, B., van Deun, K., Thompson, A., Shearer, N., van Parys, A., & Pasmans, F. (2011). Stress induced Salmonella Typhimurium re-excretion by pigs is associated with cortisol induced increased intracellular proliferation in porcine macrophages. https://dr.lib.iastate.edu/handle/20.500.12876/84055 | eng |
dcterms.references | Verbrugghe, E., Van Parys, A., Leyman, B., Boyen, F., Haesebrouck, F., & Pasmans, F. (2015). HtpG contributes to Salmonella Typhimurium intestinal persistence in pigs. Veterinary Research, 46(1), 118. https://doi.org/10.1186/s13567-015-0261-5 | eng |
dcterms.references | Vigors, S., O’Doherty, J. V., Rattigan, R., McDonnell, M. J., Rajauria, G., & Sweeney, T. (2020). Effect of a Laminarin Rich Macroalgal Extract on the Caecal and Colonic Microbiota in the Post -Weaned Pig. Marine Drugs, 18(3), Article 3. https://doi.org/10.3390/md18030157 | eng |
dcterms.references | Viltrop, A., Boinas, F., Depner, K., Jori, F., Kolbasov, D., Laddomada, A., Ståhl, K., & Chenais, E. (2021). 9. African Swine Fever Epidemiology, Surveillance and Control. https://doi.org/10.3920/978-90-8686-910-7_9 | eng |
dcterms.references | Vinderola, G., Binetti, A., Burns, P., & Reinheimer, J. (2011). Cell Viability and Functionality of Probiotic Bacteria in Dairy Products. Frontiers in Microbiology, 2. https://doi.org/10.3389/fmicb.2011.00070 | eng |
dcterms.references | Vogel, V., & Spellerberg, B. (2021). Bacteriocin Production by Beta-Hemolytic Streptococci. Pathogens, 10(7), Article 7. https://doi.org/10.3390/pathogens10070867 | eng |
dcterms.references | Wall, S. K., Zhang, J., Rostagno, M. H., & Ebner, P. D. (2010). Phage Therapy To Reduce Preprocessing Salmonella Infections in Market-Weight Swine. Applied and Environmental Microbiology, 76(1), 48-53. https://doi.org/10.1128/AEM.00785-09 | eng |
dcterms.references | Wang, B., Wang, C., McKean, J. D., Logue, C. M., Gebreyes, W. A., Tivendale, K. A., & O’Connor, A. M. (2011). Salmonella enterica in Swine Production: Assessing the Association between Amplified Fragment Length Polymorphism and Epidemiological Units of Concern. Applied and Environmental Microbiology, 77(22), 8080-8087. https://doi.org/10.1128/AEM.00064-11 | eng |
dcterms.references | Wang, C., Li, P., Yan, Q., Chen, L., Li, T., Zhang, W., Li, H., Chen, C., Han, xiuyan, Zhang, S., Xu, miao, Li, bo, Zhang, X., Ni, H., Ma, Y., Dong, bo, Li, S., & Liu, S. (2019). Characterization of the Pig Gut Microbiome and Antibiotic Resistome in Industrialized Feedlots in China. mSystems, 4(6), 10.1128/msystems.00206-19. https://doi.org/10.1128/msystems.00206-19 | eng |
dcterms.references | Wang, C., Wei, S., Chen, N., Xiang, Y., Wang, Y., & Jin, M. (2022). Characteristics of gut microbiota in pigs with different breeds, growth periods and genders. Microbial Biotechnology, 15(3), 793-804. https://doi.org/10.1111/1751-7915.13755 | eng |
dcterms.references | Wang, J., Ji, H., Wang, S., Zhang, D. Y., Liu, H., Shan, D., & Wang, Y. M. (2012). Lactobacillus Plantarum ZLP001: In Vitro Assessment of Antioxidant Capacity and Effect on Growth Performance and Antioxidant Status in Weaning Piglets. Asian-Australasian Journal of Animal Sciences. https://doi.org/10.5713/ajas.2012.12079 | eng |
dcterms.references | Wang, M., & Donovan, S. M. (2015). Human Microbiota-Associated Swine: Current Progress and Future Opportunities. ILAR Journal, 56(1), 63-73. https://doi.org/10.1093/ilar/ilv006 | eng |
dcterms.references | Wang, M., Wu, H., Lu, L., Jiang, L., & Yu, Q. (2020). Lactobacillus reuteri Promotes Intestinal Development and Regulates Mucosal Immune Function in Newborn Piglets. Frontiers in Veterinary Science, 7. https://doi.org/10.3389/fvets.2020.00042 | eng |
dcterms.references | Wang, Q., Sun, Q., Qi, R., Wang, J., Qiu, X., Liu, Z., & Huang, J. (2019). Effects of <i>Lactobacillus Plantarum</I> on the Intestinal Morphology, Intestinal Barrier Function and Microbiota Composition of Suckling Piglets. Journal of Animal Physiology and Animal Nutrition. https://doi.org/10.1111/jpn.13198 | eng |
dcterms.references | Wang, T., Guan, K., Su, Q., Wang, X., Yan, Z., Kuang, K., Wang, Y., Zhang, Q., Zhou, X., & Liu, B. (2022). Change of Gut Microbiota in PRRSV-Resistant Pigs and PRRSV -Susceptible Pigs from Tongcheng Pigs and Large White Pigs Crossed Population upon PRRSV Infection. Animals, 12(12), Article 12. https://doi.org/10.3390/ani12121504 | eng |
dcterms.references | Wang, W., Liu, F., Xu, C., Liu, Z., Ma, J., Gu, L., & Jiang, Z. (2021). <i>Lactobacillus Plantarum</I> 69-2 Combined With Galacto-Oligosaccharides Alleviates <scp>d</Scp>-Galactose-Induced Aging by Regulating the AMPK/SIRT1 Signaling Pathway and Gut Microbiota in Mice. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.0c06730 | eng |
dcterms.references | Wang, Y., Qin, Y., Xie, Q., Zhang, Y., Hu, J., & Li, P. (2018). Purification and Characterization of Plantaricin LPL-1, a Novel Class IIa Bacteriocin Produced by Lactobacillus plantarum LPL-1 Isolated From Fermented Fish. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02276 | eng |
dcterms.references | Wattimury, A., Suroto, D. A., Utami, T., Wikandari, R., & Rahayu, E. S. (2023). In silico analysis of antibiotic resistance genes in Lactiplantibacillus plan‐ tarum subsp. Plantarum Kita‐3. Indonesian Journal of Biotechnology, 28(2), Article 2. https://doi.org/10.22146/ijbiotech.72550 | eng |
dcterms.references | Wei, L., Zhou, W., & Zhu, Z. (2022). Comparison of Changes in Gut Microbiota in Wild Boars and Domestic Pigs Using 16S rRNA Gene and Metagenomics Sequencing Technologies. Animals, 12(17), Article 17. https://doi.org/10.3390/ani12172270 | eng |
dcterms.references | Wen, C., van Dixhoorn, I., Schokker, D., Woelders, H., Stockhofe-Zurwieden, N., Rebel, J. M. J., & Smidt, H. (2021). Environmentally enriched housing conditions affect pig welfare, immune system and gut microbiota in early life. Animal Microbiome, 3(1), 52. https://doi.org/10.1186/s42523-021-00115-2 | eng |
dcterms.references | Wen, L. S., Philip, K., & Ajam, N. (2016). Purification, Characterization and Mode of Action of Plantaricin K25 Produced by Lactobacillus Plantarum. Food Control. https://doi.org/10.1016/j.foodcont.2015.08.010 | eng |
dcterms.references | Wen, Q., Asfaw, S. T., Yang, S., Chen, Z., Ahmed, S. A., Li, Y., & Shiferaw, H. (2023). Effect of Antibiotics and Thermophilic Pre-Treatment on Anaerobic Co-Digestion of Pig Manure and Corn Straw. Water, 15(18), Article 18. https://doi.org/10.3390/w15183223 | eng |
dcterms.references | Werner, A., Mölling, P., Fagerström, A., Dyrkell, F., Arnellos, D., Johansson, K., Sundqvist, M., & Norén, T. (2020). Whole genome sequencing of Clostridioides difficile PCR ribotype 046 suggests transmission between pigs and humans. PloS One, 15(12), e0244227. https://doi.org/10.1371/journal.pone.0244227 | eng |
dcterms.references | Wiedemann, I., Breukink, E., van Kraaij, C., Kuipers, O. P., Bierbaum, G., de Kruijff, B., & Sahl, H.-G. (2001). Specific Binding of Nisin to the Peptidoglycan Precursor Lipid II Combines Pore Formation and Inhibition of Cell Wall Biosynthesis for Potent Antibiotic Activity*. Journal of Biological Chemistry, 276(3), 1772-1779. https://doi.org/10.1074/jbc.M006770200 | eng |
dcterms.references | Wolupeck, H. L., Morete, C. A., DallaSanta, O. R., Luciano, F. B., Madeira, H. M. F., & Macedo, R. E. F. de. (2017). Methods for the evaluation of antibiotic resistance in Lactobacillus isolated from fermented sausages. Ciência Rural, 47, e20160966. https://doi.org/10.1590/0103-8478cr20160966 | eng |
dcterms.references | Wright, M. E., Yu, A. O., Marco, M. L., & Panigrahi, P. (2020). Genome Sequence of Lactiplantibacillus plantarum ATCC 202195, a Probiotic Strain That Reduces Sepsis and Other Infections during Early Infancy. Microbiology Resource Announcements , 9(39), 10.1128/mra.00741-20. https://doi.org/10.1128/mra.00741-20 | eng |
dcterms.references | Wu, H., Xie, S., Miao, J., Li, Y., Wang, Z., Wang, M., & Yu, Q. (2020). Lactobacillus reuteri maintains intestinal epithelial regeneration and repairs damaged intestinal mucosa. Gut Microbes. https://www.tandfonline.com/doi/abs/10.1080/19490976.2020.1734423 | eng |
dcterms.references | Wu, J., Lin, Z., Wang, X., Zhao, Y., Zhao, J., Liu, H., Johnston, L. J., Lu, L., & Ma, X. (2022). Limosilactobacillus reuteri SLZX19-12 Protects the Colon from Infection by Enhancing Stability of the Gut Microbiota and Barrier Integrity and Reducing Inflammation. Microbiology Spectrum, 10(3), e02124-21. https://doi.org/10.1128/spectrum.02124-21 | eng |
dcterms.references | Wu, R., Sun, Z., Wu, J., Meng, H., & Zhang, H. (2010). Effect of bile salts stress on protein synthesis of Lactobacillus casei Zhang revealed by 2-dimensional gel electrophoresis. Journal of Dairy Science, 93(8), 3858-3868. https://doi.org/10.3168/jds.2009-2967 | eng |
dcterms.references | Wu, R., Wu, Z., Zhao, C., Lv, C., Wu, J., & Meng, X. (2013). Identification of lactic acid bacteria in suancai, a traditional northeastern Chinese fermented food, and salt response of Lactobacillus paracasei LN-1. Annals of Microbiology, 64(3), 1325-1332. https://doi.org/10.1007/s13213-013-0776-9 | eng |
dcterms.references | Wu, Y., Pang, X., Wu, Y., Liu, X., & Zhang, X. (2022). Enterocins: Classification, Synthesis, Antibacterial Mechanisms and Food Applications. Molecules (Basel, Switzerland), 27(7), 2258. https://doi.org/10.3390/molecules27072258 | eng |
dcterms.references | Xiao, L., Estellé, J., Kiilerich, P., Ramayo-Caldas, Y., Xia, Z., Feng, Q., Liang, S., Pedersen, A. Ø., Kjeldsen, N. J., Liu, C., Maguin, E., Doré, J., Pons, N., Le Chatelier, E., Prifti, E., Li, J., Jia, H., Liu, X., Xu, X., … Wang, J. (2016). A reference gene catalogue of the pig gut microbiome. Nature Microbiology, 1(12), 1-6. https://doi.org/10.1038/nmicrobiol.2016.161 | eng |
dcterms.references | Xu, F.-L., Guo, Y.-C., Wang, H.-X., Fu, P., Zeng, H.-W., Li, Z.-G., Pei, X.-Y., & Liu, X.-M. (2012). PFGE genotyping and antibiotic resistance of Lactobacillus distributed strains in the fermented dairy products. Annals of Microbiology, 62(1), 255-262. https://doi.org/10.1007/s13213-011-0254-1 | eng |
dcterms.references | Xu, H., Liu, W., Zhang, W., Yu, J., Song, Y., Menhe, B., Zhang, H., & Sun, Z. (2015). Use of multilocus sequence typing to infer genetic diversity and population structure of Lactobacillus plantarum isolates from different sources. BMC Microbiology, 15(1), 241. https://doi.org/10.1186/s12866-015-0584-4 | eng |
dcterms.references | Xu, J., Chen, X., Yu, S., Su, Y., & Zhu, W. (2016). Effects of Early Intervention with Sodium Butyrate on Gut Microbiota and the Expression of Inflammatory Cytokines in Neonatal Piglets. PLOS ONE, 11(9), e0162461. https://doi.org/10.1371/journal.pone.0162461 | eng |
dcterms.references | Xu, T., Guo, Y., Zhang, Y., Cao, K., Zhou, X., Qian, M., & Han, X. (2023). Alleviative Effect of Probiotic Ferment on Lawsonia intracellularis Infection in Piglets. Biology, 12(6), Article 6. https://doi.org/10.3390/biology12060879 | eng |
dcterms.references | Xu, Y., Yang, L., Li, P., & Gu, Q. (2019). Heterologous expression of Class IIb bacteriocin Plantaricin JK in Lactococcus Lactis. Protein Expression and Purification, 159, 10-16. https://doi.org/10.1016/j.pep.2019.02.013 | eng |
dcterms.references | Xue, C., Yue, C., Liu, X., & Yuan, L. (2016). Selection of Potential Probiotic Strains Isolated from Human Intestinal Tract and Traditional Ferment Milk. 410-416. https://doi.org/10.2991/bbe-16.2016.63 | eng |
dcterms.references | Yalçınkaya, S., & Kılıç, G. (2019). Isolation, identification and determination of technological properties of the halophilic lactic acid bacteria isolated from table olives. Journal of Food Science and Technology, 56(4), 2027-2037. https://doi.org/10.1007/s13197-019-03679-9 | eng |
dcterms.references | Yan, H., Diao, H., Xiao, Y., Li, W., Yu, B., He, J., Yu, J., Zheng, P., Mao, X., Luo, Y., Zeng, B., Wei, H., & Chen, D. (2016). Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice. Scientific Reports, 6(1), 31786. https://doi.org/10.1038/srep31786 | eng |
dcterms.references | Yan, R., Lu, Y., Wu, X., Yu, P., Lan, P., Wu, X., Jiang, Y., Li, Q., Pi, X., Liu, W., Zhou, J., & Yu, Y. (2021). Anticolonization of Carbapenem-Resistant Klebsiella pneumoniae by Lactobacillus plantarum LP1812 Through Accumulated Acetic Acid in Mice Intestinal. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/fcimb.2021.804253 | eng |
dcterms.references | Yang, K. M., Kim, J.-S., Kim, H.-S., Kim, Y.-Y., Oh, J.-K., Jung, H.-W., Park, D.-S., & Bae, K.-H. (2021). Lactobacillus reuteri AN417 cell-free culture supernatant as a novel antibacterial agent targeting oral pathogenic bacteria. Scientific Reports, 11(1), 1631. https://doi.org/10.1038/s41598-020-80921-x | eng |
dcterms.references | Yang, Y., Yan, G., Meng, X., Wang, X., Zhao, Z., Zhou, S., Zhang, Q., & Wei, X. (2022). Effects of Lactobacillus Plantarum and Pediococcus Acidilactici Co-Fermented Feed on Growth Performance and Gut Microbiota of Nursery Pigs. Frontiers in Veterinary Science. https://doi.org/10.3389/fvets.2022.1076906 | eng |
dcterms.references | Yu, J., Sun, Z., Liu, W., Bao, Q., Zhang, J., & Zhang, H. (2012). Phylogenetic study of Lactobacillus acidophilus group, L. casei group and L. plantarum group based on partial hsp60, pheS and tuf gene sequences. European Food Research and Technology, 234(6), 927-934. https://doi.org/10.1007/s00217-012-1712-0 | eng |
dcterms.references | Yu-Hsuan-How, Wei-Lin-Foo, Wai-Sum-Yap, & Liew-Phing-Pui. (2021). Isolation and characterization of lactic acid bacteria from sugarcane waste. Malaysian Journal of Microbiology, 403-413. http://dx.doi.org/10.21161/mjm.211111 | eng |
dcterms.references | Yukhaibam, R., & Lhouvum, K. (2021). Molecular Identification of Lactic Acid Bacteria as a predominant probiotic microorganism found in indigenous fermented pig fat of Assam, India. IOP Conference Series: Materials Science and Engineering, 1020, 012026. https://doi.org/10.1088/1757-899X/1020/1/012026 | eng |
dcterms.references | Yuquilema, J. E. M., Marín-Cárdenas, A., González-Pérez, M., Valla-Cepeda, A., & Baño-Ayala, D. (2018). Repercusión de Lactobacillus acidophilus y Kluyveromyces fragilis (L-4 UCLV) en los parámetros bioproductivos de los cerdos. Enfoque UTE, 9(2), Article 2. https://doi.org/10.29019/enfoqueute.v9n2.301 | eng |
dcterms.references | Zaib, S., Hayat, A., & Khan, I. (2024). Probiotics and their Beneficial Health Effects. Mini Reviews in Medicinal Chemistry, 24(1), 110-125. https://doi.org/10.2174/1389557523666230608163823 | eng |
dcterms.references | Zaidi, A., Bakkes, P., Krom, B., Mei, H., & Driessen, A. (2011). Cholate-stimulated biofilm formation by Lactococcus lactis cells. Applied and Environmental Microbiology, 77(8), 2602-2610. https://doi.org/10.1128/aem.01709-10 | eng |
dcterms.references | Zapata, S., Muñoz, J., Ruiz, O. S., Montoya, O. I., & Gutiéerez, P. A. (2009). ISOLATION OF <I>Lactobacillus plantarum</I> LPBM10 AND PARTIAL CHARACTERIZATION OF ITS BACTERIOCIN. Vitae, 16(1), Article 1. https://doi.org/10.17533/udea.vitae.1428 | eng |
dcterms.references | Zendo, T., Koga, S., Shigeri, Y., Nakayama, J., & Sonomoto, K. (2006). Lactococcin Q, a Novel Two-Peptide Bacteriocin Produced by Lactococcus lactis QU 4. Applied and Environmental Microbiology, 72(5), 3383-3389. https://doi.org/10.1128/AEM.72.5.3383-3389.2006 | eng |
dcterms.references | Zeng, Y., Li, Y., Wu, Q. P., Zhang, J. M., Xie, X. Q., Ding, Y., Cai, S. Z., Ye, Q. H., Chen, M. T., Xue, L., Wu, S., Zeng, H. Y., Yang, X. J., & Wang, J. (2020). Evaluation of the Antibacterial Activity and Probiotic Potential of Lactobacillus plantarum Isolated from Chinese Homemade Pickles. Canadian Journal of Infectious Diseases and Medical Microbiology, 2020(1), 8818989. https://doi.org/10.1155/2020/8818989 | eng |
dcterms.references | Zhang, J., Shen, Y., Yang, G., Sun, J., Tang, C., Liang, H., Ma, J., Wu, X., Cao, H., Wu, M., Ding, Y., Li, M., Liu, Z., & Ge, L. (2023). Commensal microbiota modulates phenotypic characteristics and gene expression in piglet Peyer’s patches. Frontiers in Physiology, 14, 1084332. https://doi.org/10.3389/fphys.2023.1084332 | eng |
dcterms.references | Zhang, J., Yi, H., Gong, P., Lin, K., Chen, S., Han, X., & Zhang, L. (2019). Adsorption of plantaricin Q7 on montmorillonite and application in feedback regulation of plantaricin Q7 synthesis by Lactobacillus plantarum Q7. Engineering in Life Sciences, 19(1), 57-65. https://doi.org/10.1002/elsc.201800086 | eng |
dcterms.references | Zhang, S., Wang, T., Zhang, D., Wang, X., Zhang, Z., Lim, C., & Lee, S. (2022). Probiotic characterization of Lactiplantibacillus plantarum HOM3204 and its restoration effect on antibiotic‐induced dysbiosis in mice. Letters in Applied Microbiology, 74(6), 949-958. https://doi.org/10.1111/lam.13683 | eng |
dcterms.references | Zhang, Y., Zhang, Y., Liu, F., Mao, Y., Zhang, Y., Zeng, H., Ren, S., Guo, L., Chen, Z., Hrabchenko, N., Wu, J., & Yu, J. (2023). Mechanisms and applications of probiotics in prevention and treatment of swine diseases. Porcine Health Management, 9, 5. https://doi.org/10.1186/s40813-022-00295-6 | eng |
dcterms.references | Zhang, Y.-J., Li, S., Gan, R.-Y., Zhou, T., Xu, D.-P., & Li, H.-B. (2015). Impacts of Gut Bacteria on Human Health and Diseases. International Journal of Molecular Sciences, 16(4), 7493-7519. https://doi.org/10.3390/ijms16047493 | eng |
dcterms.references | Zhao, S., Han, J., Bie, X., Lu, Z., Zhang, C., & Lv, F. (2016). Purification and Characterization of Plantaricin JLA-9: A Novel Bacteriocin against Bacillus spp. Produced by Lactobacillus plantarum JLA-9 from Suan-Tsai, a Traditional Chinese Fermented Cabbage. Journal of Agricultural and Food Chemistry, 64(13), 2754-2764. https://doi.org/10.1021/acs.jafc.5b05717 | eng |
dcterms.references | Zhao, Z., Chen, L., Zhao, Y., Wang, C., Duan, C., Yang, G., Niu, C., & Li, S. (2020). Lactobacillus Plantarum NA136 Ameliorates Nonalcoholic Fatty Liver Disease by Modulating Gut Microbiota, Improving Intestinal Barrier Integrity, and Attenuating Inflammation. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s00253-020-10633-9 | eng |
dcterms.references | Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O’Toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782-2858. https://doi.org/10.1099/ijsem.0.004107 | eng |
dcterms.references | Zhou, S., Shanmugam, K. T., & Ingram, L. O. (2003). Functional replacement of the escherichia coli d-(−)-lactate dehydrogenase gene (ldha) with the l-(+)-lactate dehydrogenase gene (ldhl) from pediococcus acidilactici. Applied and Environmental Microbiology, 69(4), 2237-2244. https://doi.org/10.1128/aem.69.4.2237-2244.2003 | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | |
sb.investigacion | Genética microbiana, viral y biotecnología | spa |
sb.programa | Doctorado en Genética y Biología Molecular | spa |
sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: