Epigenetic mechanisms and posttranslational modifications in systemic Lupus Erythematosus

dc.contributor.authorNavarro Quiroz, Elkin
dc.contributor.authorChavez-Estrada, Valeria
dc.contributor.authorMacias-Ochoa, Karime
dc.contributor.authorAyala-Navarro, María Fernanda
dc.contributor.authorFlores-Aguilar, Aniyensy Sarai
dc.contributor.authorMorales-Navarrete, Francisco
dc.contributor.authorDe la Cruz Lopez, Fernando
dc.contributor.authorGomez Escorcia, Lorena
dc.contributor.authorG. Musso, Carlos
dc.contributor.authorAroca Martinez, Gustavo
dc.contributor.authorGonzales Torres, Henry
dc.contributor.authorDiaz Perez, Anderson
dc.contributor.authorCadena Bonfanti, Andres
dc.contributor.authorSarmiento Gutierrez, Joany
dc.contributor.authorMeza, Jainy
dc.contributor.authorDiaz Arroyo, Esperanza
dc.contributor.authorBello Lemus, Yesit
dc.contributor.authorAhmad, Mostapha
dc.contributor.authorNavarro Quiroz, Roberto
dc.date.accessioned2019-11-13T22:11:08Z
dc.date.available2019-11-13T22:11:08Z
dc.date.issued2019
dc.description.abstractThe complex physiology of eukaryotic cells is regulated through numerous mechanisms, including epigenetic changes and posttranslational modifications. The wide-ranging diversity of these mechanisms constitutes a way of dynamic regulation of the functionality of proteins, their activity, and their subcellular localization as well as modulation of the di erential expression of genes in response to external and internal stimuli that allow an organism to respond or adapt to accordingly. However, alterations in these mechanisms have been evidenced in several autoimmune diseases, including systemic lupus erythematosus (SLE). The present review aims to provide an approach to the current knowledge of the implications of these mechanisms in SLE pathophysiology.eng
dc.identifier.issn14220067
dc.identifier.urihttps://hdl.handle.net/20.500.12442/4335
dc.language.isoengeng
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)eng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceInternational Journal of Molecular Scienceseng
dc.sourceVol. 20, No. 22 (2019)spa
dc.source.bibliographicCitationWu, H.; Zhao, M.; Tan, L.; Lu, Q. The key culprit in the pathogenesis of systemic lupus erythematosus: Aberrant DNA methylation. Autoimmun. Rev. 2016, 15, 684–689.eng
dc.source.bibliographicCitationRhodes, B.; Vyse, T.J. The genetics of SLE: An update in the light of genome-wide association studies. Rheumatology (Oxford) 2008, 47, 1603–1611.eng
dc.source.bibliographicCitationQuddus, J.; Johnson, K.J.; Gavalchin, J.; Amento, E.P.; Chrisp, C.E.; Yung, R.L.; Richardson, B.C. Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is su cient to cause a lupus-like disease in syngeneic mice. J. Clin. Invest. 1993, 92, 38–53.eng
dc.source.bibliographicCitationCoit, P.; Yalavarthi, S.; Ognenovski, M.; Zhao, W.; Hasni, S.; Wren, J.D.; Kaplan, M.J.; Sawalha, A.H. Epigenome profiling reveals significantDNAdemethylation of interferon signature genes in lupus neutrophils. J. Autoimmun. 2015, 58, 59–66.eng
dc.source.bibliographicCitationJavierre, B.M.; Richardson, B. A New Epigenetic Challenge: Systemic Lupus Erythematosus. In Epigenetic Contributions in Autoimmune Disease. Advances in Experimental Medicine and Biology; Ballestar, E., Ed.; Springer: Boston, MA, USA, 2011; Volume 711, pp. 117–136.eng
dc.source.bibliographicCitationZhao, M.; Zhou, Y.; Zhu, B.;Wan, M.; Jiang, T.; Tan, Q.; Liu, Y.; Jiang, J.; Luo, S.; Tan, Y.; et al. IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus. Ann. Rheum. Dis. 2016, 75, 1998–2006.eng
dc.source.bibliographicCitationCai, L.; Sutter, B.M.; Li, B.; Tu, B.P. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 2011, 42, 426–437.eng
dc.source.bibliographicCitationBrooks, W.H.; Le Dantec, C.; Pers, J.O.; Youinou, P.; Renaudineau, Y. Epigenetics and autoimmunity. J. Autoimmun. 2010, 34, J207–J219.eng
dc.source.bibliographicCitationPatel, D.R.; Richardson, B.C. Epigenetic mechanisms in lupus. Curr. Opin. Rheumatol. 2010, 22, 478–482.eng
dc.source.bibliographicCitationZouali, M. Epigenetics in lupus. Ann. N. Y. Acad. Sci. 2011, 1217, 154–165.eng
dc.source.bibliographicCitationCoit, P.; Je ries, M.; Altorok, N.; Dozmorov, M.G.; Koelsch, K.A.; Wren, J.D.; Merrill, J.T.; McCune, W.J.; Sawalha, A.H. Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naive CD4+ T cells from lupus patients. J. Autoimmun. 2013, 43, 78–84.eng
dc.source.bibliographicCitationPieterse, E.; Hofstra, J.; Berden, J.; Herrmann, M.; Dieker, J.; van der Vlag, J. Acetylated histones contribute to the immunostimulatory potential of neutrophil extracellular traps in systemic lupus erythematosus. Clin. Exp. Immunol. 2015, 179, 68–74.eng
dc.source.bibliographicCitationSujashvili, R. Advantages of Extracellular Ubiquitin in Modulation of Immune Responses. Mediators Inflamm. 2016, 2016, 1–6.eng
dc.source.bibliographicCitationTéllez Castillo, N.; Siachoque Jara, J.J.; Siachoque Jara, J.S.; Siachoque Jara, M.A.; Siachoque Montañez, H.O. Activación de la célula T, alteraciones en el lupus eritematoso sistémico, una revisión narrativa. Rev. Colomb. Reumatol. 2018, 25, 38–54.eng
dc.source.bibliographicCitationBarrera-Vargas, A.; Gómez-Martín, D.; Carmona-Rivera, C.; Merayo-Chalico, J.; Torres-Ruiz, J.; Manna, Z.; Hasni, S.; Alcocer-Varela, J.; Kaplan, M.J. Differential ubiquitination in NETs regulates macrophage responses in systemic lupus erythematosus. Ann. Rheum. Dis. 2018, 77, 944–950.eng
dc.source.bibliographicCitationNakasone, M.A.; Livnat-Levanon, N.; Glickman, M.H.; Cohen, R.E.; Fushman, D. Mixed-linkage ubiquitin chains send mixed messages. Structure 2013, 21, 727–740.eng
dc.source.bibliographicCitationErpapazoglou, Z.; Walker, O.; Haguenauer-Tsapis, R. Versatile roles of k63-linked ubiquitin chains in traffcking. Cells 2014, 3, 1027–1088.eng
dc.source.bibliographicCitationSaavedra Hernández, D. La molécula CD28 y su función en la activación de células T. Rev. Cuba. Hematol. Inmunol. Hemoter. 2013, 29, 359–367.eng
dc.source.bibliographicCitationDing, X.; Wang, A.; Ma, X.; Demarque, M.; Jin, W.; Xin, H.; Dejean, A.; Dong, C. Protein SUMOylation Is Required for Regulatory T Cell Expansion and Function. Cell Rep. 2016, 16, 1055–1066.eng
dc.source.bibliographicCitationRider, V.; Abdou, N.I.; Kimler, B.F.; Lu, N.; Brown, S.; Fridley, B.L. Gender bias in human systemic lupus erythematosus: A problem of steroid receptor action? Front. Immunol. 2018, 9, 1–10.eng
dc.source.bibliographicCitationBarry, R.; John, S.W.; Liccardi, G.; Tenev, T.; Jaco, I.; Chen, C.H.; Choi, J.; Kasperkiewicz, P.; Fernandes-Alnemri, T.; Alnemri, E.; et al. SUMO-mediated regulation of NLRP3 modulates inflammasome activity. Nat. Commun. 2018, 9, 3001.eng
dc.source.bibliographicCitationGuzmán-Flores, J.M.; Portales-Pérez, D.P. Mecanismos de supresión de las células T reguladoras (Treg). Gac. Med. Mex. 2013, 149, 630–638.spa
dc.source.bibliographicCitationHernández, A.S. Células colaboradoras (TH1, TH2, TH17) y reguladoras (Treg, TH3, NKT) en la artritis reumatoide. Reumatol. Clin. Supl. 2009, 5 (Suppl. 1), 1–5.eng
dc.source.bibliographicCitationCrabtree, G.R.; Schreiber, S.L. Snapshot: Calcium-calcineurin-NFAT signaling. Cell 2010, 138, 1–4.eng
dc.source.bibliographicCitationBiermann, M.H.; Gri ante, G.; Podolska, M.J.; Boeltz, S.; Stürmer, J.; Muñoz, L.E.; Bilyy, R.; Herrmann, M. Sweet but dangerous–The role of immunoglobulin G glycosylation in autoimmunity and inflammation. Lupus 2016, 25, 934–942.eng
dc.source.bibliographicCitationMagnelli, P.E.; Bielik, A.M.; Guthrie, E.P. Identification and characterization of protein glycosylation using specific endo- and exoglycosidases. J. Vis. Exp. 2011, e3749.eng
dc.source.bibliographicCitationValliere-Douglass, J.F.; Kodama, P.; Mujacic, M.; Brady, L.J.; Wang, W.; Wallace, A.; Yan, B.; Reddy, P.; Treuheit, M.J.; Balland, A. Asparagine-linked oligosaccharides present on a non-consensus amino acid sequence in the CH1 domain of human antibodies. J. Biol. Chem. 2009, 284, 32493–32506.eng
dc.source.bibliographicCitationHashii, N.; Kawasaki, N.; Itoh, S.; Nakajima, Y.; Kawanishi, T.; Yamaguchi, T. Alteration of N-glycosylation in the kidney in a mouse model of systemic lupus erythematosus: Relative quantification of N-glycans using an isotope-tagging method. Immunology 2009, 126, 336–345.eng
dc.source.bibliographicCitationVidarsson, G.; Dekkers, G.; Rispens, T. IgG subclasses and allotypes: From structure to effector functions. Front. Immunol. 2014, 5, 520.eng
dc.source.bibliographicCitationAbès, R.; Teillaud, J.-L. Impact of Glycosylation on Effector Functions of Therapeutic IgG. Pharmaceuticals 2010, 3, 146–157.eng
dc.source.bibliographicCitationJennewein, M.F.; Alter, G. The Immunoregulatory Roles of Antibody Glycosylation. Trends Immunol. 2017, 38, 358–372.eng
dc.source.bibliographicCitationReily, C.; Stewart, T.J.; Renfrow, M.B.; Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 2019, 15, 346–366.eng
dc.source.bibliographicCitationAnthony, R.M.; Ravetch, J.V. A Novel Role for the IgG Fc Glycan: The Anti-inflammatory Activity of Sialylated IgG Fcs. J. Clin. Immunol. 2010, 30, 9–14.eng
dc.source.bibliographicCitationSaxena, A.; Wu, D. Advances in Therapeutic Fc Engineering - Modulation of IgG-Associated Effector Functions and Serum Half-life. Front. Immunol. 2016, 7, 580.eng
dc.source.bibliographicCitationLeong, K.W.; Ding, J.L. The unexplored roles of human serum IgA. DNA Cell Biol. 2014, 33, 823–829.eng
dc.source.bibliographicCitationPapista, C.; Berthelot, L.; Monteiro, R.C. Dysfunctions of the Iga system: A common link between intestinal and renal diseases. Cell. Mol. Immunol. 2011, 8, 126–134.eng
dc.source.bibliographicCitationKawa, I.A.; Masood, A.; Amin, S.; Mustafa, M.F.; Rashid, F. Chapter 2—Clinical Perspective of Posttranslational Modifications. In Protein Modificomics; Dar, T.A., Singh, L.R., Eds.; Academic Press: London, UK, 2019; pp. 37–68.eng
dc.source.bibliographicCitationZurlo, G.; Guo, J.; Takada, M.;Wei,W.; Zhang, Q. New Insights into Protein Hydroxylation and Its Important Role in Human Diseases. Biochim. Biophys. Acta 2016, 1866, 208–220.eng
dc.source.bibliographicCitationMansoor, F.; Ali, A.; Ali, R. Binding of circulating SLE autoantibodies to oxygen free radical damage chromatin. Autoimmunity 2005, 38, 431–438.eng
dc.source.bibliographicCitationLahita, R.G.; Bradlow, L.; Fishman, J.; Kunkel, H.G. Estrogen metabolism in systemic lupus erythematosus. Patients and family members. Arthritis Rheum. 1982, 25, 843–846.eng
dc.source.bibliographicCitationGarg, D.K.; Ali, R. Reactive oxygen species modified polyguanylic acid: Immunogenicity and implications for systemic autoimmunity. J. Autoimmun. 1998, 11, 371–378.eng
dc.source.bibliographicCitationArdito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Lo Muzio, L. The crucial role of protein phosphorylation in cell signalingand its use as targeted therapy (Review). Int. J. Mol. Med. 2017, 40, 271–280.eng
dc.source.bibliographicCitationSkourti-Stathaki, K.; Proudfoot, N. Histone 3 S10 Phosphorylation: ‘Caught in the R Loop!’. Mol. Cell 2013, 52, 470–472.eng
dc.source.bibliographicCitationEichten, S.R.; Schmit, R.J.; Springer, N.M. Epigenetics: Beyond chromatin modifications and complex genetic regulation. Plant Physiol. 2014, 165, 933–947.eng
dc.source.bibliographicCitationRossetto, D.; Avvakumov, N.; Côté, J. Histone phosphorylation. Epigenetics 2012, 7, 1098–1108.eng
dc.source.bibliographicCitationRossy, J.; Williamson, D.J.; Gaus, K. How does the kinase Lck phosphorylate the T cell receptor? Spatial organization as a regulatory mechanism. Front. Immunol. 2012, 3, 1–6.eng
dc.source.bibliographicCitationWu, T.; Xie, C.; Han, J.; Ye, Y.;Weiel, J.; Li, Q.; Blanco, I.; Ahn, C.; Olsen, N.; Putterman, C.; et al. Metabolic disturbances associated with systemic lupus erythematosus. PLoS ONE 2012, 7, e37210.eng
dc.source.bibliographicCitationHsu, W.; Rosenquist, G.L.; Ansari, A.A.; Gershwin, M.E. Autoimmunity and tyrosine sulfation. Autoimmun. Rev. 2005, 4, 429–435.eng
dc.source.bibliographicCitationTonks, N.K. Protein tyrosine phosphatases: From genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 2006, 7, 833–834.eng
dc.source.bibliographicCitationKehoe, J.W.; Bertozzi, C.R. Tyrosine sulfation: A modulator of extracellular protein-protein interactions. Chem. Biol. 2000, 7, 57–61.eng
dc.source.bibliographicCitationSeibert, C.; Sakmar, T.P. Toward a framework for sulfoproteomics: Synthesis and characterization of sulfotyrosine-containing peptides. Biopolym. 2008, 90, 459–477.eng
dc.source.bibliographicCitationFarzan, M.; Mirzabekov, T.; Kolchinsky, P.;Wyatt, R.; Cayabyab, M.; Gerard, N.P.; Gerard, C.; Sodroski, J.; Choe, H. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 1999, 96, 667–676.eng
dc.source.bibliographicCitationCarvalho, C.; Calvisi, S.L.; Leal, B.; Bettencourt, A.; Marinho, A.; Almeida, I.; Farinha, F.; Costa, P.P.; Silva, B.M.; Vasconcelos, C. CCR5-Delta32: Implications in SLE development. Int. J. Immunogenet. 2014, 41, 236–241.eng
dc.source.bibliographicCitationRen, J.; Panther, E.; Liao, X.; Grammer, A.C.; Lipsky, P.E.; Reilly, C.M. The Impact of Protein Acetylation/Deacetylation on Systemic Lupus Erythematosus. Int. J. Mol. Sci. 2018, 19, 4007.eng
dc.source.bibliographicCitationShahbazian, M.D.; Grunstein, M. Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem. 2007, 76, 75–100.eng
dc.source.bibliographicCitationCheung,W.L.; Briggs, S.D.; Allis, C.D. Acetylation and chromosomal functions. Curr. Opin. Cell Biol. 2000, 12, 326–333.eng
dc.source.bibliographicCitationWang, Z.; Chang, C.; Peng, M.; Lu, Q. Translating epigenetics into clinic: Focus on lupus. Clin. Epigenetics 2017, 9, 1–15.eng
dc.source.bibliographicCitationBannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 2011, 21, 381–395.eng
dc.source.bibliographicCitationDrazic, A.; Myklebust, L.M.; Ree, R.; Arnesen, T. The world of protein acetylation. Biochim. Biophys. Acta 2016, 1864, 1372–1401. [eng
dc.source.bibliographicCitationParthun, M.R. Hat1: The emerging cellular roles of a type B histone acetyltransferase. Oncogene 2007, 26, 5319–5328.eng
dc.source.bibliographicCitationLeung, Y.T.; Shi, L.; Maurer, K.; Song, L.; Zhang, Z.; Petri, M.; Sullivan, K.E. Interferon regulatory factor 1 and histone H4 acetylation in systemic lupus erythematosus. Epigenetics 2015, 10, 191–199.eng
dc.source.bibliographicCitationTsai, K.L.; Liao, C.C.; Chang, Y.S.; Huang, C.W.; Huang, Y.C.; Chen, J.H.; Lin, S.H.; Tai, C.C.; Lin, Y.F.; Lin, C.Y. Low Levels of IgM and IgA Recognizing Acetylated C1-Inhibitor Peptides Are Associated with Systemic Lupus Erythematosus in Taiwanese Women. Molecules 2019, 24, 1645.eng
dc.source.bibliographicCitationNettis, E.; Colanardi, M.C.; Loria, M.P.; Vacca, A. Acquired C1-inhibitor deficiency in a patient with systemic lupus erythematosus: A case report and review of the literature. Eur. J. Clin. Invest. 2005, 35, 781–784.eng
dc.source.bibliographicCitationDunn, J.; Simmons, R.; Thabet, S.; Jo, H. The role of epigenetics in the endothelial cell shear stress response and atherosclerosis. Int. J. Biochem. Cell Biol. 2015, 67, 167–176.eng
dc.source.bibliographicCitationRodríguez-Dorantes, M.; Téllez-Ascencio, N.; Cerbón, M.A.; Lez, M.; Cervantes, A. Metilación del ADN: Un fenómeno epigenético de importancia Médica. Rev. Invest. Clin. 2004, 56, 56–71.eng
dc.source.bibliographicCitationPedroza Díaz, N.J.; Ortiz Reyes, B.L.; Vásquez Duque, G.M. Protein Biomarkers in Neuropsychiatric Lupus. Rev. Colomb. Reumatol. 2012, 19, 158–171.eng
dc.source.bibliographicCitationGodsell, J.; Rudloff, I.; Kandane-Rathnayake, R.; Hoi, A.; Nold, M.F.; Morand, M.F.; Harris, J. Clinical associations of IL-10 and IL-37 in systemic lupus erythematosus. Sci. Rep. 2016, 6, 1–10.eng
dc.source.bibliographicCitationLu, Q.; Wu, A.; Richardson, B.C. Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J. Immunol. 2005, 174, 6212–6219.eng
dc.source.bibliographicCitationPretel, M.; Marquès, l.; España, A. Lupus eritematoso inducido por fármacos. Actas Dermosifiliogr. 2012, 105, 18–30.spa
dc.source.bibliographicCitationRichardson, B. Epigenetically Altered T Cells Contribute to Lupus Flares. Cells 2019, 8, 127.eng
dc.source.bibliographicCitationTeruel, M.; Sawalha, A.H. Epigenetic Variability in Systemic Lupus Erythematosus: What We Learned from Genome-Wide DNA Methylation Studies. Curr. Rheumatol. Rep. 2017, 19, 32.eng
dc.source.bibliographicCitationDíaz, J.P.; Muñoz Vahos, C.H.; Luján Chavarría, T.P.; Vásquez Duque, G.M.; Ortiz Reyes, B.L. Análisis proteómico del líquido cefalorraquídeo de pacientes con lupus neuropsiquiátrico, un abordaje inicial para la búsqueda de biomarcadores. Rev. Colomb. Reumatol. 2014, 21, 115–124.spa
dc.source.bibliographicCitationCheung, P.; Lau, P. Epigenetic Regulation by Histone Methylation and Histone Variants. Mol. Endocrinol. 2005, 19, 563–573.eng
dc.source.bibliographicCitationMondal, S.; Gong, X.; Zhang, X.; Salinger, A.J.; Zheng, L.; Sen, S.;Weerapana, E.; Zhang, X.; Thompson, P.R. Halogen Bonding Increases the Potency and Isozyme-selectivity of Protein Arginine Deiminase 1 Inhibitors. Angew. Chemie 2019, 58, 12476–12480.eng
dc.source.bibliographicCitationKnuckley, B.; Causey, C.P.; Jones, J.E.; Bhatia, M.; Dreyton, C.J.; Osborne, T.C.; Takahara, H.; Thompson, P.R. Substrate specificity and kinetic studies of PADs 1, 3, and 4 identify potent and selective inhibitors of protein arginine deiminase 3. Biochemistry 2010, 49, 4852–4863.eng
dc.source.bibliographicCitationNakashima, K.; Hagiwara, T.; Yamada, M. Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J. Biol. Chem. 2002, 277, 49562–49568.eng
dc.source.bibliographicCitationKakumanu, P.; Sobel, E.S.; Narain, S.; Li, Y.; Akaogi, J.; Yamasaki, Y.; Segal, M.S.; Hahn, P.C.; Chan, E.K.; Reeves, W.H.; et al. Citrulline dependence of anti-cyclic citrullinated peptide antibodies in systemic lupus erythematosus as a marker of deforming/erosive arthritis. J. Rheumatol. 2009, 36, 2682–2690.eng
dc.source.bibliographicCitationMuller, S.; Radic, M. Citrullinated Autoantigens: From Diagnostic Markers to Pathogenetic Mechanisms. Clin. Rev. Allergy Immunol. 2015, 49, 232–239.eng
dc.source.bibliographicCitationNavarro Quiroz, E.; Navarro Quiroz, R.; Pacheco Lugo, L.; Aroca Martínez, G.; Gómez Escorcia, L.; Gonzalez Torres, H.; Cadena Bonfanti, A.; Marmolejo, M.D.C.; Sanchez, E.; Villarreal Camacho, J.L.; et al. Integrated analysis of microRNA regulation and its interaction with mechanisms of epigenetic regulation in the etiology of systemic lupus erythematosus. PLoS ONE 2019, 14, e0218116.eng
dc.source.bibliographicCitationKronimus, Y.; Dodel, R.; Galuska, S.P.; Neumann, S. IgG Fc N-glycosylation: Alterations in neurologic diseases and potential therapeutic target? J. Autoimmun. 2019, 96, 14–23.eng
dc.source.bibliographicCitationGruszewska, E.; Chludzinska, A.; Chrostek, L.; Cylwik, B.; Gindzienska-Sieskiewicz, E.; Szmitkowski, M.; Sierakowski, S. Carbohydrate-deficient transferrin depends on disease activity in rheumatoid arthritis and systemic sclerosis. Scand. J. Rheumatol. 2013, 42, 203–206.eng
dc.source.bibliographicCitationPozo, M.C. Inestabilidad Genética y Cambios en la Cromatina en Mutantes del Complejo THO en Mitosis y Meiosis de Eucariotas Modelo. Ph.D. Thesis, Universidad de Sevilla, Seville, Spain, December 2013.spa
dc.source.urihttps://doi.org/10.3390/ijms20225679spa
dc.subjectPosttranslational modificationseng
dc.subjectEpigenetic mechanismseng
dc.subjectSystemic lupus erythematosuseng
dc.subjectUbiquitinationeng
dc.subjectSUMOylationeng
dc.subjectGlycosylationeng
dc.subjectHydroxylationeng
dc.subjectPhosphorylationeng
dc.subjectSulfationeng
dc.subjectAcetylationeng
dc.titleEpigenetic mechanisms and posttranslational modifications in systemic Lupus Erythematosuseng
dc.typearticleeng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Epigenetic_Mechanisms.pdf
Tamaño:
627.75 KB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones