Evaluación genómica, caracterización del potencial probiótico y antimicrobiano de Lactiplantibacillus plantarum y Limosilactobacillus reuteri aislados del estiércol de cerdo zungo costeño (sus scrofa domesticus)

datacite.rightshttp://purl.org/coar/access_right/c_f1cf
dc.contributor.advisorAcosta Hoyos, Antonio
dc.contributor.advisorMachado Sierra, Elwi
dc.contributor.authorDíaz Fajardo, Mauricio José
dc.date.accessioned2025-03-31T22:43:50Z
dc.date.available2025-03-31T22:43:50Z
dc.date.issued2025
dc.description.abstractLa presente tesis doctoral abordó la creciente problemática de la resistencia antimicrobiana en la producción porcina, derivada del uso extensivo de antibióticos, y la consecuente necesidad de encontrar alternativas sostenibles. En este contexto, se evaluó el potencial probiótico y antimicrobiano de Lactiplantibacillus plantarum y Limosilactobacillus reuteri, bacterias ácido-lácticas (BAL) obtenidas de muestras de estiércol de cerdo zungo costeño (Sus scrofa domesticus), una raza criolla colombiana, buscando ofrecer una solución a esta problemática. Se procedió al aislamiento y cultivo de las bacterias a partir de muestras de estiércol porcino, empleando agar MRS como medio selectivo. La identificación molecular de las cepas purificadas se realizó mediante PCR convencional y espectrometría de masas MALDI-TOF, técnicas que permitieron confirmar su identidad y caracterizar su perfil proteico. Se investigó in vitro su capacidad de resistir condiciones adversas, simulando el ambiente gastrointestinal: elevadas concentraciones de bilis y NaCl, temperaturas extremas y pH ácido, evaluando así su viabilidad como potenciales probióticos. La caracterización de las bacteriocinas producidas, se llevo a cabo a través de métodos de ultrafiltración y precipitación química con sulfato de amonio. Se evaluó la interacción de estas bacterias con E. coli y S. aureus, patógenos comunes en la producción porcina, mediante ensayos de inhibición en placa, determinando así su potencial antimicrobiano. Se llevó a cabo un estudio genómico completo, utilizando secuenciación de nueva generación (NGS) y herramientas bioinformáticas para ensamblar, anotar y analizar los genomas de las cepas seleccionadas. Dentro del análisis genómico, se determinó el pangenoma de L. plantarum HCA1, se realizó una búsqueda exhaustiva de genes de virulencia y resistencia a antibióticos, y se llevó a cabo un análisis filogenómico para establecer sus relaciones evolutivas. Se predijo la estructura tridimensional de las bacteriocinas identificadas, empleando el modelo computacional AlphaFold 3, para comprender mejor su mecanismo de acción. Los resultados revelaron una notable adaptabilidad y resistencia de las cepas a las condiciones simuladas del tracto gastrointestinal, características esenciales para su viabilidad como probióticos. Se observó una considerable actividad antimicrobiana, atribuida a bacteriocinas estables y eficaces, entre ellas las plantaricinas de L. plantarum, cuyos genes clave fueron identificados y caracterizados. El estudio genómico confirmó la seguridad de las cepas, al no detectarse genes de virulencia ni de resistencia a antibióticos, y reveló un pangenoma abierto en L. plantarum HCA1, indicativo de diversidad genética y potencial de adaptación. Estos hallazgos sugieren que las cepas de L. plantarum y L. reuteri estudiadas podrían constituir una alternativa probiótica y antimicrobiana a los antibióticos en la producción porcina. Las bacteriocinas, y en particular las plantaricinas, presentan propiedades que justifican una investigación más profunda para su potencial aplicación en la industria alimentaria y porcina, con el objetivo de contribuir a la producción de alimentos más seguros, una producción animal más sostenible y una mejora de la salud animal y humana. Se sientan así las bases para futuras investigaciones y el desarrollo de aplicaciones biotecnológicas de estas cepas, con un enfoque en la mejora de la salud y la producción animalspa
dc.description.abstractThis doctoral thesis addressed the growing problem of antimicrobial resistance in swine production, stemming from the extensive use of antibiotics, and the consequent need to find sustainable alternatives. In this context, the probiotic and antimicrobial potential of Lactiplantibacillus plantarum and Limosilactobacillus reuteri, lactic acid bacteria (LAB) obtained from fecal samples of zungo costeño pigs (Sus scrofa domesticus), a Colombian Creole breed, was evaluated, seeking to offer a solution to this problem. The isolation and cultivation of bacteria from porcine fecal samples were carried out using MRS agar as a selective medium. Molecular identification of the purified strains was performed by conventional PCR and MALDI-TOF mass spectrometry, techniques that allowed confirmation of their identity and characterization of their protein profile. Their ability to withstand adverse conditions, simulating the gastrointestinal environment (high concentrations of bile and NaCl, extreme temperatures, and acidic pH), was investigated in vitro, thus evaluating their viability as potential probiotics. The characterization of the produced bacteriocins was carried out through ultrafiltration and chemical precipitation methods with ammonium sulfate. The interaction of these bacteria with E. coli and S. aureus, common pathogens in swine production, was evaluated by plate inhibition assays, thus determining their antimicrobial potential. A comprehensive genomic study was conducted, using next-generation sequencing (NGS) and bioinformatics tools to assemble, annotate, and analyze the genomes of the selected strains. Within the genomic analysis, the pangenome of L. plantarum HCA1 was determined, an exhaustive search for virulence and antibiotic resistance genes was performed, and a phylogenomic analysis was carried out to establish their evolutionary relationships. The three-dimensional structure of the identified bacteriocins was predicted using the AlphaFold 3 computational model to better understand their mechanism of action. The results revealed a remarkable adaptability and resistance of the strains to the simulated conditions of the gastrointestinal tract, essential characteristics for their viability as probiotics. Considerable antimicrobial activity was observed, attributed to stable and effective bacteriocins, including plantaricins from L. plantarum, whose key genes were identified and characterized. The genomic study confirmed the safety of the strains, as no virulence or antibiotic resistance genes were detected, and revealed an open pangenome in L. plantarum HCA1, indicative of genetic diversity and adaptation potential. These findings suggest that the L. plantarum and L. reuteri strains studied could constitute a probiotic and antimicrobial alternative to antibiotics in swine production. Bacteriocins, and plantaricins in particular, exhibit properties that warrant further investigation for their potential application in the food and swine industries, with the aim of contributing to safer food production, more sustainable animal production, and improved animal and human health. This lays the foundation for future research and the development of biotechnological applications of these strains, with a focus on improving animal health and production.eng
dc.format.mimetypepdf
dc.identifier.urihttps://hdl.handle.net/20.500.12442/16412
dc.language.isospa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ciencias Básicas y Biomédicasspa
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United Stateseng
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.subjectActividad antimicrobianaspa
dc.subjectBacteria ácido-lácticaspa
dc.subjectIndustria porcinaspa
dc.subjectPangenoma abiertospa
dc.subjectPlantaricinasspa
dc.subjectProbióticosspa
dc.subjectResistencia antimicrobianaspa
dc.subject.keywordsAntimicrobial activityeng
dc.subject.keywordsLactic acid bacteriaeng
dc.subject.keywordsSwine industryeng
dc.subject.keywordsOpen pangenomeeng
dc.subject.keywordsPlantaricinseng
dc.subject.keywordsProbioticseng
dc.subject.keywordsAntimicrobial resistanceeng
dc.titleEvaluación genómica, caracterización del potencial probiótico y antimicrobiano de Lactiplantibacillus plantarum y Limosilactobacillus reuteri aislados del estiércol de cerdo zungo costeño (sus scrofa domesticus)spa
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.spaTesis de doctorado
dcterms.referencesAbramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J., Bambrick, J., Bodenstein, S. W., Evans, D. A., Hung, C.-C., O’Neill, M., Reiman, D., Tunyasuvunakool, K., Wu, Z., Žemgulytė, A., Arvaniti, E., … Jumper, J. M. (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 630(8016), 493-500. https://doi.org/10.1038/s41586-024-07487-weng
dcterms.referencesAbriouel, H., Franz, C. M. A. P., Ben Omar, N., & Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews, 35(1), 201-232. https://doi.org/10.1111/j.1574-6976.2010.00244.xeng
dcterms.referencesAgudelo-Flórez, P., Restrepo, B. N., & Palacio, L. G. (2009). Conocimiento y Prácticas sobre Teniasis-cisticercosis en una Comunidad Colombiana. Revista de Salud Pública, 11, 191-199. https://www.scielosp.org/article/rsap/2009.v11n2/191-199/es/spa
dcterms.referencesAguirre, M., & Collins, M. D. (1993). Lactic acid bacteria and human clinical infection. Journal of Applied Bacteriology, 75(2), 95-107.eng
dcterms.referencesAguirre-Guzmán, Y. E. (2016). Estabilidad fisico-química de la bacteriocina producida por el aislado A1 ante la exposición a diferentes surfactantes [Master’s Thesis]. Instituto Politécnico Nacionalspa
dcterms.referencesAhaddin, A. Y., Budiarti, S., Mustopa, A. Z., Darusman, H. S., & Triratna, L. (2021). Short Communication: Acute toxicity study of plantaricin from Lactobacillus plantarum S34 and its antibacterial activity. Biodiversitas Journal of Biological Diversity, 22(1), Article 1. https://doi.org/10.13057/biodiv/d220128eng
dcterms.referencesAihara, N., Tazuma, S., & Kajiyama, G. (1995). Hydrophilic bile salts and liposomes inhibit hydrophobic bile salt-induced release of glycoprotein by guinea- pig gall -bladder. Journal of Gastroenterology and Hepatology, 10(1), 42-46. https://doi.org/10.1111/j.1440-1746.1995.tb01045.xeng
dcterms.referencesAkaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. IEEE Transactions on Automatic Control. https://doi.org/10.1109/TAC.1974.1100705eng
dcterms.referencesAlcock, B. P., Huynh, W., Chalil, R., Smith, K. W., Raphenya, A. R., Wlodarski, M. A., Edalatmand, A., Petkau, A., Syed, S. A., Tsang, K. K., Baker, S. J. C., Dave, M., McCarthy, M. C., Mukiri, K. M., Nasir, J. A., Golbon, B., Imtiaz, H., Jiang, X., Kaur, K., … McArthur, A. G. (2023). CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Research, 51(D1), D690-D699. https://doi.org/10.1093/nar/gkac920eng
dcterms.referencesAlejandra Tello, N. L., Flores, L., Usca, J. E., & Moreno, I. (2021). Lactobacillus and Its Probiotic Role in the Digestive and Nutritional Processes of Pigs: A Review. Espoch Congresses the Ecuadorian Journal of S T E a M. https://doi.org/10.18502/espoch.v1i5.9587eng
dcterms.referencesAli, M. S., Lee, E.-B., Hsu, W. H., Suk, K., Sayem, S. A. J., Ullah, H. M. A., Lee, S.-J., & Park, S.-C. (2023). Probiotics and Postbiotics as an Alternative to Antibiotics: An Emphasis on Pigs. Pathogens (Basel, Switzerland), 12(7), 874. https://doi.org/10.3390/pathogens12070874eng
dcterms.referencesAli, W. S., & Musleh, R. M. (2015). Purification and Characterization of Plantaricinvgw8, A Bacteriocin Produced by Lactobacillus Plantarum VGW8. Journal of Biology, Agriculture and Healthcare, 5(1), 147. https://iiste.org/Journals/index.php/JBAH/article/view/19507eng
dcterms.referencesAl-kaabi, H. Q. M., & Chelab, R. L. (2024). Whole genome sequence of Lactiplantibacillus plantarum strain HA9 isolated from conventional Iraqi cheese: First report. Advancements in Life Sciences, 11(2), Article 2. https://doi.org/10.62940/als.v11i2.2649eng
dcterms.referencesAl-Kaseem, M., Al-Assaf, Z., & Karabet, F. (2013). Rapid and Simple Extraction Method for Volatile N-Nitrosamines in Meat Products. Pharmacology & Pharmacy, 04(08), 611-618. https://doi.org/10.4236/pp.2013.48087eng
dcterms.referencesAlquicira Páez, L. (2006, marzo). Determinación del mecanismo de resistencia a la acción inhibitoria de la bacteriocina producida por Pediococcus parvulus MXVK 133. Universidad Autónoma Metropolitana. https://doi.org/10.24275/uami.q237hs18xspa
dcterms.referencesAl-Shawi, S. G., Dang, D., YOUSIF, A. Y., Al-Younis, Z. K., Najm, T. A., & Matarneh, S. K. (2020). The Potential Use of Probiotics to Improve Animal Health, Efficiency, and Meat Quality: A Review. Agriculture. https://doi.org/10.3390/agriculture10100452eng
dcterms.referencesÁlvarez Ordóñez, A., Martínez Lobo, F. J., Argüello Rodríguez, H., Carvajal Urueña, A. M., & Rubio Nistal, P. M. (2015). Disentería porcina: Etiología, patogenicidad, factores determinantes para la transmisión y lucha contra la enfermedad. Avances en tecnología porcina, 12(117), 8-25. https://dialnet.unirioja.es/servlet/articulo?codigo=5024877spa
dcterms.referencesAlvarez-Sieiro, P., Montalbán-López, M., Mu, D., & Kuipers, O. P. (2016). Bacteriocins of lactic acid bacteria: Extending the family. Applied Microbiology and Biotechnology, 100(7), 2939-2951. https://doi.org/10.1007/s00253-016-7343-9eng
dcterms.referencesAmador Hernández, J. U. (2019, julio 17). Análisis de las interacciones fisicoquímicas y ecológicas en los mecanismos de antagonismo entre hongos ocratoxigénicos presentes en cerezas de café y bacterias ácido lácticas. Universidad Autónoma Metropolitana. https://doi.org/10.24275/uami.w6634388sspa
dcterms.referencesAmat, S., Lantz, H., Munyaka, P. M., & Willing, B. P. (2020). Prevotella in Pigs: The Positive and Negative Associations with Production and Health. Microorganisms, 8(10), Article 10. https://doi.org/10.3390/microorganisms8101584eng
dcterms.referencesAmórtegui Díaz, J. E. (2013). Purificación y caracterización de bacteriocinas producidas por dos cepas nativas de Lactobacillus plantarum. http://repository.javeriana.edu.co/handle/10554/11844spa
dcterms.referencesAnderssen, E., Diep, D. B., Nes, I. F., Eijsink, V. G. H., & Nissen‐Meyer, J. (1998). Antagonistic Activity Of <i>Lactobacillus Plantarum</I> C11: Two New Two-Peptide Bacteriocins, Plantaricins EF and JK, and the Induction Factor Plantaricin A. Applied and Environmental Microbiology. https://doi.org/10.1128/aem.64.6.2269-2272.1998eng
dcterms.referencesAndino-Molina, M., & Quesada-Gómez, C. (2022). Clostridioides (Clostridium) difficile en porcinos: Caracterización, consideraciones epidemiológicas y resistencia a los antimicrobianos. Veterinaria (Montevideo), 58(217). https://doi.org/10.29155/vet.58.217.2spa
dcterms.referencesAndrade, C. R. G., Souza, M. R., Penna, C. F. a. M., Acurcio, L. B., Sant’Anna, F. M., Castro, R. D., & Oliveira, D. L. S. (2014). Propriedades probióticas in vitro de Lactobacillus spp. Isolados de queijos minas artesanais da Serra da Canastra —MG. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 66, 1592-1600. https://doi.org/10.1590/1678-6781spa
dcterms.referencesAngel-Isaza, J. A., Mesa-Salgado, N., & Narváez-Solarte, W. (2019). Ácidos Orgánicos, Una Alternativa en La Nutrición Avícola: Una Revisión. Ces Medicina Veterinaria Y Zootecnia. https://doi.org/10.21615/cesmvz.14.2.4spa
dcterms.referencesAnumudu, C. K., Omoregbe, O., Hart, A., Miri, T., Eze, U. A., & Onyeaka, H. (2022). Applications of Bacteriocins of Lactic Acid Bacteria in Biotechnology and Food Preservation: A Bibliometric Review. The Open Microbiology Journal, 16(1). https://doi.org/10.2174/18742858-v16-e2206300eng
dcterms.referencesArgüello, H., Estellé, J., Leonard, F. C., Crispie, F., Cotter, P. D., O’Sullivan, O., Lynch, H., Walia, K., Duffy, G., Lawlor, P. G., & Gardiner, G. E. (2019). Influence of the Intestinal Microbiota on Colonization Resistance to Salmonella and the Shedding Pattern of Naturally Exposed Pigs. mSystems, 4(2), 10.1128/msystems.00021-19. https://doi.org/10.1128/msystems.00021-19eng
dcterms.referencesArgüello Rodríguez, H. (2013). Salmonelosis porcina en España: Factores de riesgo en reproductores, estrategias de control en cerdos de cebo y la importancia del sacrificio [Http://purl.org/dc/dcmitype/Text, Universidad de León]. https://dialnet.unirioja.es/servlet/tesis?codigo=39948spa
dcterms.referencesArief, I. I., Budiman, C., Jenie, B. S. L., Andreas, E., & Yuneni, A. (2015). Plantaricin IIA-1A5 from Lactobacillus plantarum IIA-1A5 displays bactericidal activity against Staphylococcus aureus. Beneficial Microbes, 6(4), 603-613. https://doi.org/10.3920/BM2014.0064eng
dcterms.referencesAroche-Ginarte, R., Martínez-Aguilar, Y., Ayala-González, L., Rodríguez-Bertot, R., & Rodríguez-Fraga, Y. (2017). Comportamiento productivo e incidencia de diarrea en cerdos posdestete suplementados con polvo mixto de hojas de plantas con propiedades nutracéuticas. Ciencia y Agricultura, 14(2), Article 2. https://doi.org/10.19053/01228420.v14.n2.2017.7145spa
dcterms.referencesArroyo, P. L. C., Hurtado, C. A. B., & Pérez, E. P. (2018). Caracterización de microorganismos con potencial probiótico aislados de estiércol de terneros Brahman en Sucre, Colombia. Revista de Investigaciones Veterinarias del Perú, 29(2), Article 2. https://doi.org/10.15381/rivep.v29i2.14482spa
dcterms.referencesAshraf, M. (2019). Detection of antibiotic resistance genes in Lactobacillus and its role in transferring these genes to Salmonella. Pure and Applied Biology, 8. https://doi.org/10.19045/bspab.2019.80145eng
dcterms.referencesAyyash, M. M., Abdalla, A. K., AlKalbani, N. S., Baig, M. A., Turner, M. S., Liu, S.-Q., & Shah, N. P. (2021). Invited review: Characterization of new probiotics from dairy and nondairy products—Insights into acid tolerance, bile metabolism and tolerance, and adhesion capability. Journal of Dairy Science, 104(8), 8363-8379. https://doi.org/10.3168/jds.2021-20398eng
dcterms.referencesAzhar, M. A., Abdul Munaim, P. Dr. M. S., Hasan, M., & Zularisam, A. W. (2020). Viability and Gastrointestinal Tolerance of Commercial Probiotic Products. International Journal of Pharma Medicine and Biological Sciences, 9, 117-121. https://doi.org/10.18178/ijpmbs.9.3.117-121eng
dcterms.referencesAziz, T., Naveed, M., Makhdoom, S. I., Ali, U., Mughal, M. S., Sarwar, A., Khan, A. A., Zhennai, Y., Sameeh, M. Y., Dablool, A. S., Alharbi, A. A., Shahzad, M., Alamri, A. S., & Alhomrani, M. (2023). Genome Investigation and Functional Annotation of Lactiplantibacillus plantarum YW11 Revealing Streptin and Ruminococcin-A as Potent Nutritive Bacteriocins against Gut Symbiotic Pathogens. Molecules, 28(2), Article 2. https://doi.org/10.3390/molecules28020491eng
dcterms.referencesAziz, T., Naveed, M., Sarwar, A., Makhdoom, S. I., Mughal, M. S., Ali, U., Yang, Z., Shahzad, M., Sameeh, M. Y., Alruways, M. W., Dablool, A. S., Almalki, A. A., Alamri, A. S., & Alhomrani, M. (2022). Functional Annotation of Lactiplantibacillus plantarum 13-3 as a Potential Starter Probiotic Involved in the Food Safety of Fermented Products. Molecules, 27(17), Article 17. https://doi.org/10.3390/molecules27175399eng
dcterms.referencesAzizi, A. F. N., Uemura, R., Omori, M., Sueyoshi, M., & Yasuda, M. (2022). Effects of Probiotics on Growth and Immunity of Piglets. Animals : an Open Access Journal from MDPI, 12(14), 1786. https://doi.org/10.3390/ani12141786eng
dcterms.referencesAzizi, F., & Habibi Najafi, M. B. (2017). The Biodiversity of Lactobacillus Spp. From Iranian Raw Milk Motal Cheese and Antibacterial Evaluation Based on Bacteriocin-Encoding Genes. Amb Express. https://doi.org/10.1186/s13568-017-0474-2eng
dcterms.referencesBaca-Castañón, M. L., De la Garza-Ramos, M. A., Alcázar-Pizaña, A. G., Grondin, Y., Coronado-Mendoza, A., Sánchez-Najera, R. I., Cárdenas-Estrada, E., Medina-De la Garza, C. E., & Escamilla-García, E. (2015). Antimicrobial Effect of Lactobacillus reuteri on Cariogenic Bacteria Streptococcus gordonii, Streptococcus mutans, and Periodontal Diseases Actinomyces naeslundii and Tannerella forsythia. Probiotics and Antimicrobial Proteins, 7(1), 1-8. https://doi.org/10.1007/s12602-014-9178-yeng
dcterms.referencesBai, Z., Ma, L., Jin, S., Ma, W., Velthof, G. L., Oenema, O., Liu, L., Chadwick, D. R., & Zhang, F. (2016). Nitrogen, Phosphorus, and Potassium Flows Through the Manure Management Chain in China. Environmental Science & Technology. https://doi.org/10.1021/acs.est.6b03348eng
dcterms.referencesBallester, M., Jové-Juncà, T., Pascual, A., López-Serrano, S., Crespo-Piazuelo, D., Hernández-Banqué, C., González-Rodríguez, O., Ramayo-Caldas, Y., & Quintanilla, R. (2023). Genetic architecture of innate and adaptive immune cells in pigs. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1058346eng
dcterms.referencesBallester, M., Ramayo-Caldas, Y., González-Rodríguez, O., Pascual, M., Reixach, J., Díaz, M., Blanc, F., López-Serrano, S., Tibau, J., & Quintanilla, R. (2020). Genetic parameters and associated genomic regions for global immunocompetence and other health-related traits in pigs. Scientific Reports, 10(1), 18462. https://doi.org/10.1038/s41598-020-75417-7eng
dcterms.referencesBaños Arjona, A. (2016). Aplicación de la tecnología de las barreras en el desarrollo de as-48 como bioconservante alimentario. Estudio de probiosis de una cepa productora de as-48 [Http://purl.org/dc/dcmitype/Text, Universidad de Granada]. https://dialnet.unirioja.es/servlet/tesis?codigo=70998spa
dcterms.referencesBarbosa, J., Albano, H., Silva, B., Almeida, M. H., Nogueira, T., & Teixeira, P. (2021). Characterization of a Lactiplantibacillus plantarum R23 Isolated from Arugula by Whole-Genome Sequencing and Its Bacteriocin Production Ability. International Journal of Environmental Research and Public Health, 18(11), Article 11. https://doi.org/10.3390/ijerph18115515eng
dcterms.referencesBarros, M. M., Castro, J., Araújo, D., Campos, A. M., Oliveira, R., Silva, S., Outor-Monteiro, D., & Almeida, C. (2023). Swine Colibacillosis: Global Epidemiologic and Antimicrobial Scenario. Antibiotics (Basel, Switzerland), 12(4), 682. https://doi.org/10.3390/antibiotics12040682eng
dcterms.referencesBasa, E. L. U., Abinawanto, A., Sophian, A., Julendra, H., & Sofyan, A. (2020). The detection of plantaricin-encoding genes and their amino acid profiles in Lactobacillus plantarum AKK30 isolated from Indonesian native chicken. Biodiversitas Journal of Biological Diversity, 21(12), Article 12. https://doi.org/10.13057/biodiv/d211241eng
dcterms.referencesBastani, P., Homayouni, A., Norouzi-Panahi, L., Tondhoush, A., Norouzi, S., Mehrabany, E., & Kasaie, Z. (2016). The Mechanisms of Immune System Regulation by Probiotics in Immune-Related Diseases. Journal of Pharmacy and Nutrition Sciences, 6(3), Article 3. https://doi.org/10.6000/1927-5951.2016.06.03.4eng
dcterms.referencesBastos, M. do C. de F., Coelho, M. L. V., & Santos, O. C. da S. (2015). Resistance to bacteriocins produced by Gram-positive bacteria. Microbiology (Reading, England), 161(Pt 4), 683-700. https://doi.org/10.1099/mic.0.082289-0eng
dcterms.referencesBauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493-496.eng
dcterms.referencesBaumans, V. (2004). Use of animals in experimental research: An ethical dilemma? Gene Therapy, 11(1), S64-S66. https://doi.org/10.1038/sj.gt.3302371eng
dcterms.referencesBautista, A. G., & Barrado, A. G. (s. f.). Bacteriocinas como bioconservador alimentario: Características generales y aplicación en alimentos. Recuperado 13 de noviembre de 2023, de https://pubsaude.com.br/wp-content/uploads/2023/02/366 -Bacteriocinas-como-bioconservador-alimentario.pdfspa
dcterms.referencesBautista, A. G., & Barrado, A. G. (2023). Bacteriocinas como bioconservador alimentario: Características generales y aplicación en alimentos. PubSaúde, 12, 1-9. https://doi.org/10.31533/pubsaude12.a366spa
dcterms.referencesBauza, R., Silva, D., Bratschi, C., & Barreto, R. (2018). Respuesta productiva de cerdos en engorde a la sustitución de maíz por sorgo en su dieta. Agrociencia Uruguay, 22(1), Article 1. https://doi.org/10.31285/AGRO.22.1.13spa
dcterms.referencesBegley, M., Sleator, R. D., Gahan, C. G., & Hill, C. (2005). Contribution of Three Bile-Associated Loci, bsh, pva, and btlB, to Gastrointestinal Persistence and Bile Tolerance of Listeria monocytogenes. Infection and Immunity, 73(2), 894-904. https://doi.org/10.1128/iai.73.2.894-904.2005eng
dcterms.referencesBeltran-Alcrudo, D., Falco, J. R., Raizman, E. A., & Dietze, K. (2019). Transboundary Spread of Pig Diseases: The Role of International Trade and Travel. BMC Veterinary Research. https://doi.org/10.1186/s12917-019-1800-5eng
dcterms.referencesBenkerroum, N., Ghouati, Y., Sandine, W. E., & Ouhssine, M. (1993). A simple technique for the detection of bacteriocin production by lactic acid bacteria. Journal of Applied Bacteriology, 74(3), 243-247.eng
dcterms.referencesBerebon, D., Ofokansi, K., Attama, A., Osita, E., Restus, C., Ugwu, C., Eze, C., & Evurani, S. (2019). Evaluation of Lactobacillus spp. Isolated from locally consumed probiotic food in Nsukka, Enugu State, Nigeria for antimicrobial activity utilizing agar well diffusion and pH tolerance tests. African Journal of Biotechnology, 18, 1091-1097. https://doi.org/10.5897/AJB2019.16924eng
dcterms.referencesBernatek, M., Żukiewicz-Sobczak, W., Lachowicz-Wiśniewska, S., & Piątek, J. (2022). Factors Determining Effective Probiotic Activity: Evaluation of Survival and Antibacterial Activity of Selected Probiotic Products Using an “In Vitro” Study. Nutrients, 14(16), Article 16. https://doi.org/10.3390/nu14163323eng
dcterms.referencesBerra, M. A. S., Ortiz, J. A. G., Aldana, F. H., Lara, M. H., Santos, J. A. Y., & Ramírez, M. L. C. (2023). Resistencia de Lactobacillus spp. A malatión 1000. Revista Internacional de Contaminación Ambiental, 39, 1-10. https://doi.org/10.20937/RICA.54183spa
dcterms.referencesBetancur, C., Martínez, Y., Tellez-Isaias, G., Avellaneda, M. C., & Velázquez-Martí, B. (2020). In Vitro Characterization of Indigenous Probiotic Strains Isolated from Colombian Creole Pigs. Animals, 10(7), Article 7. https://doi.org/10.3390/ani10071204eng
dcterms.referencesBetancur, C., Martínez, Y., Tellez-Isaias, G., Castillo, R., & Ding, X. (2021). Effect of Oral Administration With Lactobacillus Plantarum CAM6 Strain on Sows During Gestation-Lactation and the Derived Impact on Their Progeny Performance. Mediators of Inflammation. https://doi.org/10.1155/2021/6615960eng
dcterms.referencesBhattacharya, A., Joishy, T. K., & Khan, M. R. (2024). Exploring the probiotic potential, antioxidant capacity, and healthy aging based on whole genome analysis of Lactiplantibacillus plantarum LPJBC5 isolated from fermented milk product (p. 2024.03.14.584937). bioRxiv. https://doi.org/10.1101/2024.03.14.584937eng
dcterms.referencesBin, P., Tang, Z., Liu, S., Chen, S., Xia, Y., Liu, J., Wu, H., & Zhu, G. (2018). Intestinal microbiota mediates Enterotoxigenic Escherichia coli-induced diarrhea in piglets. BMC Veterinary Research, 14(1), 385. https://doi.org/10.1186/s12917-018-1704-9eng
dcterms.referencesBittman, S., Worth, D. E., Hunt, D., Spiegal, S., A. Kleinman, P. J., Nanayakkara, S., Vendramin, J., Silveira, M. L., Flynn, C., Reid, K., Martin, T. A., VanderZaag, A., & Javorek, S. (2023). Distribution of Livestock Sectors in Canada: Implications for Manureshed Management. Journal of Environmental Quality. https://doi.org/10.1002/jeq2.20457eng
dcterms.referencesBlin, K., Shaw, S., Augustijn, H. E., Reitz, Z. L., Biermann, F., Alanjary, M., Fetter, A., Terlouw, B. R., Metcalf, W. W., Helfrich, E. J. N., van Wezel, G. P., Medema, M. H., & Weber, T. (2023). antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Research, 51(W1), W46-W50. https://doi.org/10.1093/nar/gkad344eng
dcterms.referencesBlum, J. E., Fischer, C. N., Miles, J., & Handelsman, J. (2013). Frequent Replenishment Sustains the Beneficial Microbiome of Drosophila Melanogaster. Mbio. https://doi.org/10.1128/mbio.00860-13eng
dcterms.referencesBoeckel, T. V., Brower, C., Gilbert, M., Grenfell, B. B., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global Trends in Antimicrobial Use in Food Animals. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1503141112eng
dcterms.referencesBolibrukh, M., & Rublenko, I. (2023). Influence of Factors on the gastrointestinal microbiota of Pigs. Ukrainian Journal of Veterinary and Agricultural Sciences, 6(1), Article 1. https://doi.org/10.32718/ujvas6-1.11eng
dcterms.referencesBoranbayeva, T. (2024). Probiotic properties of lactic acid bacteria isolated from mare’s milk. Bulletin of Shakarim University Technical Sciences, 1(13), 258-265. https://doi.org/10.53360/2788-7995-2024-1(13)-32eng
dcterms.referencesBorrás-Sandoval, L. M., Valiño-Cabrera, E. C., & Rodríguez-Molano, C. E. (2017). Preparado microbiano con actividad ácido láctica como acelerante biológico en los procesos de fermentación para alimento animal. Ciencia y Agricultura, 14(1), Article 1. https://doi.org/10.19053/01228420.v14.n1.2017.6083spa
dcterms.referencesBotta, C., Acquadro, A., Greppi, A., Barchi, L., Bertolino, M., Cocolin, L., & Rantsiou, K. (2017). Genomic assessment in Lactobacillus plantarum links the butyrogenic pathway with glutamine metabolism. Scientific Reports, 7(1), 15975. https://doi.org/10.1038/s41598-017-16186-8eng
dcterms.referencesBotteldoorn, N., Heyndrickx, M., Rijpens, N., Grijspeerdt, K., & Herman, L. (2003). Salmonella on pig carcasses: Positive pigs and cross contamination in the slaughterhouse. Journal of Applied Microbiology, 95(5), 891-903. https://doi.org/10.1046/j.1365-2672.2003.02042.xeng
dcterms.referencesBouteille, R., Gaudet, M., Lecanu, B., & This, H. (2013). Monitoring lactic acid production during milk fermentation by in situ quantitative proton nuclear magnetic resonance spectroscopy. Journal of Dairy Science, 96(4), 2071-2080. https://doi.org/10.3168/jds.2012-6092eng
dcterms.referencesBreda, L. van, Mitchell, P., & Cutler, R. S. (2019). Antimicrobial Stewardship in the Australian Pork Industry. Australian Veterinary Journal. https://doi.org/10.1111/avj.12838eng
dcterms.referencesBu, Y., Liu, Y., Li, J., Liu, T., Gong, P., Zhang, L., Wang, Y., & Yi, H. (2021). Analyses of plantaricin Q7 synthesis by Lactobacillus plantarum Q7 based on comparative transcriptomics. Food Control, 124, 107909. https://doi.org/10.1016/j.foodcont.2021.107909eng
dcterms.referencesBuntin, N., Hongpattarakere, T., Ritari, J., Douillard, F. P., Paulin, L., Boeren, S., Shetty, S. A., & de Vos, W. M. (2016). An Inducible Operon Is Involved in Inulin Utilization in Lactobacillus plantarum Strains, as Revealed by Comparative Proteogenomics and Metabolic Profiling. Applied and Environmental Microbiology, 83(2), e02402-16. https://doi.org/10.1128/AEM.02402-16eng
dcterms.referencesBurrough, E. R. (2017). Swine Dysentery: Etiopathogenesis and Diagnosis of a Reemerging Disease. Veterinary Pathology, 54(1), 22-31. https://doi.org/10.1177/0300985816653795eng
dcterms.referencesCaicedo, W., Pérez, M., Sanchez, J., Flores, A., & Duchitanga, E. (2019). Contenido de fenoles totales y actividad antioxidante del follaje de anís silvestre (Piper auritum Kunth) y su efecto nutracéutico para cerdos en posdestete. Revista de Investigaciones Veterinarias del Perú, 30(4), 1470-1480. https://doi.org/10.15381/rivep.v30i4.17264eng
dcterms.referencesCalabia, B., & Tokiwa, Y. (2007). Production of d-lactic acid from sugarcane molasses, sugarcane juice and sugar beet juice by lactobacillus delbrueckii. Biotechnology Letters, 29(9), 1329-1332. https://doi.org/10.1007/s10529-007-9408-4eng
dcterms.referencesCalderón A., A., Calle E., S., Torres A., M., Morales C., S., & Pinto J., C. (2009). Frecuencia de serorreactores a Lawsonia intracellularis en granjas porcinas tecnificadas. Revista de Investigaciones Veterinarias del Perú, 20(2), 327-331. http://www.scielo.org.pe/scielo.php?script=sci_abstract&pid=S1609 -91172009000200026&lng=es&nrm=iso&tlng=esspa
dcterms.referencesCalderón, V. M. T., & Díaz, J. C. (2020). Modelo logístico para determinar la velocidad máxima y tiempo de fermentación láctica en residuos sólidos de pescado. TAYACAJA, 3(2), Article 2. https://doi.org/10.46908/rict.v3i2.110spa
dcterms.referencesCalle-García, J., Ramayo-Caldas, Y., Zingaretti, L. M., Quintanilla, R., Ballester, M., & Pérez-Enciso, M. (2023). On the holobiont ‘predictome’ of immunocompetence in pigs. Genetics Selection Evolution, 55(1), 29. https://doi.org/10.1186/s12711-023-00803-4eng
dcterms.referencesCallewaert, R., Holo, H., Devreese, B., Van Beeumen, J., Nes, I., & De Vuyst, L. (1999). Characterization and production of amylovorin L471, a bacteriocin purified from Lactobacillus amylovorus DCE 471 by a novel three-step methodThe GenBank/EMBL/DDBJ accession number for the sequence reported in this paper is P81927. Microbiology, 145(9), 2559-2568. https://doi.org/10.1099/00221287-145-9-2559eng
dcterms.referencesCamacho-Luque, R., Peña-Monje, A., Montiel, N., Barbancho, A., & Garcia, F. (2015). Maldi-tof mass spectrometry as a routine technique for identification of typical and atypical mycobacteria in the laboratory of clinical microbiology. Actualidad Médica, 100(796), 121-123. https://doi.org/10.15568/am.2015.796.or02eng
dcterms.referencesCampedelli, I., Mathur, H., Salvetti, E., Clarke, S., Rea, M. C., Torriani, S., Ross, R. P., Hill, C., & O’Toole, P. W. (2018). Genus-Wide Assessment of Antibiotic Resistance in Lactobacillus spp. Applied and Environmental Microbiology, 85(1), e01738-18. https://doi.org/10.1128/AEM.01738-18eng
dcterms.referencesCampos, J., Mourão, J., Peixe, L., & Antunes, P. (2019). Non-Typhoidal Salmonella in the Pig Production Chain: A Comprehensive Analysis of Its Impact on Human Health. Pathogens. https://doi.org/10.3390/pathogens8010019eng
dcterms.referencesCanibe, N., O’Dea, M., & Abraham, S. (2019). Potential relevance of pig gut content transplantation for production and research. Journal of Animal Science and Biotechnology, 10(1), 55. https://doi.org/10.1186/s40104-019-0363-4eng
dcterms.referencesCantalapiedra, C. P., Hernandez-Plaza, A., Letunic, I., Bork, P., & Huerta-Cepas, J. (2021). eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. bioRxiv. https://doi.org/10.1101/2021.06.03.446934eng
dcterms.referencesCarattoli, A., Villa, L., Feudi, C., Curcio, L., Orsini, S., Luppi, A., Pezzotti, G., & Magistrali, C. F. (2017). Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Eurosurveillance, 22(31), 30589. https://doi.org/10.2807/1560-7917.ES.2017.22.31.30589eng
dcterms.referencesCardelle-Cobas, A., Coy-Girón, L., Cepeda, A., & Nebot, C. (2023). Swine Production: Probiotics as an Alternative to the Use of Antibiotics. https://doi.org/10.5772/intechopen.108308eng
dcterms.referencesCardona-Arengas, M. A., López-Marín, B. E., Cardona-Arengas, M. A., & López-Marín, B. E. (2019). Los probióticos: Alimentos funcionales para lactantes. Medicas UIS, 32(2), 31-39. https://doi.org/10.18273/revmed.v32n2-2019004spa
dcterms.referencesCardoso, M. de las M. E. (2010). Caracterización y purificación parcial de sustancias tipo bacteriocinas producidas por cepas de Enterococcus [Tesis de Maestría]. Universidad Nacional del Litoral, Facultad de Ingeniería Química.spa
dcterms.referencesCarlos G. Germán Alarcón, J. G. S., Julio César Camacho Ronquillo. (2005). Manual del participante: Producción de Cerdos. Institución de Enseñanza e Investigación en Ciencias Agrícolasspa
dcterms.referencesCarpi, F. M., Coman, M. M., Silvi, S., Picciolini, M., Verdenelli, M. C., & Napolioni, V. (2022). Comprehensive pan‐genome analysis of Lactiplantibacillus plantarum complete genomes. Journal of Applied Microbiology, 132(1), 592-604. https://doi.org/10.1111/jam.15199eng
dcterms.referencesCarrasco, J., & Alcázar, P. (2017). Capacidad probiótica de bacterias lácticas aisladas de chicha de molle. Revista De La Sociedad Química Del Perú, 83(4), 391-402. https://doi.org/10.37761/rsqp.v83i4.212spa
dcterms.referencesCasaburi, A., Di Martino, V., Ferranti, P., Picariello, G., & Villani, F. (2015). Antimicrobial activity of strain-specific bacteriocin-producing lactobacillus plantarum, lactobacillus paraplantarum, and lactobacillus fermentum isolates from turkish sucuk. Food Control, 51, 276-281.eng
dcterms.referencesCastellanos-Rozo, J., López, J. A. G., Pulido, R. P., Burgos, M. J. G., Lucas, R., & Gálvez, A. (2022). Las bacteriocinas y su efecto sinérgico con tecnologías emergentes en alimentos. Revista Mutis, 12(2). https://doi.org/10.21789/22561498.1841spa
dcterms.referencesCastillo, C., Brito, G., Tello, L., & Flores, L. (2022). Biochemical Characterization of Lactic Acid Bacteria from the Small Intestine of Piglets as Possible Probiotic Strains. ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M., 3-13. https://doi.org/10.18502/espoch.v2i1.11179eng
dcterms.referencesCastillo García, W. E., Sánchez Suárez, H. A., & Ochoa Mogollón, G. M. (2019). Evaluación del ensilado de residuos de pescado y de cabeza de langostinofermentado con Lactobacillus fermentus aislado de cerdo. Revista de Investigaciones Veterinarias del Perú, 30(4), 1456-1469. https://doi.org/10.15381/rivep.v30i4.17165spa
dcterms.referencesCastro, J., Barros, M. M., Araújo, D., Campos, A. M., Oliveira, R., Silva, S., & Almeida, C. (2022). Swine enteric colibacillosis: Current treatment avenues and future directions. Frontiers in Veterinary Science, 9, 981207. https://doi.org/10.3389/fvets.2022.981207eng
dcterms.referencesCastro, L. G., & Castillo, A. Y. G. (2016). Uso de probióticos en alimentación animal. Revista Sistemas de Producción Agroecológicos, 7(2), 43-55. https://doi.org/10.22579/22484817.687spa
dcterms.referencesChaimanee, V., Sakulsingharoj, C., Deejing, S., Seetakoses, P., & Niamsup, P. (2009). Screening and characterisation of bacteriocin-producing bacteria capable of inhibiting the growth of bovine mastitis. Maejo International Journal of Science and Technology. https://www.semanticscholar.org/paper/Screening-and-characterisation-of-bacteria-capable-Chaimanee-Sakulsingharoj/8e83e8b40602ddeca50e66c6d38654790ac0f395eng
dcterms.referencesChen, C., Yu, L., Tian, F., Zhao, J., & Zhai, Q. (2022). Identification of Novel Bile Salt-Tolerant Genes in Lactobacillus Using Comparative Genomics and Its Application in the Rapid Screening of Tolerant Strains. Microorganisms, 10(12), Article 12. https://doi.org/10.3390/microorganisms10122371eng
dcterms.referencesChen, L., Xu, Y., Chen, X., Fang, C., Zhao, L., & Chen, F. (2017). The Maturing Development of Gut Microbiota in Commercial Piglets during the Weaning Transition. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01688eng
dcterms.referencesChen, L., Zheng, D., Liu, B., Yang, J., & Jin, Q. (2015). VFDB 2016: Hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Research, 44(Database issue), D694. https://doi.org/10.1093/nar/gkv1239eng
dcterms.referencesChen, X., Guo, J., Liu, Y., Chai, S., Ma, R., & Munguntsetseg, B. (2019). Characterization and adsorption of a Lactobacillus plantarum virulent phage. Journal of Dairy Science, 102(5), 3879-3886. https://doi.org/10.3168/jds.2018-16019eng
dcterms.referencesChen, Y. S., Wang, Y. C., Chow, Y. S., Yanagida, F., Liao, C. C., & Chiu, C. M. (2014). Purification and Characterization of Plantaricin Y, a Novel Bacteriocin Produced by Lactobacillus Plantarum 510. Archives of Microbiology. https://doi.org/10.1007/s00203-014-0958-2eng
dcterms.referencesCherrington, C. A., & Hinton, M. (1990). Stress responses of Salmonella. Journal of Applied Bacteriology, 68(1), 61-72.eng
dcterms.referencesChoi, W., Son, D. B., Hong, J., Jeong, D., Kim, H.-C., Lee, H., & Suh, J.-W. (2021). The Effect of Fermented Kefir as Functional Feed Additive in Post-Weaned Pigs. Fermentation, 7(1), Article 1. https://doi.org/10.3390/fermentation7010023eng
dcterms.referencesChoi, Y. J. & Otros. (2023). Investigation of bacteriocins produced by Lactiplantibacillus plantarum. Nombre de la revista, Número del volumen, Páginas. https://doi.org/DOIeng
dcterms.referencesChoudhury, R., Middelkoop, A., de Souza, J. G., van Veen, L. A., Gerrits, W. J. J., Kemp, B., Bolhuis, J. E., & Kleerebezem, M. (2021). Impact of early-life feeding on local intestinal microbiota and digestive system development in piglets. Scientific Reports, 11(1), 4213. https://doi.org/10.1038/s41598-021-83756-2eng
dcterms.referencesChuah, L.-O., Foo, H. L., Loh, T. C., Mohammed Alitheen, N. B., Yeap, S. K., Abdul Mutalib, N. E., Abdul Rahim, R., & Yusoff, K. (2019). Postbiotic metabolites produced by Lactobacillus plantarum strains exert selective cytotoxicity effects on cancer cells. BMC Complementary and Alternative Medicine, 19(1), 114. https://doi.org/10.1186/s12906-019-2528-2eng
dcterms.referencesCock, L. S., & Valencia, C. E. E. (2013). Actividad antimicrobiana de Weissella confusa y sus metabolitos frente a Escherichia coli y Klebsiella pneumoniae. Revista Colombiana de Biotecnología, 15(2), Article 2. https://doi.org/10.15446/rev.colomb.biote.v15n2.34979spa
dcterms.referencesCoconnier, M.-H., Liévin, V., Lorrot, M., & Servin, A. L. (2000). Antagonistic Activity of Lactobacillus acidophilus LB against Intracellular Salmonella enterica Serovar Typhimurium Infecting Human Enterocyte-Like Caco-2/TC-7 Cells. Applied and Environmental Microbiology, 66(3), 1152-1157. https://doi.org/10.1128/AEM.66.3.1152-1157.2000eng
dcterms.referencesContessa, C. R., Souza, N. B. de, Gonçalo, G. B., Almeida, L. dos S., Manera, A. P., & Moraes, C. C. (2018). ESTUDO DE RESISTÊNCIA A CLORETO DE SÓDIO DE BACTERIOCINA DE Lactobacillus sakei. Revista do Congresso Sul Brasileiro de Engenharia de Alimentos, 4(1), Article 1. https://doi.org/10.5965/24473650412018081ptg
dcterms.referencesCosentino, S., Larsen, M. V., Aarestrup, F. M., & Lund, O. (2013). PathogenFinder—Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data. PLOS ONE, 8(10), e77302. https://doi.org/10.1371/journal.pone.0077302eng
dcterms.referencesCoss, A. L., Bárcena-Gama, J. R., Guerra-Medina, C. E., Montañez-Valdez, O. D., Pérez-López, S., Barrientos-Niño, E., Bran, R. A. A., & Escobar-España, J. C. (2023). Síntesis de proteína mediante la fermentación de la caña de azúcar adicionada con urea y un cultivo ácido láctico. Revista de Investigaciones Veterinarias del Perú, 34(1), Article 1. https://doi.org/10.15381/rivep.v34i1.22993spa
dcterms.referencesCotter, P. D., Hill, C., & Ross, R. P. (2013). Bacteriocins: Developing innate immunity for food. Nature Reviews Microbiology, 11(10), 777-788eng
dcterms.referencesCragg, G. M., & Newman, D. J. (2013). Natural products: A continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA) - General Subjects, 1830(6), 3670-3695. https://doi.org/10.1016/j.bbagen.2013.02.008eng
dcterms.referencesCragg, G. M., Newman, D. J., & Snader, K. M. (1997). Natural Products in Drug Discovery and Development. Journal of Natural Products, 60(1), 52-60. https://doi.org/10.1021/np9604893eng
dcterms.referencesCruz, J. U. G. la, Rodríguez-Palma, J. J. J., Escalante-Herrera, K. S., Gutiérrez, L. de la T., Pérez-Morales, R., & Cruz-Leyva, M. C. de la. (2021). Identificación genética de bacterias ácido lácticas nativas en leche cruda de vaca y queso Poro artesanal. Manglar, 18(1), Article 1. https://doi.org/10.17268/manglar.2021.001spa
dcterms.referencesCueto, C., & Aragón, S. (2012). Evaluación del potencial probiótico de bacterias ácido lácticas para reducir el colesterol in vitro. Scientia Agropecuaria, 3(1), Article 1. https://doi.org/10.17268/sci.agropecu.2012.01.06spa
dcterms.referencesCueto-Vigil, M. C., Acuña-Monsalve, Y., & Valenzuela-Riaño, J. (2010). Evaluación in vitro del potencial probiótico de bacterias ácido lácticas aisladas de suero costeño. Actualidades Biológicas, 32(93), Article 93. https://doi.org/10.17533/udea.acbi.13809spa
dcterms.referencesCui, H., Wu, S., & Duan, Z. (2022). Complete Genome Sequence of Limosilactobacillus reuteri Strain VHProbi M07, Isolated from Breast Milk. Microbiology Resource Announcements, 11(11), e00764-22. https://doi.org/10.1128/mra.00764-22eng
dcterms.referencesDaeschel, M. A., McKenney, M. C., & McDonald, L. C. (1990). Bacteriocidal Activity ofLactobacillus Plantarum C-11. Food Microbiology. https://doi.org/10.1016/0740-0020(90)90014-9eng
dcterms.referencesDanladi, Y., Loh, T. C., Foo, H. L., Akit, H., Md Tamrin, N. A., & Azizi, M. N. (2022). Effects of Postbiotics and Paraprobiotics as Replacements for Antibiotics on Growth Performance, Carcass Characteristics, Small Intestine Histomorphology, Immune Status and Hepatic Growth Gene Expression in Broiler Chickens. Animals. https://doi.org/10.3390/ani12070917eng
dcterms.referencesde Groot, N., Meneguzzi, M., de Souza, B., & de O. Costa, M. (2022). In Vitro Screening of Non-Antibiotic Components to Mitigate Intestinal Lesions Caused by Brachyspira hyodysenteriae, Lawsonia intracellularis and Salmonella enterica Serovar Typhimurium. Animals, 12(18), Article 18. https://doi.org/10.3390/ani12182356eng
dcterms.referencesDe Koster, S., Ringenier, M., Lammens, C., Stegeman, A., Tobias, T., Velkers, F., Vernooij, H., Kluytmans-van den Bergh, M., Kluytmans, J., Dewulf, J., Goossens, H., & on behalf of the i-4-1-Health Study Group. (2021). ESBL-Producing, Carbapenem - and Ciprofloxacin-Resistant Escherichia coli in Belgian and Dutch Broiler and Pig Farms: A Cross-Sectional and Cross-Border Study. Antibiotics, 10(8), Article 8. https://doi.org/10.3390/antibiotics10080945eng
dcterms.referencesde Paula, A. T., Jeronymo-Ceneviva, A. B., Silva, L. F., Todorov, S. D., Franco, B. D. G. M., & Penna, A. L. B. (2015). Leuconostoc mesenteroides SJRP55: A potential probiotic strain isolated from Brazilian water buffalo mozzarella cheese. Annals of Microbiology, 65(2), 899-910. https://doi.org/10.1007/s13213-014-0933-9eng
dcterms.referencesDe Vuyst, L., & Leroy, F. (2007). Bacteriocins from Lactic Acid Bacteria: Production, Purification, and Food Applications. Journal of Molecular Microbiology and Biotechnology, 13(4), 194-199. https://doi.org/10.1159/000104752eng
dcterms.referencesDelgado, A. M., Brito, D., Fevereiro, P., Peres, C., & Marques, J. F. (2001). Antimicrobial Activity of <i>L. Plantarum</I>, Isolated From a Traditional Lactic Acid Fermentation of Table Olives. Dairy Science & Technology. https://doi.org/10.1051/lait:2001124eng
dcterms.referencesDelgado, S., O’Sullivan, E., Fitzgerald, G., & Mayo, B. (2007). Subtractive Screening for Probiotic Properties of Lactobacillus Species from the Human Gastrointestinal Tract in the Search for New Probiotics. Journal of Food Science, 72(8), M310-M315. https://doi.org/10.1111/j.1750-3841.2007.00479.xeng
dcterms.referencesDesmond, C., Fitzgerald, G., Stanton, C., & Ross, R. (2004). Improved Stress Tolerance of GroESL-Overproducing Lactococcus lactis and Probiotic Lactobacillus paracasei NFBC 338. Applied and Environmental Microbiology, 70(10), 5929-5936. https://doi.org/10.1128/AEM.70.10.5929-5936.2004eng
dcterms.referencesDiep, D. B., Straume, D., Kjos, M., Torres, C., & Nes, I. F. (2009). An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum. Peptides, 30(8), 1562-1574. https://doi.org/10.1016/j.peptides.2009.05.014eng
dcterms.referencesDiez-Echave, P., Martín-Cabrejas, I., Garrido-Mesa, J., Langa, S., Vezza, T., Landete, J. M., Hidalgo-García, L., Algieri, F., Mayer, M. J., Narbad, A., García-Lafuente, A., Medina, M., Rodríguez-Nogales, A., Rodríguez-Cabezas, M. E., Gálvez, J., & Arqués, J. L. (2021). Probiotic and Functional Properties of Limosilactobacillus reuteri INIA P572. Nutrients, 13(6), Article 6. https://doi.org/10.3390/nu13061860eng
dcterms.referencesDing, W. k., & Shah, N. p. (2009). Effect of Various Encapsulating Materials on the Stability of Probiotic Bacteria. Journal of Food Science, 74(2), M100-M107. https://doi.org/10.1111/j.1750-3841.2009.01067.xeng
dcterms.referencesDominguez-Vara, I. A., Gómez-Galeana, A. E., Pescador-Salas, N., & González-Ronquillo, M. (2017). Fermentación cecal in vitro de cerdos Pelón Mexicano y Cuino Mexicano suplementados con cromo. Ecosistemas y Recursos Agropecuarios, 4(11), Article 11. https://doi.org/10.19136/era.a4n11.1116spa
dcterms.referencesDrago, L., Mattina, R., Nicola, L., Rodighiero, V., & De Vecchi, E. (2011). Macrolide resistance and In Vitro selection of resistance to antibiotics in Lactobacillus isolates. The Journal of Microbiology, 49(4), 651-656. https://doi.org/10.1007/s12275-011-0470-1eng
dcterms.referencesEkblad, B., & Kristiansen, P. E. (2019). NMR structures and mutational analysis of the two peptides constituting the bacteriocin plantaricin S. Scientific Reports, 9(1), Article 1. https://doi.org/10.1038/s41598-019-38518-6eng
dcterms.referencesEkblad, B., Kyriakou, P. K., Oppegård, C., Nissen-Meyer, J., Kaznessis, Y. N., & Kristiansen, P. E. (2016). Structure–Function Analysis of the Two-Peptide Bacteriocin Plantaricin EF. Biochemistry, 55(36), 5106-5116. https://doi.org/10.1021/acs.biochem.6b00588eng
dcterms.referencesEren, A. M., Kiefl, E., Shaiber, A., Veseli, I., Miller, S. E., Schechter, M. S., Fink, I., Pan, J. N., Yousef, M., Fogarty, E. C., Trigodet, F., Watson, A. R., Esen, Ö. C., Moore, R. M., Clayssen, Q., Lee, M. D., Kivenson, V., Graham, E. D., Merrill, B. D., … Willis, A. D. (2021). Community-led, integrated, reproducible multi-omics with anvi’o. Nature Microbiology, 6(1), 3-6. https://doi.org/10.1038/s41564-020-00834-3eng
dcterms.referencesErmurat, Y., Öztürk, M., Önal, C., & Kılıçsaymaz, Z. (2022). Effects of Structural Changes in Bile Salt Hydrolase Enzyme on Biocatalytic Efficiency and Activation Energy at Working pH and Temperature Conditions. Kemija u Industriji, 7-8. https://doi.org/10.15255/KUI.2021.075eng
dcterms.referencesEstupiñan, K., Barba, C. J., Martínez, A., & Delgado, J. V. (2020). Caracterización genética del porcino Criollo de Ecuador. Archivos de Zootecnia, 69(268), Article 268. https://doi.org/10.21071/az.v69i268.5385spa
dcterms.referencesFatmarani, R., Arief, I. I., & Budiman, C. (2018). Purification of Bacteriocin from Lactobacillus plantarum IIA-1A5 Grown in Various Whey Cheese Media Under Freeze Dried Condition. Tropical Animal Science Journal, 41(1), Article 1. https://doi.org/10.5398/tasj.2018.41.1.53eng
dcterms.referencesFayol-Messaoudi, D., Berger, C. N., Coconnier-Polter, M.-H., Liévin-Le Moal, V., & Servin, A. L. (2005). pH-, Lactic Acid-, and Non-Lactic Acid-Dependent Activities of Probiotic Lactobacilli against Salmonella enterica Serovaryphimurium. Applied and Environmental Microbiology, 71(10), 6008-6013. https://doi.org/10.1128/AEM.71.10.6008-6013.2005eng
dcterms.referencesFeng, C., Zhang, F., Wang, B., Gao, J., Wang, Y., & Shao, Y. (2019). Evaluación de la resistencia a la kanamicina y la neomicina en Lactobacillus plantarum mediante evolución experimental y secuenciación del genoma completo. Food Control, 98, 262-267. https://doi.org/10.1016/j.foodcont.2018.11.030spa
dcterms.referencesFernandes, A., & Jobby, R. (2022). Bacteriocins from lactic acid bacteria and their potential clinical applications. Applied Biochemistry and Biotechnology, 194(10), 4377-4399. https://doi.org/10.1007/s12010-022-03870-3eng
dcterms.referencesFernandes, L., Centeno, M., Belas, A., Nunes, T., Lopes Alves, P., Couto, N., & Pomba, C. (2012). Immediate after birth transmission of epidemic Salmonella enterica Typhimurium monophasic strains in pigs is a likely event. Journal of Antimicrobial Chemotherapy, 67(12), 3012-3014. https://doi.org/10.1093/jac/dks334eng
dcterms.referencesFernández Ramírez, M. D., Smid, E. J., Abee, T., & Nierop Groot, M. N. (2015). Caracterización de biopelículas formadas por Lactobacillus plantarum WCFS1 y aislados de deterioro de alimentos. International Journal of Food Microbiology, 207, 23-29. https://doi.org/10.1016/j.ijfoodmicro.2015.04.030eng
dcterms.referencesFesting, M. F. (2003). Reduction of animal use: Experimental design and quality of experiments. Laboratory Animals, 37(Suppl 1), 47-53. https://doi.org/10.1258/00236770360564165eng
dcterms.referencesFevria, R., & Hartanto, I. (2020). Isolation and characterization of lactic acid bacteria (lactobacillus sp.) from sauerkraut. https://doi.org/10.2991/absr.k.200807.018eng
dcterms.referencesField, D., Fernandez de Ullivarri, M., Ross, R. P., & Hill, C. (2023). After a century of nisin research—Where are we now? FEMS Microbiology Reviews, 47(3), fuad023. https://doi.org/10.1093/femsre/fuad023eng
dcterms.referencesFimland, N., Rogne, P., Fimland, G., Nissen-Meyer, J., & Kristiansen, P. E. (2008). Three-dimensional structure of the two peptides that constitute the two-peptide bacteriocin plantaricin EF. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1784(11), 1711-1719. https://doi.org/10.1016/j.bbapap.2008.05.003eng
dcterms.referencesFirdaus, R., Kasim, A., & Kasim, F. (2024). Resistance of Lactobacillus fermentum InaCC B1295 Encapsulated in Microcrystalline Cellulose from Palm Leaf Waste to Acidic Conditions Across Various Temperatures and Storage Durations". AJARCDE (Asian Journal of Applied Research for Community Development and Empowerment), 140-147. https://doi.org/10.29165/ajarcde.v8i2.412eng
dcterms.referencesFlorensa, A. F., Kaas, R. S., Clausen, P. T. L. C., Aytan-Aktug, D., & Aarestrup, F. M. (2022). ResFinder – an open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microbial Genomics, 8(1), 000748. https://doi.org/10.1099/mgen.0.000748eng
dcterms.referencesFlores-Mancheno, L. G., García-Hernández, Y., Caicedo-Quinche, W. O., & Usca-Méndez, J. E. (2017). Influencia de dos aditivos en la respuesta productiva y sanitaria de cerdos en crecimiento -ceba. Ciencia y Agricultura, 14(1), Article 1. https://doi.org/10.19053/01228420.v14.n1.2017.6089spa
dcterms.referencesFlórez, A. B., & Mayo, B. (2018). Genome Analysis of Lactobacillus plantarum LL441 and Genetic Characterisation of the Locus for the Lantibiotic Plantaricin C. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01916eng
dcterms.referencesFlori, L., Gao, Y., Laloë, D., Lemonnier, G., Leplat, J.-J., Teillaud, A., Cossalter, A.-M., Laffitte, J., Pinton, P., Vaureix, C. de, Bouffaud, M., Mercat, M.-J., Lefèvre, F., Oswald, I. P., Bidanel, J.-P., & Rogel-Gaillard, C. (2011). Immunity Traits in Pigs: Substantial Genetic Variation and Limited Covariation. PLOS ONE, 6(7), e22717. https://doi.org/10.1371/journal.pone.0022717eng
dcterms.referencesFoster, J. W. (2003). Stress responses in pathogenic bacteria. Molecular Microbiology, 48(3), 709-717eng
dcterms.referencesFrench, K., Evans, J., Tanner, H., Gossain, S., & Hussain, A. (2016). The Clinical Impact of Rapid, Direct MALDI-ToF Identification of Bacteria from Positive Blood Cultures. PLOS ONE, 11(12), e0169332. https://doi.org/10.1371/journal.pone.0169332eng
dcterms.referencesGadde, U., Oh, S. T., Lee, Y. S., Davis, E., Zimmerman, N., Rehberger, T., & Lillehoj, H. S. (2017). The Effects of Direct-fed Microbial Supplementation, as an Alternative to Antibiotics, on Growth Performance, Intestinal Immune Status, and Epithelial Barrier Gene Expression in Broiler Chickens. Probiotics and Antimicrobial Proteins, 9(4), 397-405. https://doi.org/10.1007/s12602-017-9275-9eng
dcterms.referencesGámez, H. J., & Argoti, C. F. (2017). Determinación del efecto probiótico In vitro de Lactobacillus gasseri sobre una cepa de Staphylococcus epidermidis. Biosalud, 16(2), Article 2. https://doi.org/10.17151/biosa.2017.16.2.6spa
dcterms.referencesGanoza, E. M., Morales, J. J., & Castro, M. W. L. de. (2016). ESTABILIZACIÓN DE HECES HUMANAS PROVENIENTES DE BAÑOS SECOS POR UN PROCESO DE FERMENTACIÓN ÁCIDO LÁCTICA. Ecología Aplicada, 15(2), Article 2. https://doi.org/10.21704/rea.v15i2.754spa
dcterms.referencesGao, X., Xu, K., Ahmad, N., Qin, L., & Li, C. (2021). Recent advances in engineering of microbial cell factories for intelligent pH regulation and tolerance. Biotechnology Journal, 16(9), 2100151. https://doi.org/10.1002/biot.202100151eng
dcterms.referencesGarcía Feliz, C. (2011). Salmonelosis porcina en España: Prevalencia, factores de riesgo y resistencia antimicrobiana = Swine salmonellosis in Spain: prevalence, risk factors and antimicrobial resistance. https://doi.org/10.18002/10612/1508spa
dcterms.referencesGarcía, P., Allende, F., Legarraga, P., Huilcaman, M., & Solari, S. (2012). Bacterial identification based on protein mass spectrometry: A new insight at the microbiology of the 21st century. Revista chilena de infectología, 29(3), 263-272. https://doi.org/10.4067/S0716-10182012000300003eng
dcterms.referencesGarcía-Martín, A. B., Roder, T., Schmitt, S., Zeeh, F., Bruggmann, R., & Perreten, V. (2022). Whole-genome analyses reveal a novel prophage and cgSNPs-derived sublineages of Brachyspira hyodysenteriae ST196. BMC Genomics, 23(1), 131. https://doi.org/10.1186/s12864-022-08347-5eng
dcterms.referencesGarcía-Meniño, I., García, V., Mora, A., Díaz-Jiménez, D., Flament-Simon, S. C., Alonso, M. P., Blanco, J. E., Blanco, M., & Blanco, J. (2018). Swine Enteric Colibacillosis in Spain: Pathogenic Potential of mcr -1 ST10 and ST131 E. coli Isolates. Frontiers in Microbiology, 9, 2659. https://doi.org/10.3389/fmicb.2018.02659eng
dcterms.referencesGiraldo-Carmona, J., Narváez-Solarte, W., & Díaz-López, E. (2015). Probióticos en Cerdos: Resultados Contradictorios. Biosalud. https://doi.org/10.17151/biosa.2015.14.9spa
dcterms.referencesGong, H. S., Meng, X. C., & Wang, H. (2010). Plantaricin MG active against Gram-negative bacteria produced by Lactobacillus plantarum KLDS1.0391 isolated from “Jiaoke”, a traditional fermented cream from China. Food Control, 21(1), 89-96. https://doi.org/10.1016/j.foodcont.2009.04.005eng
dcterms.referencesGracheva, O. A., Mukhutdinova, D. M., Shageeva, A. R., Zukhrabova, Z. M., Shamsutdinova, N. V., Gertman, A. M., Kalyuzhny, I. I., & Nikulin, I. A. (2023). Breeding Store Pigs with Probiotics. En A. Beskopylny, M. Shamtsyan, & V. Artiukh (Eds.), XV International Scientific Conference “INTERAGROMASH 2022” (pp. 1836-1843). Springer International Publishing. https://doi.org/10.1007/978-3-031-21432-5_200eng
dcterms.referencesGrageola, F., Ly, J., Caro, Y., Lemus, C., & Mireles, S. (2022). Follaje de Albizia lebbeck (L.) Benth. Para alimentar cerdos. 2. Digestibilidad del tracto total y salida fecal de materiales. Revista Bio Ciencias, 9, 11 pág-11 pág. https://doi.org/10.15741/revbio.09.e1195spa
dcterms.referencesGrant, J. R., Enns, E., Marinier, E., Mandal, A., Herman, E. K., Chen, C., Graham, M., Van Domselaar, G., & Stothard, P. (2023). Proksee: In-depth characterization and visualization of bacterial genomes. Nucleic Acids Research, 51(W1), W484-W492. https://doi.org/10.1093/nar/gkad326eng
dcterms.referencesGrissa, I., Vergnaud, G., & Pourcel, C. (2007). CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Research, 35(Web Server issue), W52. https://doi.org/10.1093/nar/gkm360eng
dcterms.referencesGrosu, I. A., Marin, D. E., & Țăranu, I. (2022). The pig gut microbiota analysis techniques, a comparison. Archiva Zootechnica, 25(1), 90-115. https://doi.org/10.2478/azibna-2022-0007eng
dcterms.referencesGrześkowiak, Ł., Dadi, T. H., Zentek, J., & Vahjen, W. (2019). Developing Gut Microbiota Exerts Colonisation Resistance to Clostridium (syn. Clostridioides) difficile in Piglets. Microorganisms, 7(8), 218. https://doi.org/10.3390/microorganisms7080218eng
dcterms.referencesGrześkowiak, Ł., Saliu, E.-M., Wessels, A. G., Martínez-Vallespín, B., Männer, K., Cerón, J. J., Vahjen, W., & Zentek, J. (2023). Clostridioides difficile-mesocolonic oedema in neonatal suckling piglets develops regardless of the fibre composition in sow’s diets. animal, 17(2), 100697. https://doi.org/10.1016/j.animal.2022.100697eng
dcterms.referencesGuerra-Ordaz, A. A., González-Ortiz, G., La Ragione, R. M., Woodward, M. J., Collins, J. W., Pérez, J. F., & Martín-Orúe, S. M. (2014). Lactulose and Lactobacillus plantarum, a Potential Complementary Synbiotic To Control Postweaning Colibacillosis in Piglets. Applied and Environmental Microbiology, 80(16), 4879-4886. https://doi.org/10.1128/AEM.00770-14eng
dcterms.referencesGuevarra, R. B., Lee, J. H., Lee, S. H., Seok, M.-J., Kim, D. W., Kang, B. N., Johnson, T. J., Isaacson, R. E., & Kim, H. B. (2019). Piglet gut microbial shifts early in life: Causes and effects. Journal of Animal Science and Biotechnology, 10(1), 1. https://doi.org/10.1186/s40104-018-0308-3eng
dcterms.referencesGuo, H., Pan, L., Li, L., Lu, J., Kwok, L., Menghe, B., Zhang, H., & Zhang, W. (2017). Characterization of Antibiotic Resistance Genes from Lactobacillus Isolated from Traditional Dairy Products. Journal of Food Science, 82(3), 724-730. https://doi.org/10.1111/1750-3841.13645eng
dcterms.referencesHanidah, I.-I., Putri, I. L. K., Putranto, W. S., Nurhadi, B., & Sumanti, D. M. (2019). Characterization of Probiotic Bacterial Candidates from Jatinangor-Indonesia Breast Milk. International Journal on Advanced Science, Engineering and Information Technology, 9(5), Article 5. https://doi.org/10.18517/ijaseit.9.5.10124eng
dcterms.referencesHernández, A. Á., Munguía, C. A. G., Munguía, A. M. G., Ortíz, J. R. O., Vásquez, Á. C. S., & Flores, S. M. (2020). Sistema de producción del Cerdo Pelón Mexicano en la Península de Yucatán. Nova Scientia, 12(24), Article 24. https://doi.org/10.21640/ns.v12i24.2234spa
dcterms.referencesHernández, D., Cardell, E., & Zárate, V. (2005). Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese: Initial characterization of plantaricin TF711, a bacteriocin-like substance produced by Lactobacillus plantarum TF711. Journal of Applied Microbiology, 99(1), 77-84. https://doi.org/10.1111/j.1365-2672.2005.02576.xeng
dcterms.referencesHolo, H., Jeknic, Z., Daeschel, M., Stevanovic, S., & Nes, I. F. (2001). Plantaricin W from Lactobacillus plantarum belongs to a new family of two-peptide lantibioticsThe GenBank accession number for the sequence reported in this paper is AY007251. Microbiology, 147(3), 643-651. https://doi.org/10.1099/00221287-147-3-643eng
dcterms.referencesHu, J., Nie, Y., Chen, J., Zhang, Y., Wang, Z., Fan, Q., & Yan, X. (2016). Gradual Changes of Gut Microbiota in Weaned Miniature Piglets. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01727eng
dcterms.referencesHu, M., Zhao, H., Zhang, C., Yu, J., & Lu, Z. (2013). Purification and Characterization of Plantaricin 163, a Novel Bacteriocin Produced by Lactobacillus plantarum 163 Isolated from Traditional Chinese Fermented Vegetables. Journal of Agricultural and Food Chemistry, 61(47), 11676-11682. https://doi.org/10.1021/jf403370yeng
dcterms.referencesHuang, C.-H., Chen, C.-C., Lin, Y.-C., Chen, C.-H., Lee, A.-Y., Liou, J.-S., Gu, C.-T., & Huang, L. (2021). The mutL Gene as a Genome-Wide Taxonomic Marker for High Resolution Discrimination of Lactiplantibacillus plantarum and Its Closely Related Taxa. Microorganisms, 9(8), Article 8. https://doi.org/10.3390/microorganisms9081570eng
dcterms.referencesHuang, C.-H., & Lee, F.-L. (2011). The dnaK gene as a molecular marker for the classification and discrimination of the Lactobacillus casei group. Antonie van Leeuwenhoek, 99(2), 319-327. https://doi.org/10.1007/s10482-010-9493-6eng
dcterms.referencesHuang, D., Liu, Y., & Liang, Y. (2014). Isolation and screening of salt-tolerance lactic acid bacteria strain and study on its characteristic producing lactic acid. Advanced Materials Research, 881-883, 746-750. https://doi.org/10.4028/www.scientific.net/amr.881-883.746eng
dcterms.referencesHubrecht, R. C., & Carter, E. (2019). The 3Rs and Humane Experimental Technique: Implementing Change. Animals: An Open Access Journal from MDPI, 9(10), 754. https://doi.org/10.3390/ani9100754eng
dcterms.referencesHumam, A. M., Loh, T. C., Foo, H. L., Samsudin, A. A., Noordin, M. M., Zulkifli, I., & Izuddin, W. I. (2019). Effects of Feeding Different Postbiotics Produced by Lactobacillus Plantarum on Growth Performance, Carcass Yield, Intestinal Morphology, Gut Microbiota Composition, Immune Status, and Growth Gene Expression in Broilers Under Heat Stress. Animals. https://doi.org/10.3390/ani9090644eng
dcterms.referencesHutkins, R. W., & Nannen, N. L. (1993). Ph homeostasis in lactic acid bacteria. Journal of Dairy Science, 76(8), 2354-2365. https://doi.org/10.3168/jds.s0022-0302(93)77573-6eng
dcterms.referencesIslam, M. A., Neuhoff, C., Rony, S. A., Große-Brinkhaus, C., Uddin, M. J., Hölker, M., Tesfaye, D., Tholen, E., Schellander, K., & Pröll-Cornelissen, M. J. (2019). PBMCs transcriptome profiles identified breed-specific transcriptome signatures for PRRSV vaccination in German Landrace and Pietrain pigs. PLOS ONE, 14(9), e0222513. https://doi.org/10.1371/journal.pone.0222513eng
dcterms.referencesItem 1006/103 | Repositorio CIAD. (2017, marzo 1). http://ciad.repositorioinstitucional.mx/jspui/handle/1006/103spa
dcterms.referencesJacobson, M., Fellström, C., Lindberg, R., Wallgren, P., & Jensen-Waern, M. (2004). Experimental swine dysentery: Comparison between infection models. Journal of Medical Microbiology, 53(Pt 4), 273-280. https://doi.org/10.1099/jmm.0.05323-0eng
dcterms.referencesJamaluddin, N., Ariff, A. B., & Wong, F. W. F. (2019). Purification of a Bacteriocin-Like Inhibitory Substance Derived from Pediococcus acidilactici Kp10 by an Aqueous Micellar Two-Phase System. Biotechnology Progress, 35(1), e2719. https://doi.org/10.1002/btpr.2719eng
dcterms.referencesJaves, C. H., & Sánchez, Y. V. (2021). Bacteriophage Growth Promoters in Poultry. ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M., 1288-1300. https://doi.org/10.18502/espoch.v1i5.9566eng
dcterms.referencesJena, P. K., Trivedi, D., Thakore, K., Chaudhary, H., Giri, S. S., & Seshadri, S. (2013). Isolation and characterization of probiotic properties of Lactobacilli isolated from rat fecal microbiota. Microbiology and Immunology, 57(6), 407-416. https://doi.org/10.1111/1348-0421.12054eng
dcterms.referencesJennings, M. (2011). Animal models of human disease: Challenges in enabling translation. Biochemical Pharmacology, 81(12), 1641-1648. https://doi.org/10.1016/j.bcp.2011.03.001eng
dcterms.referencesJensen, A. N., Dalsgaard, A., Stockmarr, A., Nielsen, E. M., & Baggesen, D. L. (2006). Survival and Transmission of Salmonella enterica Serovar Typhimurium in an Outdoor Organic Pig Farming Environment. Applied and Environmental Microbiology, 72(3), 1833-1842. https://doi.org/10.1128/AEM.72.3.1833-1842.2006eng
dcterms.referencesJensen, B. (1998). The impact of feed additives on the microbialecology of the gut in young pigs. Journal of Animal and Feed Sciences, 7(Suppl. 1), 45-64. https://doi.org/10.22358/jafs/69955/1998eng
dcterms.referencesJiang, H., Tang, X., Zhou, Q., Zou, J., Li, P., Breukink, E., & Gu, Q. (2018). Plantaricin NC8 from Lactobacillus plantarum causes cell membrane disruption to Micrococcus luteus without targeting lipid II. Applied Microbiology and Biotechnology, 102(17), 7465-7473. https://doi.org/10.1007/s00253-018-9182-3eng
dcterms.referencesJiang, Y., Zhang, J., Zhao, X., Zhao, W., Yu, Z., Chen, C., & Yang, Z. (2018). Complete genome sequencing of exopolysaccharide-producing Lactobacillus plantarum K25 provides genetic evidence for the probiotic functionality and cold endurance capacity of the strain. Bioscience, Biotechnology, and Biochemistry, 82(7), 1225-1233. https://doi.org/10.1080/09168451.2018.1453293eng
dcterms.referencesJiang, Z., Paudyal, N., Xu, Y., Deng, T., Li, F., Pan, H., Peng, X., He, Q., & Yue, M. (2019). Antibiotic Resistance Profiles of Salmonella Recovered From Finishing Pigs and Slaughter Facilities in Henan, China. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2019.01513eng
dcterms.referencesJiménez-Dı́az, R., Ruiz-Barba, J. L., Cathcart, D. P., Holo, H., Nes, I. F., Sletten, K., & Warner, P. J. (1995). Purification and Partial Amino Acid Sequence of Plantaricin S, a Bacteriocin Produced by Lactobacillus Plantarum LPCO10, the Activity of Which Depends on the Complementary Action of Two Peptides. Applied and Environmental Microbiology. https://doi.org/10.1128/aem.61.12.4459-4463.1995eng
dcterms.referencesJo, H. E., Kwon, M.-S., Whon, T. W., Kim, D. W., Yun, M., Lee, J., Shin, M., Kim, S.-H., & Choi, H.-J. (2021). Alteration of Gut Microbiota After Antibiotic Exposure in Finishing Swine. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2021.596002eng
dcterms.referencesJonach, B., Boye, M., Stockmarr, A., & Jensen, T. K. (2014). Fluorescence in situ hybridization investigation of potentially pathogenic bacteria involved in neonatal porcine diarrhea. BMC Veterinary Research, 10(1), 68. https://doi.org/10.1186/1746-6148-10-68eng
dcterms.referencesJurado, H., Aguirre, D., & Ramírez, C. (2009). Caracterización de bacterias probióticas aisladas del intestino grueso de cerdos como alternativa al uso de antibióticos. Revista MVZ Córdoba, 14(2), Article 2. https://doi.org/10.21897/rmvz.356spa
dcterms.referencesKang, M.-S., Oh, J.-S., Lee, H.-C., Lim, H.-S., Lee, S.-W., Yang, K.-H., Choi, N.-K., & Kim, S.-M. (2011). Inhibitory effect of Lactobacillus reuteri on periodontopathic and cariogenic bacteria. The Journal of Microbiology, 49(2), 193-199. https://doi.org/10.1007/s12275-011-0252-9eng
dcterms.referencesKapustin, A. V., Laishevtcev, A. I., Aliper, T. I., Verkhovskiy, O. A., Kotelnikov, A. P., Mishin, A. M., Kunakov, K. Y., & Shemelkov, E. V. (2017). THE RESULTS OF CLINICAL STUDIES OF SAFETY, ANTIGENIC ACTIVITY AND EFFECTIVENESS OF INACTIVATED VACCINE «VERRES-KOLIKLOST» AGAINST ESCHERICHIOSIS AND CLOSTRIDIOSIS OF PIGS. Russian Journal of Agricultural and Socio-Economic Sciences, 66, 352-360. https://doi.org/10.18551/rjoas.2017-06.42eng
dcterms.referencesKaraffová, V., Teleky, J., Pintarič, M., Langerholc, T., Mudroňová, D., Hudec, E., & Ševčíková, Z. (2023). Application of Lactobacillus reuteri B1/1 (Limosilactobacillus reuteri) Improves Immunological Profile of the Non-Carcinogenic Porcine-Derived Enterocytes. Life, 13(5), Article 5. https://doi.org/10.3390/life13051090ptg
dcterms.referencesKaraseva, O., Ozhegov, G., Khusnutdinova, D., Siniagina, M., Anisimova, E., Akhatova, F., Fakhrullin, R., & Yarullina, D. (2023). Whole Genome Sequencing of the Novel Probiotic Strain Lactiplantibacillus plantarum FCa3L. Microorganisms, 11(5), Article 5. https://doi.org/10.3390/microorganisms11051234eng
dcterms.referencesKassym, A. & Otros. (2024). Antimicrobial activity of phenolic compounds derived from honey. Nombre de la revista, Número del volumen, Páginas. https://doi.org/DOIeng
dcterms.referencesKebreab, E., Liedke, A., Caro, D., Deimling, S., Binder, M., & Finkbeiner, M. (2016). Environmental Impact of Using Specialty Feed Ingredients in Swine and Poultry Production: A Life Cycle Assessment1. Journal of Animal Science. https://doi.org/10.2527/jas.2015-9036eng
dcterms.referencesKeerthi, R., Pokharel, B., & Abunamous, Z. (2023). Probiotics: Production, Characterization, Types, and Health Benefits.eng
dcterms.referencesKemperman, R., Kuipers, A., Karsens, H., Nauta, A., Kuipers, O., & Kok, J. (2003). Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Applied and Environmental Microbiology, 69(3), 1589-1597. https://doi.org/10.1128/AEM.69.3.1589-1597.2003eng
dcterms.referencesKim, E., Yang, S.-M., Lim, B., Park, S. H., Rackerby, B., & Kim, H.-Y. (2020). Design of PCR assays to specifically detect and identify 37 Lactobacillus species in a single 96 well plate. BMC Microbiology, 20, 96. https://doi.org/10.1186/s12866-020-01781-zeng
dcterms.referencesKim, J. W., Kim, J. H., & Kil, D. Y. (2015). Dietary organic acids for broiler chickens: A review. Revista Colombiana de Ciencias Pecuarias, 28(2), Article 2. https://doi.org/10.17533/udea.rccp.324917eng
dcterms.referencesKırmusaoğlu, S. (2018). The role of probiotics in the regulation of microbial load in green detox smootie to prevent foodborne and gastrointestinal infections. Turkish Journal of Clinics and Laboratory, 9(2), Article 2. https://doi.org/10.18663/tjcl.300738eng
dcterms.referencesKlewicka, E., & Klewicki, R. (2009). In vitro fermentation of galactosyl derivatives of polyols by lactobacillus strains. Czech Journal of Food Sciences, 27(1), 65-70. https://doi.org/10.17221/176/2008-cjfseng
dcterms.referencesKnight, A. (2007). Systematic reviews of animal experiments demonstrate poor human clinical and toxicological utility. Alternatives to Laboratory Animals: ATLA, 35(6), 641-659. https://doi.org/10.1177/026119290703500610eng
dcterms.referencesKo, H. I., Jeong, C. H., Hong, S. W., Eun, J.-B., & Kim, T.-W. (2022). Optimizing Conditions in the Acid Tolerance Test for Potential Probiotics Using Response Surface Methodology. Microbiology Spectrum, 10(4), e0162522. https://doi.org/10.1128/spectrum.01625-22eng
dcterms.referencesKonstantinidis, K. T., & Tiedje, J. M. (2005). Genomic insights that advance the species definition for prokaryotes. Proceedings of the National Academy of Sciences, 102(7), 2567-2572. https://doi.org/10.1073/pnas.0409727102eng
dcterms.referencesKranker, S., Alban, L., Boes, J., & Dahl, J. (2003). Longitudinal Study of Salmonella enterica Serotype Typhimurium Infection in Three Danish Farrow-to-Finish Swine Herds. Journal of Clinical Microbiology, 41(6), 2282-2288. https://doi.org/10.1128/jcm.41.6.2282-2288.2003eng
dcterms.referencesKristiansen, P. E., Fimland, G., Mantzilas, D., & Nissen-Meyer, J. (2005). Structure and Mode of Action of the Membrane-permeabilizing Antimicrobial Peptide Pheromone Plantaricin A. Journal of Biological Chemistry, 280(24), 22945-22950. https://doi.org/10.1074/jbc.M501620200eng
dcterms.referencesKumar, R. V. J., Seo, B. J., Mun, M. R., Kim, C.-J., Lee, I., Kim, H., & Park, Y.-H. (2010). Putative probiotic Lactobacillus spp. From porcine gastrointestinal tract inhibit transmissible gastroenteritis coronavirus and enteric bacterial pathogens. Tropical Animal Health and Production, 42(8), 1855-1860. https://doi.org/10.1007/s11250-010-9648-5eng
dcterms.referencesKurushima, J., Nakane, D., Nishizaka, T., & Tomita, H. (2014). Bacteriocin Protein BacL1 of Enterococcus faecalis Targets Cell Division Loci and Specifically Recognizes l-Ala2-Cross-Bridged Peptidoglycan. Journal of Bacteriology, 197(2), 286-295. https://doi.org/10.1128/jb.02203-14eng
dcterms.referencesKuus, K., Kramarenko, T., Sõgel, J., Mäesaar, M., Fredriksson-Ahomaa, M., & Roasto, M. (2021). Prevalence and Serotype Diversity of Salmonella enterica in the Estonian Meat Production Chain in 2016–2020. Pathogens, 10(12), Article 12. https://doi.org/10.3390/pathogens10121622eng
dcterms.referencesKwon, Y. J., Chun, B. H., Jung, H. S., Chu, J., Joung, H., Park, S. Y., Kim, B. K., & Jeon, C. O. (2021). Safety Assessment of Lactiplantibacillus (formerly Lactobacillus) plantarum Q180. 31(10), 1420-1429. https://doi.org/10.4014/jmb.2106.06066eng
dcterms.referencesKyrkou, I., Byth Carstens, A., Ellegaard-Jensen, L., Kot, W., Zervas, A., Djurhuus, A. M., Neve, H., Hansen, M., & Hestbjerg Hansen, L. (2019). Expanding the Diversity of Myoviridae Phages Infecting Lactobacillus plantarum—A Novel Lineage of Lactobacillus Phages Comprising Five New Members. Viruses, 11(7), Article 7. https://doi.org/10.3390/v11070611eng
dcterms.referencesKyrkou, I., Carstens, A. B., Ellegaard-Jensen, L., Kot, W., Zervas, A., Djurhuus, A. M., Neve, H., Franz, C. M. A. P., Hansen, M., & Hansen, L. H. (2020). Isolation and characterisation of novel phages infecting Lactobacillus plantarum and proposal of a new genus, “Silenusvirus”. Scientific Reports, 10(1), 8763. https://doi.org/10.1038/s41598-020-65366-6eng
dcterms.referencesLallès, J.-P., Bosi, P., Smidt, H., & Stokes, C. R. (2007). Nutritional management of gut health in pigs around weaning. Proceedings of the Nutrition Society, 66(2), 260-268. https://doi.org/10.1017/S0029665107005484eng
dcterms.referencesLapierre, L., Toro, C., & Martín, B. S. (2012). Estudio de la resistencia a antimicrobianos en cepas de Enterococcus spp, aisladas de aves y cerdos de producción. Avances en Ciencias Veterinarias, 25(1-2), Article 1-2. https://doi.org/10.5354/acv.v25i1-2.18284spa
dcterms.referencesLata, P., & . S. (2023). Probiotics and human health. Research Journal of Biotechnology, 18.eng
dcterms.referencesLata, S., Mishra, N. K., & Raghava, G. P. (2010). AntiBP2: Improved version of antibacterial peptide prediction. BMC Bioinformatics, 11(1), S19. https://doi.org/10.1186/1471-2105-11-S1-S19eng
dcterms.referencesLauková, A., Tomáška, M., Fraqueza, M. J., Szabóová, R., Bino, E., Ščerbová, J., Pogány Simonová, M., & Dvorožňáková, E. (2022). Bacteriocin-Producing Strain Lactiplantibacillus plantarum LP17L/1 Isolated from Traditional Stored Ewe’s Milk Cheese and Its Beneficial Potential. Foods, 11(7), Article 7. https://doi.org/10.3390/foods11070959eng
dcterms.referencesLeblanc, D., Raymond, Y., Lemay, M.-J., Champagne, C. P., & Brassard, J. (2022). Effect of probiotic bacteria on porcine rotavirus OSU infection of porcine intestinal epithelial IPEC-J2 cells. Archives of Virology, 167(10), 1999-2010. https://doi.org/10.1007/s00705-022-05510-xeng
dcterms.referencesLee, H. K., Choi, S.-H., Lee, C. R., Lee, S. H., Park, M. R., Kim, Y., Lee, M.-K., & Kim, G.-B. (2015). Screening and Characterization of Lactic Acid Bacteria Strains with Anti-inflammatory Activities through in vitro and Caenorhabditis elegans Model Testing. Korean Journal for Food Science of Animal Resources, 35(1), 91-100. https://doi.org/10.5851/kosfa.2015.35.1.91eng
dcterms.referencesLee, I., Ouk Kim, Y., Park, S.-C., & Chun, J. (2016). OrthoANI: An improved algorithm and software for calculating average nucleotide identity. International Journal of Systematic and Evolutionary Microbiology, 66(2), 1100-1103. https://doi.org/10.1099/ijsem.0.000760eng
dcterms.referencesLee, J.-H., Kim, Y.-J., Hwang, J., Kim, Y.-Y., Kim, H.-S., & Park, D.-Y. (2024). The Beneficial Effect of Lactiplantibacillus Plantarum DM083 on Restoring the Hyperglycemia in High-Sucrose Diet-Fed Drosophila. Journal of Diabetes and Treatment. https://www.gavinpublishers.com/article/view/the-beneficial-effect-of-lactiplantibacillus-plantarum--dm083-on-restoring-the-hyperglycemia-in-high-sucrose-diet-fed-drosophilaeng
dcterms.referencesLee, J.-Y., Han, G. G., Choi, J., Jin, G.-D., Kang, S.-K., Chae, B. J., Kim, E. B., & Choi, Y.-J. (2017). Pan-Genomic Approaches in Lactobacillus reuteri as a Porcine Probiotic: Investigation of Host Adaptation and Antipathogenic Activity. Microbial Ecology, 74(3), 709-721. https://doi.org/10.1007/s00248-017-0977-zeng
dcterms.referencesLegarraga, P., Moraga, M., Lam, M., Geoffroy, E., Zumarán, C., & García, P. (2013). Impact of mass spectrometry by MALDI-TOF MS for the rapid identification of aerobic and anaerobic bacteria of clinical importance. Revista chilena de infectología, 30(2), 140-146. https://doi.org/10.4067/S0716-10182013000200004eng
dcterms.referencesLekagul, A., Tangcharoensathien, V., Liverani, M., Mills, A., Rushton, J., & Yeung, S. (2021). Understanding antibiotic use for pig farming in Thailand: A qualitative study. Antimicrobial Resistance & Infection Control, 10(1), 3. https://doi.org/10.1186/s13756-020-00865-9eng
dcterms.referencesLeverrier, P., Dimova, D., Pichereau, V., Auffray, Y., Boyaval, P., & Jan, G. (2003). Susceptibility and Adaptive Response to Bile Salts in Propionibacterium freudenreichii: Physiological and Proteomic Analysis. Applied and Environmental Microbiology, 69(7), 3809-3818. https://doi.org/10.1128/AEM.69.7.3809-3818.2003eng
dcterms.referencesLi, R., Li, L., Hong, P., Lang, W., Hui, J., Yang, Y., & Zheng, X. (2019). β-Carotene prevents weaning-induced intestinal inflammation by modulating gut microbiota in piglets. Animal Bioscience, 34(7), 1221-1234. https://doi.org/10.5713/ajas.19.0499eng
dcterms.referencesLi, S., Zhang, Y., Yin, P., Zhang, K., Liu, Y., Gao, Y., Li, Y., Wang, T., Lu, S., & Li, B. (2021). Probiotic potential of γ-aminobutyric acid (GABA)–producing yeast and its influence on the quality of cheese. Journal of Dairy Science, 104(6), 6559-6576. https://doi.org/10.3168/jds.2020-19845eng
dcterms.referencesLi, S.-J., & So, J.-S. (2021). In Vitro Characterization of Cell Surface Properties of 14 Vaginal Lactobacillus Strains as Potential Probiotics. Advances in Microbiology, 11(2), Article 2. https://doi.org/10.4236/aim.2021.112010eng
dcterms.referencesLi, X., Gu, Q., Lou, X., Zhang, X., Song, D., Shen, L., & Zhao, Y. (2013). Complete Genome Sequence of the Probiotic Lactobacillus plantarum Strain ZJ316. Genome Announcements, 1(2), 10.1128/genomea.00094-13. https://doi.org/10.1128/genomea.00094-13eng
dcterms.referencesLi, Y., He, L., Zhao, Q., & Bo, T. (2022). Microbial and metabolic profiles of bronchopulmonary dysplasia and therapeutic effects of potential probiotics Limosilactobacillus reuteri and Bifidobacterium bifidum. Journal of Applied Microbiology, 133(2), 908-921. https://doi.org/10.1111/jam.15602eng
dcterms.referencesLimanska, N., Merlich, A., Zlatohurska, M., Galkin, M., Korotaieva, N., Ivanytsia, T., Choiset, Y., Ivanytsia, V., & Haertlé, T. (2022). BACTERIOCIN ASSOCIATED GENES IN FRENCH AND UKRAINIAN FERMENTED VEGETABLE ISOLATES OF LACTIPLANTIBACILLUS PLANTARUM: Short Communication. Journal of Microbiology, Biotechnology and Food Sciences, 12(1), Article 1. https://doi.org/10.55251/jmbfs.5871eng
dcterms.referencesLin, C., Wan, J., Su, Y., & Zhu, W. (2018). Effects of Early Intervention with Maternal Fecal Microbiota and Antibiotics on the Gut Microbiota and Metabolite Profiles of Piglets. Metabolites, 8(4), Article 4. https://doi.org/10.3390/metabo8040089eng
dcterms.referencesLinares, V., Linares, L., & Mendoza, G. (2011). Caracterización etnozootécnica y potencial carnicero de Sus scrofa “cerdo criollo” en Latinoamérica. Scientia Agropecuaria, 2(2), Article 2. https://doi.org/10.17268/sci.agropecu.2011.02.05spa
dcterms.referencesLiu, C.-J., Wang, R., Gong, F.-M., Liu, X.-F., Zheng, H.-J., Luo, Y.-Y., & Li, X.-R. (2015). Secuencias genómicas completas y análisis comparativo del genoma de la cepa 5-2 de Lactobacillus plantarum aislada de soja fermentada. Genomics, 106(6), 404-411. https://doi.org/10.1016/j.ygeno.2015.07.007spa
dcterms.referencesLiu, H., Zhang, L., Yi, H., Han, X., & Chi, C. (2016). Identification and characterization of plantaricin Q7, a novel plantaricin produced by Lactobacillus plantarum Q7. LWT - Food Science and Technology, 71, 386-390. https://doi.org/10.1016/j.lwt.2016.04.009eng
dcterms.referencesLiu, J., Qiao, B., Cai, Y., Tan, Z., & Deng, N. (2023). Diarrhea accompanies intestinal inflammation and intestinal mucosal microbiota dysbiosis during fatigue combined with a high-fat diet. BMC Microbiology, 23(1), 151. https://doi.org/10.1186/s12866-023-02896-9eng
dcterms.referencesLiu, S., Ma, Y., Zheng, Y., Zhao, W., Zhao, X., Luo, T., & Yang, Z. (2020). Cold-stress response of probiotic Lactobacillus plantarum K25 by iTRAQ proteomic analysis. Journal of Microbiology and Biotechnology, 30(2), 187-195. https://doi.org/10.4014/jmb.1909.09021eng
dcterms.referencesLiu, W. C., Kang, J. S., & Kim, I. H. (2018). Dietary Lactobacillus Plantarum GB805 Supplementation Improves Growth Performance and Nutrient Digestibility in Weaning Pigs. Indian Journal of Animal Research. https://doi.org/10.18805/ijar.b-852eng
dcterms.referencesLiu, Y., Li, Y., Lu, Q., Sun, L., Du, S., Liu, T., Hou, M., Ge, G., Wang, Z., & Jia, Y. (2022). Effects of Lactic Acid Bacteria Additives on the Quality, Volatile Chemicals and Microbial Community of Leymus Chinensis Silage During Aerobic Exposure. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2022.938153eng
dcterms.referencesLu, X., Zhang, M., Ma, Y., Li, G., Zhao, X., & Qian, W. (2023). Protective effect of Limosilactobacillus reuteri-fermented yogurt on mouse intestinal barrier injury induced by enterotoxigenic Escherichia coli. Journal of the Science of Food and Agriculture, 103(15), 7494-7505. https://doi.org/10.1002/jsfa.12836eng
dcterms.referencesLuo, H., Li, P., Wang, H., Roos, S., Ji, B., & Nielsen, J. (2021). Genome-scale insights into the metabolic versatility of Limosilactobacillus reuteri. BMC Biotechnology, 21(1), 46. https://doi.org/10.1186/s12896-021-00702-weng
dcterms.referencesLuo, K., Wang, M., Li, Y., Pan, M., Xie, Y., Qin, G., Liu, Y., Li, L., Liu, Q., & Tian, X. (2022). Evaluation of Potential Probiotic Properties of a Strain of Lactobacillus Plantarum for Shrimp Farming: From Beneficial Functions to Safety Assessment. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2022.854131eng
dcterms.referencesLuo, M., Zhou, W., Tao, W., Xing, J., Li, J., Yang, Y., & Guo, Y. (2023). Whole-Genome Sequencing of Lactiplantibacillus plantarum YY-112 and Investigation of Its Immune-Modulating Abilities In Vivo. Fermentation, 9(12), Article 12. https://doi.org/10.3390/fermentation9120996eng
dcterms.referencesMa, J., Chen, J., Gan, M., Chen, L., Zhao, Y., Zhu, Y., Niu, L., Zhang, S., Zhu, L., & Shen, L. (2022). Gut Microbiota Composition and Diversity in Different Commercial Swine Breeds in Early and Finishing Growth Stages. Animals, 12(13), Article 13. https://doi.org/10.3390/ani12131607eng
dcterms.referencesMachuca-Guevara, J. I., Suárez-Peña, E. A., Darricau, E. M., & Mialhe-Matonnier, E. L. (2019). Caracterización molecular de los microorganismos presentes durante el proceso fermentativo de los granos de cacao (Theobroma cacao). Revista Peruana de Biología, 26(4), Article 4. https://doi.org/10.15381/rpb.v26i4.17220spa
dcterms.referencesMacias-Diaz, A., Lopez, J. J., Bravo, M., Jardín, I., Garcia-Jimenez, W. L., Blanco-Blanco, F. J., Cerrato, R., & Rosado, J. A. (2024). Postbiotics of Lacticaseibacillus paracasei CECT 9610 and Lactiplantibacillus plantarum CECT 9608 attenuates store-operated calcium entry and FAK phosphorylation in colorectal cancer cells. Molecular Oncology, 18(5), 1123-1142. https://doi.org/10.1002/1878-0261.13629eng
dcterms.referencesMahgoub, M. A., Abbass, A. A. G., Abaza, A. F., & Shoukry, M. S. (2023). Probiotic lactic acid bacteria as a means of preventing in vitro urinary catheter colonization and biofilm formation. Journal of the Egyptian Public Health Association, 97(1), 30. https://doi.org/10.1186/s42506-022-00124-2eng
dcterms.referencesMalmo, C., Giordano, I., & Mauriello, G. (2021). Effect of Microencapsulation on Survival at Simulated Gastrointestinal Conditions and Heat Treatment of a Non Probiotic Strain, Lactiplantibacillus plantarum 48M, and the Probiotic Strain Limosilactobacillus reuteri DSM 17938. Foods, 10(2), Article 2. https://doi.org/10.3390/foods10020217eng
dcterms.referencesMann, E., Schmitz-Esser, S., Zebeli, Q., Wagner, M., Ritzmann, M., & Metzler-Zebeli, B. U. (2014). Mucosa-Associated Bacterial Microbiome of the Gastrointestinal Tract of Weaned Pigs and Dynamics Linked to Dietary Calcium-Phosphorus. PLOS ONE, 9(1), e86950. https://doi.org/10.1371/journal.pone.0086950eng
dcterms.referencesManzano A, C., Estupiñán G, D., & Poveda E, E. (2012). CLINICAL EFECTS OF PROBIOTICS: WHAT DOES THE EVIDENCE SAYS. Revista chilena de nutrición, 39(1), 98-110. https://doi.org/10.4067/S0717-75182012000100010eng
dcterms.referencesMartin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal, 17(1), Article 1. https://doi.org/10.14806/ej.17.1.200eng
dcterms.referencesMartino, M. E., Bayjanov, J. R., Caffrey, B. E., Wels, M., Joncour, P., Hughes, S., Gillet, B., Kleerebezem, M., van Hijum, S. A. F. T., & Leulier, F. (2016). Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats. Environmental Microbiology, 18(12), 4974-4989. https://doi.org/10.1111/1462-2920.13455eng
dcterms.referencesMatsuura S., A., Morales C., S., Calle E., S., & Ara G., M. (2010). Susceptibilidad a antibacterianos in vitro de Salmonella enterica aislada de cuyes de crianza familiar-comercial en la provincia de Carhuaz, Áncash. Revista de Investigaciones Veterinarias del Perú, 21(1), 93-99. http://www.scielo.org.pe/scielo.php?script=sci_abstract&pid=S1609-91172010000100014&lng=es&nrm=iso&tlng=eseng
dcterms.referencesMcCormack, U. M., Curião, T., Buzoianu, S. G., Prieto, M. L., Ryan, T., Varley, P., Crispie, F., Magowan, E., Metzler-Zebeli, B. U., Berry, D., O’Sullivan, O., Cotter, P. D., Gardiner, G. E., & Lawlor, P. G. (2017). Exploring a Possible Link between the Intestinal Microbiota and Feed Efficiency in Pigs. Applied and Environmental Microbiology, 83(15), e00380-17. https://doi.org/10.1128/AEM.00380-17eng
dcterms.referencesMcFarland, L. V., Evans, C. T., & Goldstein, E. J. C. (2018). Strain-Specificity and Disease-Specificity of Probiotic Efficacy: A Systematic Review and Meta-Analysis. Frontiers in Medicine, 5. https://doi.org/10.3389/fmed.2018.00124eng
dcterms.referencesMcNaught, C., Woodcock, N. P., MacFie, J., & Mitchell, C. J. (2002). A Prospective Randomised Study of the Probiotic Lactobacillus Plantarum 299V on Indices of Gut Barrier Function in Elective Surgical Patients. Gut. https://doi.org/10.1136/gut.51.6.827eng
dcterms.referencesMeier-Kolthoff, J. P., Carbasse, J. S., Peinado-Olarte, R. L., & Göker, M. (2022). TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Research, 50(D1), D801-D807. https://doi.org/10.1093/nar/gkab902eng
dcterms.referencesMejía-Martínez, K., Lemus-Flores, C., & Zambrano-Zaragoza, J. F. (2010). Estudio comparativo en la respuesta inmune humoral de Ig M e Ig G en cerdo criollo mexicano y comercial. Archivos de Zootecnia, 59(226), Article 226. https://doi.org/10.21071/az.v59i226.4732spa
dcterms.referencesMeléndez Gélvez, I., Pardo Pérez, E., Cavadía Martinez, T. I., Meléndez Gélvez, I., Pardo Pérez, E., & Cavadía Martinez, T. I. (2015). Variación genética en cerdo doméstico (Sus scrofa domestica) de Córdoba-Colombia basada en marcadores microsatélites. Revista mexicana de ciencias pecuarias, 6(4), 443-452. http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S2007-11242015000400443&lng=es&nrm=iso&tlng=esspa
dcterms.referencesMéndez, B., & Lira-Saldivar, R. (2023). Beneficios Potenciales de la Nanotecnología Para una Producción Animal Más Eficiente. International Journal of Biological and Natural Sciences, 3, 2-19. https://doi.org/10.22533/at.ed.813332327037spa
dcterms.referencesMeng, F., Zhu, X., Lu, F., Bie, X., & Lu, Z. (2017). Functional Analysis of Plantaricin E and Its Mutant by Heterologous Expression in Escherichia coli. Applied Biochemistry and Biotechnology, 182(1), 311-323. https://doi.org/10.1007/s12010-016-2328-9eng
dcterms.referencesMeng, Q., Luo, Z., Cao, C., Sun, S., Ma, Q., Li, Z., Shi, B., & Shan, A. (2020). Weaning Alters Intestinal Gene Expression Involved in Nutrient Metabolism by Shaping Gut Microbiota in Pigs. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00694eng
dcterms.referencesMessens, W., & De Vuyst, L. (2002). Inhibitory substances produced by lactobacilli isolated from sourdoughs—A review. International Journal of Food Microbiology, 72(1-2), 31-43.eng
dcterms.referencesMikkelsen, L. L., Naughton, P. J., Hedemann, M. S., & Jensen, B. B. (2004). Effects of Physical Properties of Feed on Microbial Ecology and Survival of Salmonella enterica Serovar Typhimurium in the Pig Gastrointestinal Tract. Applied and Environmental Microbiology, 70(6), 3485-3492. https://doi.org/10.1128/AEM.70.6.3485-3492.2004eng
dcterms.referencesMikkili, I. (2012). Purification and Characterization of Bacteriocin Produced by Lactobacillus plantarum Isolated from Cow Milk.eng
dcterms.referencesMilanović, V., Osimani, A., Garofalo, C., Belleggia, L., Maoloni, A., Cardinali, F., Mozzon, M., Foligni, R., Aquilanti, L., & Clementi, F. (2020). Selection of cereal-sourced lactic acid bacteria as candidate starters for the baking industry. PLOS ONE, 15(7), e0236190. https://doi.org/10.1371/journal.pone.0236190eng
dcterms.referencesMilioni, C., Martínez, B., Degl’Innocenti, S., Turchi, B., Fratini, F., Cerri, D., & Fischetti, R. (2015). A novel bacteriocin produced by Lactobacillus plantarum LpU4 as a valuable candidate for biopreservation in artisanal raw milk cheese. Dairy Science & Technology, 95(4), 479-494. https://doi.org/10.1007/s13594-015-0230-9eng
dcterms.referencesMinh, B. Q., Nguyen, M. A. T., & Von Haeseler, A. (2013). Ultrafast Approximation for Phylogenetic Bootstrap. Molecular Biology and Evolution, 30(5), 1188-1195. https://doi.org/10.1093/molbev/mst024eng
dcterms.referencesMinh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 37(5), 1530-1534. https://doi.org/10.1093/molbev/msaa015eng
dcterms.referencesMiranda Hevia, R., Mencía Ares, Ó., Gómez García, M., Carvajal Urueña, A. M., & Rubio Nistal, P. M. (2017). Etiología y control de la colibacilosis porcina. Albéitar: publicación veterinaria independiente, 207, 16-18. https://dialnet.unirioja.es/servlet/articulo?codigo=6058174spa
dcterms.referencesMiranda-Yuquilema, J. E., Marin-Cárdenas, A., Sánchez-Macías, D., & García-Hernández, Y. (2018). Obtención, caracterización y evaluación de dos preparados candidatos a probióticos desarrollados con residuos agroindustriales. Revista MVZ Córdoba, 23(1), Article 1. https://doi.org/10.21897/rmvz.1243spa
dcterms.referencesMogollon, C., Mogollón, G., Aguilera, R., Ortíz, J., & Suárez, H. (2021). Producción y evaluación de inóculos lácteos probióticos obtenidos del tracto digestivo de lechón (sus scrofa domesticus) propuestos para alimentación porcina. Revista Mexicana De Ciencias Pecuarias, 12(1), 120-137. https://doi.org/10.22319/rmcp.v12i1.5445spa
dcterms.referencesMogollon, C. R., Mogollón, G. O., Aguilera, R. A., Ortíz, J. Q., & Súarez, H. S. (2021). Producción y evaluación de inóculos lácteos probióticos obtenidos del tracto digestivo de lechón (Sus scrofa domesticus) propuestos para alimentación porcina. Revista Mexicana de Ciencias Pecuarias, 12(1), Article 1. https://doi.org/10.22319/rmcp.v12i1.5445spa
dcterms.referencesMohammaddoost Chakoosari, M., Faezi Ghasemi, M., Masiha, A., Kazemi Darsanaki, R., & Amini, A. (2015). Antimicrobial Effect of Lactic Acid Bacteria against Common Pathogenic Bacteria. Medical Laboratory Journal, 9(5), 4-1. https://doi.org/10.18869/acadpub.mlj.9.5.4eng
dcterms.referencesMohania, D., Nagpal, R., Kumar, M., Bhardwaj, A., Yadav, M., Jain, S., Marotta, F., Singh, V., Parkash, O., & Yadav, H. (2008). Molecular approaches for identification and characterization of lactic acid bacteria. Journal of Digestive Diseases, 9(4), 190-198. https://doi.org/10.1111/j.1751-2980.2008.00345.xeng
dcterms.referencesMolnár, L. (1996). Sensitivity of strains of Serpulina hyodysenteriae isolated in Hungary to chemotherapeutic drugs. Veterinary Record, 138(7), 158-160. https://doi.org/10.1136/vr.138.7.158eng
dcterms.referencesMonger, X. C., Gilbert, A.-A., Saucier, L., & Vincent, A. T. (2021). Antibiotic Resistance: From Pig to Meat. Antibiotics, 10(10), Article 10. https://doi.org/10.3390/antibiotics10101209eng
dcterms.referencesMorita, H., Toh, H., Fukuda, S., Horikawa, H., Oshima, K., Suzuki, T., Murakami, M., Hisamatsu, S., Kato, Y., Takizawa, T., Fukuoka, H., Yoshimura, T., Itoh, K., O’Sullivan, D. J., McKay, L. L., Ohno, H., Kikuchi, J., Masaoka, T., & Hattori, M. (2008). Comparative Genome Analysis of Lactobacillus reuteri and Lactobacillus fermentum Reveal a Genomic Island for Reuterin and Cobalamin Production. DNA Research, 15(3), 151-161. https://doi.org/10.1093/dnares/dsn009eng
dcterms.referencesMorita, S., Ikeda, N., Horikami, M., Soda, K., Ishihara, K., Teraoka, R., Terada, T., & Kitagawa, S. (2011). Effects of phosphatidylethanolamine N-methyltransferase on phospholipid composition, microvillus formation and bile salt resistance in LLC-PK1 cells. The FEBS Journal, 278(24), 4768-4781. https://doi.org/10.1111/j.1742-4658.2011.08377.xeng
dcterms.referencesMorton, D. B., & Hawkins, P. (2007). Welfare assessment and humane endpoints. ILAR Journal, 48(3), 205-208. https://doi.org/10.1093/ilar.48.3.205eng
dcterms.referencesMourad, K., Zadi‐Karam, H., & Karam, N. (2005). Detectionn and Activity of Plantaricin OL15 a Bacteriocin Produced by &Lt;i&gt;Lactobacillus Plantarum&lt;/I&gt; OL15 Isolated From Algerian Fermented Olives. Grasas Y Aceites. https://doi.org/10.3989/gya.2005.v56.i3.107eng
dcterms.referencesMu, G., Zhang, Z., Wang, J., Jiang, S., Wang, H., Xu, Y., Li, X., Chi, L., Li, Y., Tuo, Y., & Zhu, X. (2022). Antigenicity and Safety Evaluation of Lactiplantibacillus plantarum 7-2 Screened to Reduce α-Casein Antigen. Foods, 11(1), Article 1. https://doi.org/10.3390/foods11010088eng
dcterms.referencesMulumba‐Mfumu, L. K., Saegerman, C., Dixon, L. K., Madimba, K. C., Kazadi, E. K., Mukalakata, N. T., Oura, C. A. L., Chenais, E., Masembe, C., Ståhl, K., Thiry, É., & Penrith, M. (2019). African Swine Fever: Update on Eastern, Central and Southern Africa. Transboundary and Emerging Diseases. https://doi.org/10.1111/tbed.13187eng
dcterms.referencesMutmainna, A., Arief, I. I., & Budiman, C. (2021). The growth and production of antimicrobial compounds from Lactobacillus plantarum IIA-1A5 on cheese whey medium. Journal of the Indonesian Tropical Animal Agriculture, 46(2), 173-184. https://doi.org/10.14710/jitaa.46.2.173-184eng
dcterms.referencesNair, A. (2016). In-vitro Transit Tolerance of Probiotic Bacillus species in Human Gastrointestinal Tract. International Journal of Science and Research (IJSR). https://www.academia.edu/88785246/In_vitro_Transit_Tolerance_of_Probiotic_Bacillus_species_in_Human_Gastrointestinal_Tracteng
dcterms.referencesNamrak, T., Raethong, N., Jatuponwiphat, T., Nitisinprasert, S., Vongsangnak, W., & Nakphaichit, M. (2022). Probing Genome-Scale Model Reveals Metabolic Capability and Essential Nutrients for Growth of Probiotic Limosilactobacillus reuteri KUB-AC5. Biology, 11(2), Article 2. https://doi.org/10.3390/biology11020294eng
dcterms.referencesNaquira, C. (2010). Las zoonosis parasitarias: Problema de salud pública en el Perú. Revista Peruana de Medicina Experimental y Salud Pública. https://doi.org/10.17843/rpmesp.2010.274.1518spa
dcterms.referencesNewman, D. J., Cragg, G. M., & Snader, K. M. (2003). Natural Products as Sources of New Drugs over the Period 1981−2002. Journal of Natural Products, 66(7), 1022-1037. https://doi.org/10.1021/np030096leng
dcterms.referencesNeyra, L. C. (2007). Alimentos funcionales. Biotempo, 7, 46-54. https://doi.org/10.31381/biotempo.v7i0.872spa
dcterms.referencesNguyen, L.-T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution, 32(1), 268-274. https://doi.org/10.1093/molbev/msu300eng
dcterms.referencesNurk, S., Meleshko, D., Korobeynikov, A., & Pevzner, P. A. (2017). metaSPAdes: A new versatile metagenomic assembler. Genome Research, 27(5), 824. https://doi.org/10.1101/gr.213959.116eng
dcterms.referencesOcampo-Gallego, R. J. (2019). Análisis de diversidad genética en cerdo criollo san pedreño utilizando datos de pedigrí. Ecosistemas y Recursos Agropecuarios, 6(17), Article 17. https://doi.org/10.19136/era.a6n17.2049spa
dcterms.referencesOchiai, S., Adachi, Y., Asano, T., Prapasarakul, N., Ogawa, Y., & Ochi, K. (2000). Presence of 22-kDa protein reacting with sera in piglets experimentally infected with Brachyspira hyodysenteriae. FEMS Immunology & Medical Microbiology, 28(1), 43-47. https://doi.org/10.1111/j.1574-695X.2000.tb01455.xeng
dcterms.referencesOgunbanwo, S. T., Sanni, A. I., & Onilude, A. A. (2003). Characterization of bacteriocin produced by Lactobacillus plantarum F1 and Lactobacillus brevis OG1. African Journal of Biotechnology, 2(8), Article 8. https://doi.org/10.5897/AJB2003.000-1045eng
dcterms.referencesOh, M.-R., Jang, H.-Y., Lee, S.-Y., Jung, S. J., Chae, S.-W., Lee, S., & Park, B.-H. (2021). Lactobacillus Plantarum HAC01 Supplementation Improves Glycemic Control in Prediabetic Subjects: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients. https://doi.org/10.3390/nu13072337eng
dcterms.referencesOh, W., Jung, J., & Joo, J. W. J. (2024). MR-GGI: Accurate inference of gene–gene interactions using Mendelian randomization. BMC Bioinformatics, 25(1), 192. https://doi.org/10.1186/s12859-024-05808-4eng
dcterms.referencesOliveira, R. P. de S. (2017). Produtos de origem microbiana de interesse farmacêutico, alimentar e ambiental [Text, Universidade de São Paulo]. https://doi.org/10.11606/T.9.2020.tde-17022020-140940ptg
dcterms.referencesOloton, E., & Obaseki, E. (2020). Quantitative assessment of available probiotic products in community pharmacies in Benin City, Nigeria. Tropical Journal of Pharmaceutical Research, 19(7), Article 7. https://doi.org/10.4314/tjpr.v19i7.25eng
dcterms.referencesOlson, R. D., Assaf, R., Brettin, T., Conrad, N., Cucinell, C., Davis, J. J., Dempsey, D. M., Dickerman, A., Dietrich, E. M., Kenyon, R. W., Kuscuoglu, M., Lefkowitz, E. J., Lu, J., Machi, D., Macken, C., Mao, C., Niewiadomska, A., Nguyen, M., Olsen, G. J., … Stevens, R. L. (2022). Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): A resource combining PATRIC, IRD and ViPR. Nucleic Acids Research, 51(D1), D678. https://doi.org/10.1093/nar/gkac1003eng
dcterms.referencesOoi, M. F., Foo, H. L., Loh, T. C., Mohamad, R., Rahim, R. A., & Ariff, A. (2021). A Refined Medium to Enhance the Antimicrobial Activity of Postbiotic Produced by Lactiplantibacillus Plantarum RS5. Scientific Reports. https://doi.org/10.1038/s41598-021-87081-6eng
dcterms.referencesOppegård, C., Kjos, M., Veening, J.-W., Nissen-Meyer, J., & Kristensen, T. (2016). A putative amino acid transporter determines sensitivity to the two-peptide bacteriocin plantaricin JK. MicrobiologyOpen, 5(4), 700-708. https://doi.org/10.1002/mbo3.363eng
dcterms.referencesOsei Sekyere, J. (2014). Antibiotic Types and Handling Practices in Disease Management among Pig Farms in Ashanti Region, Ghana. Journal of Veterinary Medicine, 2014(1), 531952. https://doi.org/10.1155/2014/531952eng
dcterms.referencesOspina, R. S., & B, A. A. O. (1992). EL CERDO ZUNGO. Animal Genetic Resources/Resources génétiques animales/Recursos genéticos animales, 9, 77-83. https://doi.org/10.1017/S1014233900003230eng
dcterms.referencesOsterberg, D., & Wallinga, D. (2004). Addressing Externalities From Swine Production to Reduce Public Health and Environmental Impacts. American Journal of Public Health. https://doi.org/10.2105/ajph.94.10.1703eng
dcterms.referencesOsuna Chávez, R. F., Barrios, R. M. M., Xóchihua, J. A. M., Chávez, J. F. H., León, J. B. L., Yanes, M. A., Martínez, V. A. F., Mascareño, J. R., & Escalante, J. G. A. I. (2017). Resistencia antimicrobiana de Gallibacterium anatis aisladas de gallinas de postura comercial en Sonora, México. Revista Mexicana de Ciencias Pecuarias, 8(3), 305-312. https://doi.org/10.22319/rmcp.v8i3.4506spa
dcterms.referencesOverbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Parrello, B., Shukla, M., Vonstein, V., Wattam, A. R., Xia, F., & Stevens, R. (2014). The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research, 42(Database issue), D206-214. https://doi.org/10.1093/nar/gkt1226eng
dcterms.referencesPage, A. J., Cummins, C. A., Hunt, M., Wong, V. K., Reuter, S., Holden, M. T. G., Fookes, M., Falush, D., Keane, J. A., & Parkhill, J. (2015). Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics, 31(22), 3691-3693. https://doi.org/10.1093/bioinformatics/btv421eng
dcterms.referencesPal, G., & Srivastava, S. (2014). Cloning and heterologous expression of plnE, -F, -J and -K genes derived from soil metagenome and purification of active plantaricin peptides. Applied Microbiology and Biotechnology, 98(3), 1441-1447. https://doi.org/10.1007/s00253-013-5097-1eng
dcterms.referencesPalma, L. E. S., Quinteros, M. J. B., & Sánchez, K. M. R. (2024). Impacto de la resistencia bacteriana en la elección de antibióticos en odontología: Una revisión de las tendencias actuales. Más Vita, 6(1), Article 1. https://doi.org/10.47606/ACVEN/MV0227spa
dcterms.referencesPalmer, G. H. (1980). Treatment of swine dysentery (United States Patent US4186206A). https://patents.google.com/patent/US4186206A/eneng
dcterms.referencesPapagianni, M. (2012). Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Computational and Structural Biotechnology Journal , 3(4), e201210003. https://doi.org/10.5936/csbj.201210003eng
dcterms.referencesParra, R. (2015). Uso de rubas (ullucus tuberosus) en la elaboración y caracterización de yogur. Temas Agrarios, 20(1), Article 1. https://doi.org/10.21897/rta.v20i1.751spa
dcterms.referencesPatil, Y., Gooneratne, R., & Ju, X.-H. (2020). Interactions between host and gut microbiota in domestic pigs: A review. Gut Microbes, 11(3), 310-334. https://doi.org/10.1080/19490976.2019.1690363eng
dcterms.referencesPatiño F, F., Herrera F, V., López D, D., & Parra S, J. (2019). Metabolitos sanguíneos y parámetros zootécnicos en lechones destetados a dos edades y con adición de antimicrobianos en el alimento. Revista de Investigaciones Veterinarias del Perú, 30(2), 612-623. https://doi.org/10.15381/rivep.v30i2.14887spa
dcterms.referencesPawar, R., Zambare, V., & Nabar, B. (2020). Comparative Assessment of Antibiotic Resistance in Lactic Acid Bacteria Isolated from Healthy Human Adult and Infant Feces. Nepal Journal of Biotechnology, 8(2), Article 2. https://doi.org/10.3126/njb.v8i2.31893eng
dcterms.referencesPazmiño, M. L., & Ramirez, A. D. (2021). Life Cycle Assessment as a Methodological Framework for the Evaluation of the Environmental Sustainability of Pig and Pork Production in Ecuador. Sustainability. https://doi.org/10.3390/su132111693eng
dcterms.referencesPei, J., Huang, Y., Ren, T., Guo, Y., Dang, J., Tao, Y., Zhang, Y., & Abd El-Aty, A. M. (2022). The Antibacterial Activity Mode of Action of Plantaricin YKX against Staphylococcus aureus. Molecules, 27(13), Article 13. https://doi.org/10.3390/molecules27134280eng
dcterms.referencesPell, L. G., Horne, R. G., Huntley, S., Rahman, H., Kar, S., Islam, M. S., Evans, K. C., Saha, S. K., Campigotto, A., Morris, S. K., Roth, D. E., & Sherman, P. M. (2021). Antimicrobial susceptibilities and comparative whole genome analysis of two isolates of the probiotic bacterium Lactiplantibacillus plantarum, strain ATCC 202195. Scientific Reports, 11(1), 15893. https://doi.org/10.1038/s41598-021-94997-6eng
dcterms.referencesPeña-Torres, E., Ríos, H., Avendaño-Reyes, L., Valenzuela, N., Pinelli-Saavedra, A., Muhlia, A., & Peña-Ramos, E. (2019). Ácidos hidroxicinámicos en producción animal: Farmacocinética, farmacodinamia y sus efectos como promotor de crecimiento. Revisión. Revista Mexicana de Ciencias Pecuarias, 10, 391-415. https://doi.org/10.22319/rmcp.v10i2.4526spa
dcterms.referencesPereira, V. G., & Gómez, R. J. H. C. (2007). Atividade antimicrobiana de Lactobacillus acidophilus, contra microrganismos patogênicos veiculados por alimentos. Semina: Ciências Agrárias, 28(2), Article 2. https://doi.org/10.5433/1679-0359.2007v28n2p229eng
dcterms.referencesPerez, R. H., Ishibashi, N., Inoue, T., Himeno, K., Masuda, Y., Sawa, N., Zendo, T., Wilaipun, P., Leelawatcharamas, V., Nakayama, J., & Sonomoto, K. (2015). Functional Analysis of Genes Involved in the Biosynthesis of Enterocin NKR-5-3B, a Novel Circular Bacteriocin. Journal of Bacteriology, 198(2), 291-300. https://doi.org/10.1128/jb.00692-15eng
dcterms.referencesPerez Sanchez, L. (s. f.). Epidemiology of Clostridum difficile and relationship between animal and human infection. 2017, 1. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ddd.uab.cat/pub/tfg/2017/ 184245/TFG_lperezsanchez_poster.pdfeng
dcterms.referencesPetrolli, T. G., Junqueira, O. M., Pereira, A. S., Domingues, C. H., Artoni, S. M., & Santos, E. T. (2017). Lesión en la carne y adicción de nutrientes en el ayuno antes del sacrificio de cerdos. Revista MVZ Córdoba, 22(1), Article 1. https://doi.org/10.21897/rmvz.922spa
dcterms.referencesPhumkhachorn, P., & Rattanachaikunsopon, P. (2023). Probiotics: Sources, selection and health benefits. Research Journal of Biotechnology, 18, 102-113. https://doi.org/10.25303/1805rjbt1020113eng
dcterms.referencesPidot, S. J., Coyne, S., Kloss, F., & Hertweck, C. (2014). Antibiotics from neglected bacterial sources. International Journal of Medical Microbiology, 304(1), 14-22. https://doi.org/10.1016/j.ijmm.2013.08.011eng
dcterms.referencesPinzón-Fajardo, O. R., & Hurtado-Nery, V. L. (2021). Producción de proteína unicelular de Saccharomyces cerevisiae con granza de arroz e inclusión en cerdos. Orinoquia, 25(1), 23-33. https://doi.org/10.22579/20112629.653spa
dcterms.referencesPopoola, O. A., Onilude, A. A., Rasheed-Jada, H., & Nashiru, O. (2021). Probiotic Potential and Genomic Evaluation of Lactic Acid Bacteria Isolated from Fermented Sorghum-Based Gruel. Journal of Advances in Microbiology, 68-85. https://doi.org/10.9734/jamb/2021/v21i130321eng
dcterms.referencesPritchard, L., Glover, R. H., Humphris, S., Elphinstone, J. G., & Toth, I. K. (2015). Genomics and taxonomy in diagnostics for food security: Soft-rotting enterobacterial plant pathogens. Analytical Methods, 8(1), 12-24. https://doi.org/10.1039/C5AY02550Heng
dcterms.referencesProhaska, S., Pflüger, V., Ziegler, D., Scherrer, S., Frei, D., Lehmann, A., Wittenbrink, M. M., & Huber, H. (2014). MALDI‐TOF MS for identification of porcine Brachyspira species. Letters in Applied Microbiology, 58(3), 292-298. https://doi.org/10.1111/lam.12189eng
dcterms.referencesPuvanasundram, P., Chong, C. M., Sabri, S., Yusoff, M. S. M., Lim, K. C., & Karim, M. (2022). Efficacy of Single and Multi-Strain Probiotics on In Vitro Strain Compatibility, Pathogen Inhibition, Biofilm Formation Capability, and Stress Tolerance. Biology, 11(11), Article 11. https://doi.org/10.3390/biology11111644eng
dcterms.referencesQian, Z., Zhao, D., Yin, Y., Zhu, H., & Chen, D. (2020). Antibacterial Activity of Lactobacillus Strains Isolated from Mongolian Yogurt against Gardnerella vaginalis. BioMed Research International, 2020, e3548618. https://doi.org/10.1155/2020/3548618eng
dcterms.referencesQin, S., Du, H., Zeng, W., Bai, A., Liu, J., Chen, F., Ma, L., Qin, S., Zhu, P., & Wu, J. (2023). Identification and Characterisation of Potential Probiotic Lactic Acid Bacteria Extracted from Pig Faeces. Journal of Pure and Applied Microbiology, 17. https://doi.org/10.22207/JPAM.17.2.04eng
dcterms.referencesQuevedo, K. S., Castillo, Y. S. G., Rangel, Y. Y. V., Medina, J. M. J., Martínez-Amaya, C., & Salas-Osorio, E. (2021). Actividad antagónica de lactobacilos probióticos sobre Candida albicans aisladas de lesiones bucales en pacientes con enfermedades sistémicas. ODOUS Científica, 22(1), Article 1. https://doi.org/10.54139/odous.v22i1.77spa
dcterms.referencesQuevedo V, M., Mantilla S, J., Portilla J, K., Villacaqui A, R., & Rivera G, H. (2018). Seroprevalencia del virus del Síndrome Reproductivo y Respiratorio Porcino en cerdos de crianza no tecnificada del Perú. Revista de Investigaciones Veterinarias del Perú , 29(2), 643-651. https://doi.org/10.15381/rivep.v29i2.14497spa
dcterms.referencesRabetafika, H. N., Razafindralambo, A., Ebenso, B., & Razafindralambo, H. L. (2023). Probiotics as Antibiotic Alternatives for Human and Animal Applications. Encyclopedia, 3(2), Article 2. https://doi.org/10.3390/encyclopedia3020040eng
dcterms.referencesRagan, M. V., Wala, S. J., Goodman, S. D., Bailey, M. T., & Besner, G. E. (2022). Next-Generation Probiotic Therapy to Protect the Intestines From Injury. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.863949eng
dcterms.referencesRagavan, M. L., & Das, N. (2017). ISOLATION AND CHARACTERIZATION OF POTENTIAL PROBIOTIC YEASTS FROM DIFFERENT SOURCES. Asian Journal of Pharmaceutical and Clinical Research, 451-455. https://doi.org/10.22159/ajpcr.2017.v10i4.17067eng
dcterms.referencesRajput, A., Chauhan, S. M., Mohite, O. S., Hyun, J. C., Ardalani, O., Jahn, L. J., Sommer, M. O., & Palsson, B. (2023). Pangenome Analysis Reveals the Genetic Basis for Taxonomic Classification of the Lactobacillaceae Family (SSRN Scholarly Paper 4368218). Social Science Research Network. https://doi.org/10.2139/ssrn.4368218eng
dcterms.referencesRajtak, U., Boland, F., Leonard, N., Bolton, D., & Fanning, S. (2012). Roles of Diet and the Acid Tolerance Response in Survival of Common Salmonella Serotypes in Feces of Finishing Pigs. Applied and Environmental Microbiology, 78(1), 110-119. https://doi.org/10.1128/AEM.06222-11eng
dcterms.referencesRamayo-Caldas, Y., Crespo-Piazuelo, D., Morata, J., González-Rodríguez, O., Sebastià, C., Castello, A., Dalmau, A., Ramos-Onsins, S., Alexiou, K. G., Folch, J. M., Quintanilla, R., & Ballester, M. (2022). Copy number variation on ABCC2-DNMBP loci impacts the diversity and composition of the gut microbiota in pigs (p. 2022.10.06.510490). bioRxiv. https://doi.org/10.1101/2022.10.06.510490eng
dcterms.referencesRamayo-Caldas, Y., Crespo-Piazuelo, D., Morata, J., González-Rodríguez, O., Sebastià, C., Castello, A., Dalmau, A., Ramos-Onsins, S., Alexiou, K. G., Folch, J. M., Quintanilla, R., & Ballester, M. (2023). Copy Number Variation on ABCC2-DNMBP Loci Affects the Diversity and Composition of the Fecal Microbiota in Pigs. Microbiology Spectrum, 11(4), e05271-22. https://doi.org/10.1128/spectrum.05271-22eng
dcterms.referencesRamayo-Caldas, Y., Zingaretti, L. M., Pérez-Pascual, D., Alexandre, P. A., Reverter, A., Dalmau, A., Quintanilla, R., & Ballester, M. (2021). Leveraging host-genetics and gut microbiota to determine immunocompetence in pigs. Animal Microbiome, 3(1), 74. https://doi.org/10.1186/s42523-021-00138-9eng
dcterms.referencesRamírez V., M., Rivera G., H., Manchego S., A., More B., J., & Chiok C., K. L. (2013). Aislamiento y genotipificación del virus del síndrome respiratorio y reproductivo porcino (VPRRS) en granjas seropositivas de las provincias de Lima y Arequipa, Perú. Revista de Investigaciones Veterinarias del Perú, 24(2), 222-232. http://www.scielo.org.pe/scielo.php?script=sci_abstract&pid=S1609-91172013000200013&lng=es&nrm=iso&tlng=esspa
dcterms.referencesEsparza -González, S., & Nevárez-Morrillón, G. V. (2009). Morfología y diferenciación de colonias de tres tipos de bacterias lácticas. Revista Agraria, 6(1-2-3), Article 1-2-3. https://doi.org/10.59741/agraria.v6i1-2-3.435spa
dcterms.referencesRaras, T., Firman, A., Kinanti, I., & Noorhamdani, N. (2019). Anti-biofilm activity of lactic acid bacteria isolated from kefir against multidrug-resistant Klebsiella pneumoniae. Journal of Pure and Applied Microbiology, 13(2), 983-992. https://doi.org/10.22207/jpam.13.2.35eng
dcterms.referencesReenen, C. A. van, Dicks, L. M. T., & Chikindas, M. L. (1998). Isolation, Purification and Partial Characterization of Plantaricin 423, a Bacteriocin Produced by Lactobacillus Plantarum. Journal of Applied Microbiology. https://doi.org/10.1046/j.1365-2672.1998.00451.xeng
dcterms.referencesRentería Flores, J. A., Gómez Rosales, S., López Hernández, L. H., Ordaz Ochoa, G., Anaya Escalera, A. M., Mejía Guadarrama, C. A., Mariscal Landín, G., Rentería Flores, J. A., Gómez Rosales, S., López Hernández, L. H., Ordaz Ochoa, G., Anaya Escalera, A. M., Mejía Guadarrama, C. A., & Mariscal Landín, G. (2021). Principales aportes de la investigación del INIFAP a la nutrición porcina en México: Retos y perspectivas. Revista mexicana de ciencias pecuarias, 12, 79-110. https://doi.org/10.22319/rmcp.v12s3.5866spa
dcterms.referencesReyes, I., Figueroa, J. L., Cobos, M. A., Sánchez-Torres, M. T., Zamora, V., & Cordero, J. L. (2012). Probiotic (Enterococcus faecium) added to standard and low-protein diets for pigs. Archivos de Zootecnia, 61(236), 589-598. https://doi.org/10.4321/S0004-05922012000400011eng
dcterms.referencesRhouma, M., Fairbrother, J. M., Beaudry, F., & Letellier, A. (2017). Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies Acta Veterinaria Scandinavica , 59(1), 31. https://doi.org/10.1186/s13028-017-0299-7eng
dcterms.referencesRíos C, A., Morales-Cauti, S., Vilca L, M., Carhuallanqui P, A., & Ramos D, D. (2019). Determinación del perfil de resistencia antibiótica de Salmonella enterica aislada de cerdos faenados en un matadero de Lima, Perú. Revista de Investigaciones Veterinarias del Perú, 30(1), 438-445. https://doi.org/10.15381/rivep.v30i1.15701spa
dcterms.referencesRoca i Canudas, M. (2008). Estudio del ecosistema bacteriano del tracto digestivo del cerdo mediante técnicas moleculares [PhD Thesis]. Universitat Autònoma de Barcelonaspa
dcterms.referencesRodríguez Díaz, J. A., Hernández García, J. E., Sebastián Frizzo, L., Fernández León, K. J., Sánchez, L., Solenzal Valdivia, Y., Rodríguez Díaz, J. A., Hernández García, J. E., Sebastián Frizzo, L., Fernández León, K. J., Sánchez, L., & Solenzal Valdivia, Y. (2021). Caracterización in vitro de propiedades probióticas de Lactobacillus ssp. Aislados del tracto digestivo de abejas. Revista de Salud Animal, 43(2). http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0253-570X2021000200004&lng=es&nrm=iso&tlng=esspa
dcterms.referencesRodríguez, M., Lucinda, J., Abreu, J., Martins, S., Silva, F., Carvalho, F., Vieira, R., & Sousa, O. (2020). EVALUACIÓN DE ESTIRPES BACTERIANAS PARA LA FORMACIÓN DE CONSORCIO PROBIÓTICO PARA USO EN EL CULTIVO DE CAMARONES MARINOS: LITOPENAEUS VANNAMEI / EVALUATION OF BACTERIAL STRAINS FOR THE FORMATION OF A PROBIOTIC CONSORTIUM FOR USE IN THE CULTIVATION OF MARINE SHRIMPS: LITOPENAEUS VANNAMEI. Brazilian Journal of Development, 6, 83108-83125. https://doi.org/10.34117/bjdv6n10-662spa
dcterms.referencesRodríguez-López, C. M., Guzmán-Beltrán, A. M., Lara-Morales, M. C., Castillo, E., Brandão, P. F. B., Rodríguez-López, C. M., Guzmán-Beltrán, A. M., Lara-Morales, M. C., Castillo, E., & Brandão, P. F. B. (2021). AISLAMIENTO E IDENTIFICACIÓN DE Lactobacillus spp. (LACTOBACILLACEAE) RESISTENTES A Cd(II) Y As(III) RECUPERADOS DE FERMENTO DE CACAO. Acta Biológica Colombiana, 26(1), 19-29. https://doi.org/10.15446/abc.v26n1.83677spa
dcterms.referencesRodríguez-Mínguez, E., Huedo, P., Langa, S., Peirotén, Á., Landete, J. M., Medina, M., & Arqués, J. L. (2021). Genome Sequence of the Reuterin-Producing Strain Limosilactobacillus reuteri INIA P572. Microbiology Resource Announcements, 10(49), e00988-21. https://doi.org/10.1128/MRA.00988-21eng
dcterms.referencesRodriguez‐Palacios, A., Staempfli, H. R., Duffield, T., & Weese, J. S. (2009). Isolation of bovine intestinal Lactobacillus plantarum and Pediococcus acidilactici with inhibitory activity against Escherichia coli O157 and F5. Journal of Applied Microbiology, 106(2), 393-401. https://doi.org/10.1111/j.1365-2672.2008.03959.xeng
dcterms.referencesRogne, P., Haugen, C., Fimland, G., Nissen-Meyer, J., & Kristiansen, P. E. (2009). Three-dimensional structure of the two-peptide bacteriocin plantaricin JK. Peptides, 30(9), 1613-1621. https://doi.org/10.1016/j.peptides.2009.06.010eng
dcterms.referencesRomano, A., Trifone, J., & Brustolon, M. (1979). Distribution of the phosphoenolpyruvate:glucose phosphotransferase system in fermentative bacteria. Journal of Bacteriology, 139(1), 93-97. https://doi.org/10.1128/jb.139.1.93-97.1979eng
dcterms.referencesRomão, L. J. V. (2023). Salmonelosis en cortes de carne vacuna en Brasil. Revista Científica Multidisciplinar Núcleo do Conhecimento, 00(00), 00-00. https://www.nucleodoconhecimento.com.br/veterinaria-es/salmonelosisspa
dcterms.referencesRondón-Barragán, I. S., Rodríguez, G. A., & M, G. A. M. (2014). Determinación de la seroprevalencia de Salmonella spp. En granjas porcinas del departamento del Tolima. Orinoquia, 18(1), 60-67. https://doi.org/10.22579/20112629.281spa
dcterms.referencesRozewicki, J., Li, S., Amada, K. M., Standley, D. M., & Katoh, K. (2019). MAFFT-DASH: Integrated protein sequence and structural alignment. Nucleic Acids Research, gkz342. https://doi.org/10.1093/nar/gkz342eng
dcterms.referencesRubio, L. A., & Molina, E. (2016). Las leguminosas en alimentación animal. Arbor, 192(779), Article 779. https://doi.org/10.3989/arbor.2016.779n3005spa
dcterms.referencesRuiz, M. J., Colello, R., Padola, N. L., & Etcheverría, A. I. (2017). Efecto inhibidor de Lactobacillus spp. Sobre bacterias implicadas en enfermedades transmitidas por alimentos. Revista Argentina de Microbiología, 49(2), 174-177. https://doi.org/10.1016/j.ram.2016.10.005spa
dcterms.referencesRuiz, M. J., Sirini, N. E., Zimmermann, J. A., Soto, L. P., Zbrun, M. V., Sequeira, G. J., Olivero, C. R., Rosmini, M. R., Signorini, M. L., & Frizzo, L. S. (2022). Capacidad de Lactiplantibacillus plantarum LP5 para inhibir biopelículas de Campylobacter coli. FAVE sección Ciencias Veterinarias, e0002-e0002. https://doi.org/10.14409/favecv.2022.1.e0002spa
dcterms.referencesRussell, W. M. S., & Burch, R. L. (1959). The Principles of Humane Experimental Technique. Methueneng
dcterms.referencesSáez Orviz, S. (2016). Estudio genómico de Lactobacillus plantarum LL441 y caracterización del locus de la plantaricina C [Master thesis]. https://digibuo.uniovi.es/dspace/handle/10651/38518spa
dcterms.referencesSalminen, S., Collado, M. C., Endo, A., Hill, C., Lebeer, S., Quigley, E. M. M., Sanders, M. E., Shamir, R., Swann, J. R., Szajewska, H., & Vinderola, G. (2021). The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 18(9), Article 9. https://doi.org/10.1038/s41575-021-00440-6eng
dcterms.referencesSampath, V., Song, J. H., Jeong, J., Mun, S., Han, K., & Kim, I. H. (2022). Nourishing neonatal piglets with synthetic milk and Lactobacillus sp. At birth highly modifies the gut microbial communities at the post-weaning stage. Frontiers in Microbiology, 13, 1044256. https://doi.org/10.3389/fmicb.2022.1044256eng
dcterms.referencesSánchez, L., Omura, M., Lucas, A., Pérez, T., Llanes, M., & Ferreira, C. de L. (2015). Cepas de Lactobacillus spp. Con capacidades probióticas aisladas del tracto intestinal de terneros neonatos. Revista de Salud Animal, 37(2), 94-104. http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0253-570X2015000200004&lng=es&nrm=iso&tlng=esspa
dcterms.referencesSánchez Súarez, H., Fabián Domínguez, F., Ochoa Mogollón, G., & Alfaro Aguilera, R. (2019). Sucesión bacteriana del tracto digestivo del lechón alimentado con ensilado biológico. Revista de Investigaciones Veterinarias del Perú, 30(1), 214-223. https://doi.org/10.15381/rivep.v30i1.15700spa
dcterms.referencesSánchez-Hidalgo, M., Montalbán-López, M., Cebrián, R., Valdivia, E., Martínez-Bueno, M., & Maqueda, M. (2011). AS-48 bacteriocin: Close to perfection. Cellular and Molecular Life Sciences, 68(17), 2845-2857. https://doi.org/10.1007/s00018-011-0724-4eng
dcterms.referencesSandoval Montiel, Á. A. (2013). Papel de la aspirina en la potenciación de la activación del factor de transcripción HSF en células mononucleares de sangre periférica de rata. Universidad Nacional Autónoma de México. https://doi.org/10.22201/dgpyfe.9786070260957e.2013spa
dcterms.referencesSantos, R., Paitán, E., Sotelo, A., Zúñiga, D., & Vílchez, C. (2019a). Caracterización molecular de bacterias con potencial probiótico aisladas de heces de neonatos humanos. Revista Peruana de Biología, 26(1), Article 1. https://doi.org/10.15381/rpb.v26i1.15915spa
dcterms.referencesSantos, R., Paitán, E., Sotelo, A., Zúñiga, D., & Vílchez, C. (2019b). Caracterización molecular de bacterias con potencial probiótico aisladas de heces de neonatos humanos. Revista Peruana de Biología, 26(1), Article 1. https://doi.org/10.15381/rpb.v26i1.15915spa
dcterms.referencesSarpong, N., Seifert, J., Bennewitz, J., Rodehutscord, M., & Camarinha-Silva, A. (2024). Microbial signatures and enterotype clusters in fattening pigs: Implications for nitrogen utilization efficiency. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1354537eng
dcterms.referencesSaviano, A., Brigida, M., Migneco, A., Gunawardena, G., Zanza, C., Candelli, M., Franceschi, F., & Ojetti, V. (2021). Lactobacillus Reuteri DSM 17938 (Limosilactobacillus reuteri) in Diarrhea and Constipation: Two Sides of the Same Coin? Medicina, 57(7), Article 7. https://doi.org/10.3390/medicina57070643eng
dcterms.referencesSavigamin, C., Samuthpongtorn, C., Mahakit, N., Nopsopon, T., Heath, J., & Pongpirul, K. (2022). Probiotic as a Potential Gut Microbiome Modifier for Stroke Treatment: A Systematic Scoping Review of In Vitro and In Vivo Studies. Nutrients, 14(17), Article 17. https://doi.org/10.3390/nu14173661eng
dcterms.referencesSayers, E., Bolton, E., Brister, J., Canese, K., Chan, J., Comeau, D., Connor, R., Funk, K., Kelly, C., Kim, S., Madej, T., Marchler-Bauer, A., Lanczycki, C., Lathrop, S., Lu, Z., Thibaud-Nissen, F., Murphy, T., Phan, L., Skripchenko, Y., … Sherry, S. (2022). Database resources of the national center for biotechnology information. Nucleic Acids Research, 50(D1), D20-D26. https://doi.org/10.1093/nar/gkab1112eng
dcterms.referencesSchillinger, U., & Lücke, F.-K. (1989). Antibacterial Activity of Lactobacillus Sake Isolated From Meat. Applied and Environmental Microbiology. https://doi.org/10.1128/aem.55.8.1901-1906.1989eng
dcterms.referencesSeddik, H. A., Bendali, F., Gancel, F., Fliss, I., Spano, G., & Drider, D. (2017). Lactobacillus plantarum and Its Probiotic and Food Potentialities. Probiotics and Antimicrobial Proteins, 9(2), 111-122. https://doi.org/10.1007/s12602-017-9264-zeng
dcterms.referencesSedigh Ebrahim-Saraie, H., Khanjani, S., & Hasannejad-Bibalan, M. (2021). Isolation and phenotypic and genotypic characterization of the potential probiotic strains of Lactobacillus from the Iranian population. New Microbes and New Infections, 43, 100913. https://doi.org/10.1016/j.nmni.2021.100913eng
dcterms.referencesSeo, M. J., Won, S.-M., Kwon, M. J., Song, J. H., Lee, E. B., Cho, J. H., Park, K. W., & Yoon, J.-H. (2022). Screening of lactic acid bacteria with anti-adipogenic effect and potential probiotic properties from grains. https://doi.org/10.21203/rs.3.rs-1640993/v1eng
dcterms.referencesSeo, M. J., Won, S.-M., Kwon, M. J., Song, J. H., Lee, E. B., Cho, J. H., Park, K. W., & Yoon, J.-H. (2023). Screening of lactic acid bacteria with anti-adipogenic effect and potential probiotic properties from grains. Scientific Reports, 13(1), 11022. https://doi.org/10.1038/s41598-023-36961-0eng
dcterms.referencesShao, Y., Gao, S., Guo, H., & Zhang, H. (2014). Influence of culture conditions and preconditioning on survival of Lactobacillus delbrueckii subspecies bulgaricus ND02 during lyophilization. Journal of Dairy Science, 97(3), 1270-1280. https://doi.org/10.3168/jds.2013-7536eng
dcterms.referencesSharif, A., Kashani, H. H., Nasri, E., Soleimani, Z., & Sharif, M. R. (2017). The Role of Probiotics in the Treatment of Dysentery: A Randomized Double-Blind Clinical Trial. Probiotics and Antimicrobial Proteins, 9(4), 380-385. https://doi.org/10.1007/s12602-017-9271-0eng
dcterms.referencesSharma, A., & Srivastava, S. (2014). Anti-Candida activity of two-peptide bacteriocins, plantaricins (Pln E/F and J/K) and their mode of action. Fungal Biology, 118(2), 264-275. https://doi.org/10.1016/j.funbio.2013.12.006eng
dcterms.referencesSheoran, P., & Tiwari, S. K. (2019). Anti-staphylococcal activity of bacteriocins of food isolates Enterococcus hirae LD3 and Lactobacillus plantarum LD4 in pasteurized milk. 3 Biotech, 9(1), 8. https://doi.org/10.1007/s13205-018-1546-yeng
dcterms.referencesSheoran, P., & Tiwari, S. K. (2021). Synergistically-acting Enterocin LD3 and Plantaricin LD4 Against Gram-Positive and Gram-Negative Pathogenic Bacteria. Probiotics and Antimicrobial Proteins, 13(2), 542-554. https://doi.org/10.1007/s12602-020-09708-weng
dcterms.referencesShi, R., Fan, H., Xiao, C., Wang, D., Xia, B., Zhao, Z., Zhao, B., Dai, X., & Liu, X. (2023). Lactobacillus Plantarum LLY-606 Supplementation Ameliorates Hyperuricemia <i>via</I> Modulating Intestinal Homeostasis and Relieving Inflammation. Food & Function. https://doi.org/10.1039/d2fo03411eeng
dcterms.referencesShimodaira, H., & Hasegawa, M. (1999). Comparaciones múltiples de verosimilitudes logarítmicas con aplicaciones a la inferencia filogenética. Molecular Biology and Evolution, 16(6), 1114-1116. https://doi.org/10.1093/molbev/16.6.1114eng
dcterms.referencesSierra, E., Maldonado, N., Arroyave, B., Robledo, C., & Robledo, J. (2019). Identificación directa de microorganismos a partir de muestras de orina y hemocultivos utilizando MALDI-TOF. Infectio, 364-370. https://doi.org/10.22354/in.v23i4.812spa
dcterms.referencesSilva, C. C. G., Silva, S. P. M., & Ribeiro, S. C. (2018). Application of Bacteriocins and Protective Cultures in Dairy Food Preservation. Frontiers in Microbiology, 9. https://www.frontiersin.org/articles/10.3389/fmicb.2018.00594eng
dcterms.referencesSilva, J. (2010). Antimicrobial activity of Lactobacillus reuteri against foodborne pathogens. Food Microbiology, 25(4), 492-499eng
dcterms.referencesSkov, M. N., Madsen, J. J., Rahbek, C., Lodal, J., Jespersen, J. B., Jørgensen, J. C., Dietz, H. H., Chriél, M., & Baggesen, D. L. (2008). Transmission of Salmonella between wildlife and meat‐production animals in Denmark. Journal of Applied Microbiology , 105(5), 1558-1568. https://doi.org/10.1111/j.1365-2672.2008.03914.xeng
dcterms.referencesSmedley, J. G., Fisher, D. J., Sayeed, S., Chakrabarti, G., & McClane, B. A. (2005). The enteric toxins of Clostridium perfringens. En Reviews of Physiology, Biochemistry and Pharmacology (pp. 183-204). Springer. https://doi.org/10.1007/s10254-004-0036-2eng
dcterms.referencesSmolentsev, S. Yu., Kruglova, M. I., Bogomolova, O. A., Fedorov, Y. N., Pavlenko, I. V., Gryn, S. A., Kazaku, A. A., Markova, E. V., Neminuschaya, L. A., Skotnikova, T. A., Klyukina, V. I., Lyulkova, L. S., & Matveeva, I. N. (2023). Comparative Effectiveness of Probiotics in Store Pigs Raising. En A. Beskopylny, M. Shamtsyan, & V. Artiukh (Eds.), XV International Scientific Conference “INTERAGROMASH 2022” (pp. 1814-1820). Springer International Publishing. https://doi.org/10.1007/978-3-031-21432-5_197eng
dcterms.referencesSolomon, A., & Martínez, J. A. (2006). Participación del sistema nervioso y del tracto gastrointestinal en la homeostasis energética. Revista de Medicina de la Universidad de Navarra, 27-37. https://doi.org/10.15581/021.50.7598spa
dcterms.referencesSong, D.-F., Zhu, M.-Y., & Gu, Q. (2014). Purification and Characterization of Plantaricin ZJ5, a New Bacteriocin Produced by Lactobacillus plantarum ZJ5. PLOS ONE, 9(8), e105549. https://doi.org/10.1371/journal.pone.0105549eng
dcterms.referencesSonger, J. G., & Uzal, F. A. (2005). Clostridial Enteric Infections in Pigs. Journal of Veterinary Diagnostic Investigation, 17(6), 528-536. https://doi.org/10.1177/104063870501700602eng
dcterms.referencesSotiropoulos, C., Smith, S., & Coloe, P. (1993). Characterization of two DNA probes specific for Serpulina hyodysenteriae. Journal of Clinical Microbiology, 31(7), 1746-1752. https://doi.org/10.1128/jcm.31.7.1746-1752.1993eng
dcterms.referencesSouza, A., Souza, J., Garcia, M., Rocha, T., Júnior, J., Sabbadini, P., & Costa, F. (2023). Seleção in vitro de isolados do trato gastrointestinal de colossoma macropomum, com potencial probiótico. Scientia Plena, 18(5). https://doi.org/10.14808/sci.plena.2023.056201eng
dcterms.referencesSpinler, J. K., Taweechotipatr, M., Rognerud, C. L., Ou, C. N., Tumwasorn, S., & Versalovic, J. (2008). Human-Derived Probiotic Lactobacillus Reuteri Demonstrate Antimicrobial Activities Targeting Diverse Enteric Bacterial Pathogens. Anaerobe. https://doi.org/10.1016/j.anaerobe.2008.02.001eng
dcterms.referencesStephens, S. K., Floriano, B., Cathcart, D. P., Bayley, S. A., Witt, V. F., Jiménez-Díaz, R., Warner, P. J., & Ruiz-Barba, J. L. (1998). Molecular Analysis of the Locus Responsible for Production of Plantaricin S, a Two-Peptide Bacteriocin Produced byLactobacillus plantarum LPCO10. Applied and Environmental Microbiology, 64(5), 1871-1877. https://doi.org/10.1128/AEM.64.5.1871-1877.1998eng
dcterms.referencesSuárez, R., Fandiño de Rubio, C., & Rondón-Barragán, I. (2018). Evaluación del perfil metabólico lipídico en cerdas suplementadas con Lactobacillus casei durante un ciclo reproductivo. Revista de Investigaciones Veterinarias del Perú, 29(4), 1278-1294. https://doi.org/10.15381/rivep.v29i4.14358spa
dcterms.referencesSummers, K. L., Frey, J. F., Ramsay, T. G., & Arfken, A. M. (2019). The piglet mycobiome during the weaning transition: A pilot study1. Journal of Animal Science, 97(7), 2889-2900. https://doi.org/10.1093/jas/skz182eng
dcterms.referencesSun, J., Lu, F., Luo, Y., Bie, L., Xu, L., & Wang, Y. (2023). OrthoVenn3: An integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Research, 51(W1), W397-W403. https://doi.org/10.1093/nar/gkad313eng
dcterms.referencesSun, Y., Zhang, S., Li, H., Zhu, J., Liu, Z., Hu, X., & Yi, J. (2022). Assessments of Probiotic Potentials of Lactiplantibacillus plantarum Strains Isolated From Chinese Traditional Fermented Food: Phenotypic and Genomic Analysis. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.895132eng
dcterms.referencesSuryavanshi, M. V., Paul, D., Doijad, S. P., Bhute, S. S., Hingamire, T. B., Gune, R. P., & Shouche, Y. S. (2017). Draft genome sequence of Lactobacillus plantarum strains E2C2 and E2C5 isolated from human stool culture. Standards in Genomic Sciences, 12(1), 15. https://doi.org/10.1186/s40793-017-0222-xeng
dcterms.referencesSwords, W. E., Wu, C. C., Champlin, F. R., & Buddington, R. K. (1993). Postnatal changes in selected bacterial groups of the pig colonic microflora. Biology of the Neonate, 63(3), 191-200. https://doi.org/10.1159/000243931eng
dcterms.referencesSyrokou, M. K., Paramithiotis, S., Drosinos, E. H., Bosnea, L., & Mataragas, M. (2022). A Comparative Genomic and Safety Assessment of Six Lactiplantibacillus plantarum subsp. Argentoratensis Strains Isolated from Spontaneously Fermented Greek Wheat Sourdoughs for Potential Biotechnological Application. International Journal of Molecular Sciences, 23(5), Article 5. https://doi.org/10.3390/ijms23052487eng
dcterms.referencesSzabó, I., Wieler, L. H., Tedin, K., Scharek-Tedin, L., Taras, D., Hensel, A., Appel, B., & Nöckler, K. (2009). Influence of a Probiotic Strain of Enterococcus faecium on Salmonella enterica Serovar Typhimurium DT104 Infection in a Porcine Animal Infection Model. Applied and Environmental Microbiology, 75(9), 2621-2628. https://doi.org/10.1128/AEM.01515-08eng
dcterms.referencesTagg, J. R., & McGiven, A. R. (1971). Assay system for bacteriocins. Applied Microbiology, 21(5), 943-948.eng
dcterms.referencesTang, H., Huang, W., & Yao, Y.-F. (s. f.). The metabolites of lactic acid bacteria: Classification, biosynthesis and modulation of gut microbiota. Microbial Cell, 10(3), 49-62. https://doi.org/10.15698/mic2023.03.792eng
dcterms.referencesTang, H.-J., Chen, C.-C., Lu, Y.-C., Huang, H.-L., Chen, H.-J., Chuang, Y.-C., Lai, C.-C., & Chao, C.-M. (2022). The effect of Lactobacillus with prebiotics on KPC-2-producing Klebsiella pneumoniae. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1050247eng
dcterms.referencesTangwatcharin, P., Nithisantawakhup, J., & Sorapukdee, S. (2019). Selection of indigenous starter culture for safety and its effect on reduction of biogenic amine content in Moo som. Asian-Australasian Journal of Animal Sciences, 32(10), 1580-1590. https://doi.org/10.5713/ajas.18.0596eng
dcterms.referencesTannock, G., Munro, K., Harmsen, H., Welling, G., Smart, J., & Gopal, P. (2000). Analysis of the Fecal Microflora of Human Subjects Consuming a Probiotic Product Containing Lactobacillus rhamnosusDR20. Applied and Environmental Microbiology, 66(6), 2578-2588. https://doi.org/10.1128/AEM.66.6.2578-2588.2000eng
dcterms.referencesTassinari, E., Bawn, M., Thilliez, G., Charity, O., Acton, L., Kirkwood, M., Petrovska, L., Dallman, T., Burgess, C. M., Hall, N., Duffy, G., & Kingsley, R. A. (2020). Whole-genome epidemiology links phage-mediated acquisition of a virulence gene to the clonal expansion of a pandemic Salmonella enterica serovar Typhimurium clone. Microbial Genomics, 6(11), e000456. https://doi.org/10.1099/mgen.0.000456eng
dcterms.referencesTegopoulos, K., Stergiou, O. S., Kiousi, D. E., Tsifintaris, M., Koletsou, E., Papageorgiou, A. C., Argyri, A. A., Chorianopoulos, N., Galanis, A., & Kolovos, P. (2021). Genomic and Phylogenetic Analysis of Lactiplantibacillus plantarum L125, and Evaluation of Its Anti-Proliferative and Cytotoxic Activity in Cancer Cells. Biomedicines, 9(11), Article 11. https://doi.org/10.3390/biomedicines9111718eng
dcterms.referencesTeng, T., Sun, G., Ding, H., Song, X., Bai, G., Shi, B., & Shang, T. (2023). Characteristics of glucose and lipid metabolism and the interaction between gut microbiota and colonic mucosal immunity in pigs during cold exposure. Journal of Animal Science and Biotechnology, 14(1), 84. https://doi.org/10.1186/s40104-023-00886-5eng
dcterms.referencesTodorov, S. D., Onno, B., Sorokine, O., Chobert, J., Иванова, И., & Dousset, X. (1999). Detection and Characterization of a Novel Antibacterial Substance Produced by Lactobacillus Plantarum ST 31 Isolated From Sourdough. International Journal of Food Microbiology. https://doi.org/10.1016/s0168-1605(99)00048-3eng
dcterms.referencesTuomola, E., Crittenden, R., Playne, M., Isolauri, E., & Salminen, S. (2001). Criterios de garantía de calidad para bacterias probióticas 1 2 3 4. The American Journal of Clinical Nutrition, 73(2), 393s-398s. https://doi.org/10.1093/ajcn/73.2.393seng
dcterms.referencesTurner, D. L., Brennan, L., Meyer, H. E., Lohaus, C., Siethoff, C., Costa, H. S., Gonzalez, B., Santos, H., & Suárez, J. E. (1999). Solution structure of plantaricin C, a novel lantibiotic. European Journal of Biochemistry, 264(3), 833-839. https://doi.org/10.1046/j.1432-1327.1999.00674.xeng
dcterms.referencesTuyarum, C., Songsang, A., & Lertworapreecha, M. (2021). In Vitro Evaluation of the Probiotic Potential of Lactobacillus Isolated From Native Swine Manure. Veterinary World. https://doi.org/10.14202/vetworld.2021.1133-1142eng
dcterms.referencesUezen, J. D., Ficoseco, C. A., Fátima Nader-Macías, M. E., & Vignolo, G. M. (2023, abril). Identification and characterization of potential probiotic lactic acid bacteria isolated from pig feces at various production stages [Text]. Canadian Veterinary Medical Association. https://www.ingentaconnect.com/content/cvma/cjvr/2023/00000087/00000002/art00008eng
dcterms.referencesUrdaneta, V., & Casadesús, J. (2017). Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts. Frontiers in Medicine, 4. https://doi.org/10.3389/fmed.2017.00163eng
dcterms.referencesVallejo, M., Gil, M. S., Parada, R. B., & Marguet, E. R. (2020). Resistencia a metales pesados y antimicrobianos en cepas de enterococos aisladas de cerdos del Valle Inferior del Río Chubut—Argentina. Revista Colombiana de Ciencia Animal - RECIA, 12(2), Article 2. https://doi.org/10.24188/recia.v12.n2.2020.763spa
dcterms.referencesVan Holm, W., Verspecht, T., Carvalho, R., Bernaerts, K., Boon, N., Zayed, N., & Teughels, W. (2022). Glycerol strengthens probiotic effect of Limosilactobacillus reuteri in oral biofilms: A synergistic synbiotic approach. Molecular Oral Microbiology, 37. https://doi.org/10.1111/omi.12386eng
dcterms.referencesvan Heel, A. J., de Jong, A., Song, C., Viel, J. H., Kok, J., & Kuipers, O. P. (2018). BAGEL4: A user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Research, 46(W1), W278-W281. https://doi.org/10.1093/nar/gky383eng
dcterms.referencesVásquez-Rojas, L., Fabian-Dominguez, F., Baylon-Cuba, M., Sánchez-Cárdenas, H., & Mialhe, E. (2022). Identificación Genómica De Bacterias Ácido Lácticas Aisladas De Las Heces Del Sajino (Pecari Tajacu). Revista De Veterinaria Y Zootecnia Amazónica. https://doi.org/10.51252/revza.v2i1.297spa
dcterms.referencesVázquez, S., Lopretti, M., Rey, F., & Zunino, P. (2007). Aislamiento y caracterización de cepas nativas de Lactobacillus spp. Para su uso como probióticos en la industria láctea. INNOTEC, 2 ene-dic, Article 2 ene-dic. https://doi.org/10.26461/02.04spa
dcterms.referencesVenus, J., & Richter, K. (2006). Production of Lactic Acid from Barley: Strain Selection, Phenotypic and Medium Optimization. Engineering in Life Sciences, 6(5), 492-500. https://doi.org/10.1002/elsc.200520136eng
dcterms.referencesVerbrugghe, E., Haesebrouck, F., Boyen, F., Leyman, B., van Deun, K., Thompson, A., Shearer, N., van Parys, A., & Pasmans, F. (2011). Stress induced Salmonella Typhimurium re-excretion by pigs is associated with cortisol induced increased intracellular proliferation in porcine macrophages. https://dr.lib.iastate.edu/handle/20.500.12876/84055eng
dcterms.referencesVerbrugghe, E., Van Parys, A., Leyman, B., Boyen, F., Haesebrouck, F., & Pasmans, F. (2015). HtpG contributes to Salmonella Typhimurium intestinal persistence in pigs. Veterinary Research, 46(1), 118. https://doi.org/10.1186/s13567-015-0261-5eng
dcterms.referencesVigors, S., O’Doherty, J. V., Rattigan, R., McDonnell, M. J., Rajauria, G., & Sweeney, T. (2020). Effect of a Laminarin Rich Macroalgal Extract on the Caecal and Colonic Microbiota in the Post -Weaned Pig. Marine Drugs, 18(3), Article 3. https://doi.org/10.3390/md18030157eng
dcterms.referencesViltrop, A., Boinas, F., Depner, K., Jori, F., Kolbasov, D., Laddomada, A., Ståhl, K., & Chenais, E. (2021). 9. African Swine Fever Epidemiology, Surveillance and Control. https://doi.org/10.3920/978-90-8686-910-7_9eng
dcterms.referencesVinderola, G., Binetti, A., Burns, P., & Reinheimer, J. (2011). Cell Viability and Functionality of Probiotic Bacteria in Dairy Products. Frontiers in Microbiology, 2. https://doi.org/10.3389/fmicb.2011.00070eng
dcterms.referencesVogel, V., & Spellerberg, B. (2021). Bacteriocin Production by Beta-Hemolytic Streptococci. Pathogens, 10(7), Article 7. https://doi.org/10.3390/pathogens10070867eng
dcterms.referencesWall, S. K., Zhang, J., Rostagno, M. H., & Ebner, P. D. (2010). Phage Therapy To Reduce Preprocessing Salmonella Infections in Market-Weight Swine. Applied and Environmental Microbiology, 76(1), 48-53. https://doi.org/10.1128/AEM.00785-09eng
dcterms.referencesWang, B., Wang, C., McKean, J. D., Logue, C. M., Gebreyes, W. A., Tivendale, K. A., & O’Connor, A. M. (2011). Salmonella enterica in Swine Production: Assessing the Association between Amplified Fragment Length Polymorphism and Epidemiological Units of Concern. Applied and Environmental Microbiology, 77(22), 8080-8087. https://doi.org/10.1128/AEM.00064-11eng
dcterms.referencesWang, C., Li, P., Yan, Q., Chen, L., Li, T., Zhang, W., Li, H., Chen, C., Han, xiuyan, Zhang, S., Xu, miao, Li, bo, Zhang, X., Ni, H., Ma, Y., Dong, bo, Li, S., & Liu, S. (2019). Characterization of the Pig Gut Microbiome and Antibiotic Resistome in Industrialized Feedlots in China. mSystems, 4(6), 10.1128/msystems.00206-19. https://doi.org/10.1128/msystems.00206-19eng
dcterms.referencesWang, C., Wei, S., Chen, N., Xiang, Y., Wang, Y., & Jin, M. (2022). Characteristics of gut microbiota in pigs with different breeds, growth periods and genders. Microbial Biotechnology, 15(3), 793-804. https://doi.org/10.1111/1751-7915.13755eng
dcterms.referencesWang, J., Ji, H., Wang, S., Zhang, D. Y., Liu, H., Shan, D., & Wang, Y. M. (2012). Lactobacillus Plantarum ZLP001: In Vitro Assessment of Antioxidant Capacity and Effect on Growth Performance and Antioxidant Status in Weaning Piglets. Asian-Australasian Journal of Animal Sciences. https://doi.org/10.5713/ajas.2012.12079eng
dcterms.referencesWang, M., & Donovan, S. M. (2015). Human Microbiota-Associated Swine: Current Progress and Future Opportunities. ILAR Journal, 56(1), 63-73. https://doi.org/10.1093/ilar/ilv006eng
dcterms.referencesWang, M., Wu, H., Lu, L., Jiang, L., & Yu, Q. (2020). Lactobacillus reuteri Promotes Intestinal Development and Regulates Mucosal Immune Function in Newborn Piglets. Frontiers in Veterinary Science, 7. https://doi.org/10.3389/fvets.2020.00042eng
dcterms.referencesWang, Q., Sun, Q., Qi, R., Wang, J., Qiu, X., Liu, Z., & Huang, J. (2019). Effects of <i>Lactobacillus Plantarum</I> on the Intestinal Morphology, Intestinal Barrier Function and Microbiota Composition of Suckling Piglets. Journal of Animal Physiology and Animal Nutrition. https://doi.org/10.1111/jpn.13198eng
dcterms.referencesWang, T., Guan, K., Su, Q., Wang, X., Yan, Z., Kuang, K., Wang, Y., Zhang, Q., Zhou, X., & Liu, B. (2022). Change of Gut Microbiota in PRRSV-Resistant Pigs and PRRSV -Susceptible Pigs from Tongcheng Pigs and Large White Pigs Crossed Population upon PRRSV Infection. Animals, 12(12), Article 12. https://doi.org/10.3390/ani12121504eng
dcterms.referencesWang, W., Liu, F., Xu, C., Liu, Z., Ma, J., Gu, L., & Jiang, Z. (2021). <i>Lactobacillus Plantarum</I> 69-2 Combined With Galacto-Oligosaccharides Alleviates <scp>d</Scp>-Galactose-Induced Aging by Regulating the AMPK/SIRT1 Signaling Pathway and Gut Microbiota in Mice. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.0c06730eng
dcterms.referencesWang, Y., Qin, Y., Xie, Q., Zhang, Y., Hu, J., & Li, P. (2018). Purification and Characterization of Plantaricin LPL-1, a Novel Class IIa Bacteriocin Produced by Lactobacillus plantarum LPL-1 Isolated From Fermented Fish. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02276eng
dcterms.referencesWattimury, A., Suroto, D. A., Utami, T., Wikandari, R., & Rahayu, E. S. (2023). In silico analysis of antibiotic resistance genes in Lactiplantibacillus plan‐ tarum subsp. Plantarum Kita‐3. Indonesian Journal of Biotechnology, 28(2), Article 2. https://doi.org/10.22146/ijbiotech.72550eng
dcterms.referencesWei, L., Zhou, W., & Zhu, Z. (2022). Comparison of Changes in Gut Microbiota in Wild Boars and Domestic Pigs Using 16S rRNA Gene and Metagenomics Sequencing Technologies. Animals, 12(17), Article 17. https://doi.org/10.3390/ani12172270eng
dcterms.referencesWen, C., van Dixhoorn, I., Schokker, D., Woelders, H., Stockhofe-Zurwieden, N., Rebel, J. M. J., & Smidt, H. (2021). Environmentally enriched housing conditions affect pig welfare, immune system and gut microbiota in early life. Animal Microbiome, 3(1), 52. https://doi.org/10.1186/s42523-021-00115-2eng
dcterms.referencesWen, L. S., Philip, K., & Ajam, N. (2016). Purification, Characterization and Mode of Action of Plantaricin K25 Produced by Lactobacillus Plantarum. Food Control. https://doi.org/10.1016/j.foodcont.2015.08.010eng
dcterms.referencesWen, Q., Asfaw, S. T., Yang, S., Chen, Z., Ahmed, S. A., Li, Y., & Shiferaw, H. (2023). Effect of Antibiotics and Thermophilic Pre-Treatment on Anaerobic Co-Digestion of Pig Manure and Corn Straw. Water, 15(18), Article 18. https://doi.org/10.3390/w15183223eng
dcterms.referencesWerner, A., Mölling, P., Fagerström, A., Dyrkell, F., Arnellos, D., Johansson, K., Sundqvist, M., & Norén, T. (2020). Whole genome sequencing of Clostridioides difficile PCR ribotype 046 suggests transmission between pigs and humans. PloS One, 15(12), e0244227. https://doi.org/10.1371/journal.pone.0244227eng
dcterms.referencesWiedemann, I., Breukink, E., van Kraaij, C., Kuipers, O. P., Bierbaum, G., de Kruijff, B., & Sahl, H.-G. (2001). Specific Binding of Nisin to the Peptidoglycan Precursor Lipid II Combines Pore Formation and Inhibition of Cell Wall Biosynthesis for Potent Antibiotic Activity*. Journal of Biological Chemistry, 276(3), 1772-1779. https://doi.org/10.1074/jbc.M006770200eng
dcterms.referencesWolupeck, H. L., Morete, C. A., DallaSanta, O. R., Luciano, F. B., Madeira, H. M. F., & Macedo, R. E. F. de. (2017). Methods for the evaluation of antibiotic resistance in Lactobacillus isolated from fermented sausages. Ciência Rural, 47, e20160966. https://doi.org/10.1590/0103-8478cr20160966eng
dcterms.referencesWright, M. E., Yu, A. O., Marco, M. L., & Panigrahi, P. (2020). Genome Sequence of Lactiplantibacillus plantarum ATCC 202195, a Probiotic Strain That Reduces Sepsis and Other Infections during Early Infancy. Microbiology Resource Announcements , 9(39), 10.1128/mra.00741-20. https://doi.org/10.1128/mra.00741-20eng
dcterms.referencesWu, H., Xie, S., Miao, J., Li, Y., Wang, Z., Wang, M., & Yu, Q. (2020). Lactobacillus reuteri maintains intestinal epithelial regeneration and repairs damaged intestinal mucosa. Gut Microbes. https://www.tandfonline.com/doi/abs/10.1080/19490976.2020.1734423eng
dcterms.referencesWu, J., Lin, Z., Wang, X., Zhao, Y., Zhao, J., Liu, H., Johnston, L. J., Lu, L., & Ma, X. (2022). Limosilactobacillus reuteri SLZX19-12 Protects the Colon from Infection by Enhancing Stability of the Gut Microbiota and Barrier Integrity and Reducing Inflammation. Microbiology Spectrum, 10(3), e02124-21. https://doi.org/10.1128/spectrum.02124-21eng
dcterms.referencesWu, R., Sun, Z., Wu, J., Meng, H., & Zhang, H. (2010). Effect of bile salts stress on protein synthesis of Lactobacillus casei Zhang revealed by 2-dimensional gel electrophoresis. Journal of Dairy Science, 93(8), 3858-3868. https://doi.org/10.3168/jds.2009-2967eng
dcterms.referencesWu, R., Wu, Z., Zhao, C., Lv, C., Wu, J., & Meng, X. (2013). Identification of lactic acid bacteria in suancai, a traditional northeastern Chinese fermented food, and salt response of Lactobacillus paracasei LN-1. Annals of Microbiology, 64(3), 1325-1332. https://doi.org/10.1007/s13213-013-0776-9eng
dcterms.referencesWu, Y., Pang, X., Wu, Y., Liu, X., & Zhang, X. (2022). Enterocins: Classification, Synthesis, Antibacterial Mechanisms and Food Applications. Molecules (Basel, Switzerland), 27(7), 2258. https://doi.org/10.3390/molecules27072258eng
dcterms.referencesXiao, L., Estellé, J., Kiilerich, P., Ramayo-Caldas, Y., Xia, Z., Feng, Q., Liang, S., Pedersen, A. Ø., Kjeldsen, N. J., Liu, C., Maguin, E., Doré, J., Pons, N., Le Chatelier, E., Prifti, E., Li, J., Jia, H., Liu, X., Xu, X., … Wang, J. (2016). A reference gene catalogue of the pig gut microbiome. Nature Microbiology, 1(12), 1-6. https://doi.org/10.1038/nmicrobiol.2016.161eng
dcterms.referencesXu, F.-L., Guo, Y.-C., Wang, H.-X., Fu, P., Zeng, H.-W., Li, Z.-G., Pei, X.-Y., & Liu, X.-M. (2012). PFGE genotyping and antibiotic resistance of Lactobacillus distributed strains in the fermented dairy products. Annals of Microbiology, 62(1), 255-262. https://doi.org/10.1007/s13213-011-0254-1eng
dcterms.referencesXu, H., Liu, W., Zhang, W., Yu, J., Song, Y., Menhe, B., Zhang, H., & Sun, Z. (2015). Use of multilocus sequence typing to infer genetic diversity and population structure of Lactobacillus plantarum isolates from different sources. BMC Microbiology, 15(1), 241. https://doi.org/10.1186/s12866-015-0584-4eng
dcterms.referencesXu, J., Chen, X., Yu, S., Su, Y., & Zhu, W. (2016). Effects of Early Intervention with Sodium Butyrate on Gut Microbiota and the Expression of Inflammatory Cytokines in Neonatal Piglets. PLOS ONE, 11(9), e0162461. https://doi.org/10.1371/journal.pone.0162461eng
dcterms.referencesXu, T., Guo, Y., Zhang, Y., Cao, K., Zhou, X., Qian, M., & Han, X. (2023). Alleviative Effect of Probiotic Ferment on Lawsonia intracellularis Infection in Piglets. Biology, 12(6), Article 6. https://doi.org/10.3390/biology12060879eng
dcterms.referencesXu, Y., Yang, L., Li, P., & Gu, Q. (2019). Heterologous expression of Class IIb bacteriocin Plantaricin JK in Lactococcus Lactis. Protein Expression and Purification, 159, 10-16. https://doi.org/10.1016/j.pep.2019.02.013eng
dcterms.referencesXue, C., Yue, C., Liu, X., & Yuan, L. (2016). Selection of Potential Probiotic Strains Isolated from Human Intestinal Tract and Traditional Ferment Milk. 410-416. https://doi.org/10.2991/bbe-16.2016.63eng
dcterms.referencesYalçınkaya, S., & Kılıç, G. (2019). Isolation, identification and determination of technological properties of the halophilic lactic acid bacteria isolated from table olives. Journal of Food Science and Technology, 56(4), 2027-2037. https://doi.org/10.1007/s13197-019-03679-9eng
dcterms.referencesYan, H., Diao, H., Xiao, Y., Li, W., Yu, B., He, J., Yu, J., Zheng, P., Mao, X., Luo, Y., Zeng, B., Wei, H., & Chen, D. (2016). Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice. Scientific Reports, 6(1), 31786. https://doi.org/10.1038/srep31786eng
dcterms.referencesYan, R., Lu, Y., Wu, X., Yu, P., Lan, P., Wu, X., Jiang, Y., Li, Q., Pi, X., Liu, W., Zhou, J., & Yu, Y. (2021). Anticolonization of Carbapenem-Resistant Klebsiella pneumoniae by Lactobacillus plantarum LP1812 Through Accumulated Acetic Acid in Mice Intestinal. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/fcimb.2021.804253eng
dcterms.referencesYang, K. M., Kim, J.-S., Kim, H.-S., Kim, Y.-Y., Oh, J.-K., Jung, H.-W., Park, D.-S., & Bae, K.-H. (2021). Lactobacillus reuteri AN417 cell-free culture supernatant as a novel antibacterial agent targeting oral pathogenic bacteria. Scientific Reports, 11(1), 1631. https://doi.org/10.1038/s41598-020-80921-xeng
dcterms.referencesYang, Y., Yan, G., Meng, X., Wang, X., Zhao, Z., Zhou, S., Zhang, Q., & Wei, X. (2022). Effects of Lactobacillus Plantarum and Pediococcus Acidilactici Co-Fermented Feed on Growth Performance and Gut Microbiota of Nursery Pigs. Frontiers in Veterinary Science. https://doi.org/10.3389/fvets.2022.1076906eng
dcterms.referencesYu, J., Sun, Z., Liu, W., Bao, Q., Zhang, J., & Zhang, H. (2012). Phylogenetic study of Lactobacillus acidophilus group, L. casei group and L. plantarum group based on partial hsp60, pheS and tuf gene sequences. European Food Research and Technology, 234(6), 927-934. https://doi.org/10.1007/s00217-012-1712-0eng
dcterms.referencesYu-Hsuan-How, Wei-Lin-Foo, Wai-Sum-Yap, & Liew-Phing-Pui. (2021). Isolation and characterization of lactic acid bacteria from sugarcane waste. Malaysian Journal of Microbiology, 403-413. http://dx.doi.org/10.21161/mjm.211111eng
dcterms.referencesYukhaibam, R., & Lhouvum, K. (2021). Molecular Identification of Lactic Acid Bacteria as a predominant probiotic microorganism found in indigenous fermented pig fat of Assam, India. IOP Conference Series: Materials Science and Engineering, 1020, 012026. https://doi.org/10.1088/1757-899X/1020/1/012026eng
dcterms.referencesYuquilema, J. E. M., Marín-Cárdenas, A., González-Pérez, M., Valla-Cepeda, A., & Baño-Ayala, D. (2018). Repercusión de Lactobacillus acidophilus y Kluyveromyces fragilis (L-4 UCLV) en los parámetros bioproductivos de los cerdos. Enfoque UTE, 9(2), Article 2. https://doi.org/10.29019/enfoqueute.v9n2.301eng
dcterms.referencesZaib, S., Hayat, A., & Khan, I. (2024). Probiotics and their Beneficial Health Effects. Mini Reviews in Medicinal Chemistry, 24(1), 110-125. https://doi.org/10.2174/1389557523666230608163823eng
dcterms.referencesZaidi, A., Bakkes, P., Krom, B., Mei, H., & Driessen, A. (2011). Cholate-stimulated biofilm formation by Lactococcus lactis cells. Applied and Environmental Microbiology, 77(8), 2602-2610. https://doi.org/10.1128/aem.01709-10eng
dcterms.referencesZapata, S., Muñoz, J., Ruiz, O. S., Montoya, O. I., & Gutiéerez, P. A. (2009). ISOLATION OF <I>Lactobacillus plantarum</I> LPBM10 AND PARTIAL CHARACTERIZATION OF ITS BACTERIOCIN. Vitae, 16(1), Article 1. https://doi.org/10.17533/udea.vitae.1428eng
dcterms.referencesZendo, T., Koga, S., Shigeri, Y., Nakayama, J., & Sonomoto, K. (2006). Lactococcin Q, a Novel Two-Peptide Bacteriocin Produced by Lactococcus lactis QU 4. Applied and Environmental Microbiology, 72(5), 3383-3389. https://doi.org/10.1128/AEM.72.5.3383-3389.2006eng
dcterms.referencesZeng, Y., Li, Y., Wu, Q. P., Zhang, J. M., Xie, X. Q., Ding, Y., Cai, S. Z., Ye, Q. H., Chen, M. T., Xue, L., Wu, S., Zeng, H. Y., Yang, X. J., & Wang, J. (2020). Evaluation of the Antibacterial Activity and Probiotic Potential of Lactobacillus plantarum Isolated from Chinese Homemade Pickles. Canadian Journal of Infectious Diseases and Medical Microbiology, 2020(1), 8818989. https://doi.org/10.1155/2020/8818989eng
dcterms.referencesZhang, J., Shen, Y., Yang, G., Sun, J., Tang, C., Liang, H., Ma, J., Wu, X., Cao, H., Wu, M., Ding, Y., Li, M., Liu, Z., & Ge, L. (2023). Commensal microbiota modulates phenotypic characteristics and gene expression in piglet Peyer’s patches. Frontiers in Physiology, 14, 1084332. https://doi.org/10.3389/fphys.2023.1084332eng
dcterms.referencesZhang, J., Yi, H., Gong, P., Lin, K., Chen, S., Han, X., & Zhang, L. (2019). Adsorption of plantaricin Q7 on montmorillonite and application in feedback regulation of plantaricin Q7 synthesis by Lactobacillus plantarum Q7. Engineering in Life Sciences, 19(1), 57-65. https://doi.org/10.1002/elsc.201800086eng
dcterms.referencesZhang, S., Wang, T., Zhang, D., Wang, X., Zhang, Z., Lim, C., & Lee, S. (2022). Probiotic characterization of Lactiplantibacillus plantarum HOM3204 and its restoration effect on antibiotic‐induced dysbiosis in mice. Letters in Applied Microbiology, 74(6), 949-958. https://doi.org/10.1111/lam.13683eng
dcterms.referencesZhang, Y., Zhang, Y., Liu, F., Mao, Y., Zhang, Y., Zeng, H., Ren, S., Guo, L., Chen, Z., Hrabchenko, N., Wu, J., & Yu, J. (2023). Mechanisms and applications of probiotics in prevention and treatment of swine diseases. Porcine Health Management, 9, 5. https://doi.org/10.1186/s40813-022-00295-6eng
dcterms.referencesZhang, Y.-J., Li, S., Gan, R.-Y., Zhou, T., Xu, D.-P., & Li, H.-B. (2015). Impacts of Gut Bacteria on Human Health and Diseases. International Journal of Molecular Sciences, 16(4), 7493-7519. https://doi.org/10.3390/ijms16047493eng
dcterms.referencesZhao, S., Han, J., Bie, X., Lu, Z., Zhang, C., & Lv, F. (2016). Purification and Characterization of Plantaricin JLA-9: A Novel Bacteriocin against Bacillus spp. Produced by Lactobacillus plantarum JLA-9 from Suan-Tsai, a Traditional Chinese Fermented Cabbage. Journal of Agricultural and Food Chemistry, 64(13), 2754-2764. https://doi.org/10.1021/acs.jafc.5b05717eng
dcterms.referencesZhao, Z., Chen, L., Zhao, Y., Wang, C., Duan, C., Yang, G., Niu, C., & Li, S. (2020). Lactobacillus Plantarum NA136 Ameliorates Nonalcoholic Fatty Liver Disease by Modulating Gut Microbiota, Improving Intestinal Barrier Integrity, and Attenuating Inflammation. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s00253-020-10633-9eng
dcterms.referencesZheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O’Toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782-2858. https://doi.org/10.1099/ijsem.0.004107eng
dcterms.referencesZhou, S., Shanmugam, K. T., & Ingram, L. O. (2003). Functional replacement of the escherichia coli d-(−)-lactate dehydrogenase gene (ldha) with the l-(+)-lactate dehydrogenase gene (ldhl) from pediococcus acidilactici. Applied and Environmental Microbiology, 69(4), 2237-2244. https://doi.org/10.1128/aem.69.4.2237-2244.2003eng
oaire.versioninfo:eu-repo/semantics/acceptedVersion
sb.investigacionGenética microbiana, viral y biotecnologíaspa
sb.programaDoctorado en Genética y Biología Molecularspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
PDF_RESUMEN
Tamaño:
784.8 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
6.72 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.93 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones