Epigenetic mechanisms and posttranslational modifications in systemic Lupus Erythematosus
dc.contributor.author | Navarro Quiroz, Elkin | |
dc.contributor.author | Chavez-Estrada, Valeria | |
dc.contributor.author | Macias-Ochoa, Karime | |
dc.contributor.author | Ayala-Navarro, María Fernanda | |
dc.contributor.author | Flores-Aguilar, Aniyensy Sarai | |
dc.contributor.author | Morales-Navarrete, Francisco | |
dc.contributor.author | De la Cruz Lopez, Fernando | |
dc.contributor.author | Gomez Escorcia, Lorena | |
dc.contributor.author | G. Musso, Carlos | |
dc.contributor.author | Aroca Martinez, Gustavo | |
dc.contributor.author | Gonzales Torres, Henry | |
dc.contributor.author | Diaz Perez, Anderson | |
dc.contributor.author | Cadena Bonfanti, Andres | |
dc.contributor.author | Sarmiento Gutierrez, Joany | |
dc.contributor.author | Meza, Jainy | |
dc.contributor.author | Diaz Arroyo, Esperanza | |
dc.contributor.author | Bello Lemus, Yesit | |
dc.contributor.author | Ahmad, Mostapha | |
dc.contributor.author | Navarro Quiroz, Roberto | |
dc.date.accessioned | 2019-11-13T22:11:08Z | |
dc.date.available | 2019-11-13T22:11:08Z | |
dc.date.issued | 2019 | |
dc.description.abstract | The complex physiology of eukaryotic cells is regulated through numerous mechanisms, including epigenetic changes and posttranslational modifications. The wide-ranging diversity of these mechanisms constitutes a way of dynamic regulation of the functionality of proteins, their activity, and their subcellular localization as well as modulation of the di erential expression of genes in response to external and internal stimuli that allow an organism to respond or adapt to accordingly. However, alterations in these mechanisms have been evidenced in several autoimmune diseases, including systemic lupus erythematosus (SLE). The present review aims to provide an approach to the current knowledge of the implications of these mechanisms in SLE pathophysiology. | eng |
dc.identifier.issn | 14220067 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/4335 | |
dc.language.iso | eng | eng |
dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | eng |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | International Journal of Molecular Sciences | eng |
dc.source | Vol. 20, No. 22 (2019) | spa |
dc.source.bibliographicCitation | Wu, H.; Zhao, M.; Tan, L.; Lu, Q. The key culprit in the pathogenesis of systemic lupus erythematosus: Aberrant DNA methylation. Autoimmun. Rev. 2016, 15, 684–689. | eng |
dc.source.bibliographicCitation | Rhodes, B.; Vyse, T.J. The genetics of SLE: An update in the light of genome-wide association studies. Rheumatology (Oxford) 2008, 47, 1603–1611. | eng |
dc.source.bibliographicCitation | Quddus, J.; Johnson, K.J.; Gavalchin, J.; Amento, E.P.; Chrisp, C.E.; Yung, R.L.; Richardson, B.C. Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is su cient to cause a lupus-like disease in syngeneic mice. J. Clin. Invest. 1993, 92, 38–53. | eng |
dc.source.bibliographicCitation | Coit, P.; Yalavarthi, S.; Ognenovski, M.; Zhao, W.; Hasni, S.; Wren, J.D.; Kaplan, M.J.; Sawalha, A.H. Epigenome profiling reveals significantDNAdemethylation of interferon signature genes in lupus neutrophils. J. Autoimmun. 2015, 58, 59–66. | eng |
dc.source.bibliographicCitation | Javierre, B.M.; Richardson, B. A New Epigenetic Challenge: Systemic Lupus Erythematosus. In Epigenetic Contributions in Autoimmune Disease. Advances in Experimental Medicine and Biology; Ballestar, E., Ed.; Springer: Boston, MA, USA, 2011; Volume 711, pp. 117–136. | eng |
dc.source.bibliographicCitation | Zhao, M.; Zhou, Y.; Zhu, B.;Wan, M.; Jiang, T.; Tan, Q.; Liu, Y.; Jiang, J.; Luo, S.; Tan, Y.; et al. IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus. Ann. Rheum. Dis. 2016, 75, 1998–2006. | eng |
dc.source.bibliographicCitation | Cai, L.; Sutter, B.M.; Li, B.; Tu, B.P. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 2011, 42, 426–437. | eng |
dc.source.bibliographicCitation | Brooks, W.H.; Le Dantec, C.; Pers, J.O.; Youinou, P.; Renaudineau, Y. Epigenetics and autoimmunity. J. Autoimmun. 2010, 34, J207–J219. | eng |
dc.source.bibliographicCitation | Patel, D.R.; Richardson, B.C. Epigenetic mechanisms in lupus. Curr. Opin. Rheumatol. 2010, 22, 478–482. | eng |
dc.source.bibliographicCitation | Zouali, M. Epigenetics in lupus. Ann. N. Y. Acad. Sci. 2011, 1217, 154–165. | eng |
dc.source.bibliographicCitation | Coit, P.; Je ries, M.; Altorok, N.; Dozmorov, M.G.; Koelsch, K.A.; Wren, J.D.; Merrill, J.T.; McCune, W.J.; Sawalha, A.H. Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naive CD4+ T cells from lupus patients. J. Autoimmun. 2013, 43, 78–84. | eng |
dc.source.bibliographicCitation | Pieterse, E.; Hofstra, J.; Berden, J.; Herrmann, M.; Dieker, J.; van der Vlag, J. Acetylated histones contribute to the immunostimulatory potential of neutrophil extracellular traps in systemic lupus erythematosus. Clin. Exp. Immunol. 2015, 179, 68–74. | eng |
dc.source.bibliographicCitation | Sujashvili, R. Advantages of Extracellular Ubiquitin in Modulation of Immune Responses. Mediators Inflamm. 2016, 2016, 1–6. | eng |
dc.source.bibliographicCitation | Téllez Castillo, N.; Siachoque Jara, J.J.; Siachoque Jara, J.S.; Siachoque Jara, M.A.; Siachoque Montañez, H.O. Activación de la célula T, alteraciones en el lupus eritematoso sistémico, una revisión narrativa. Rev. Colomb. Reumatol. 2018, 25, 38–54. | eng |
dc.source.bibliographicCitation | Barrera-Vargas, A.; Gómez-Martín, D.; Carmona-Rivera, C.; Merayo-Chalico, J.; Torres-Ruiz, J.; Manna, Z.; Hasni, S.; Alcocer-Varela, J.; Kaplan, M.J. Differential ubiquitination in NETs regulates macrophage responses in systemic lupus erythematosus. Ann. Rheum. Dis. 2018, 77, 944–950. | eng |
dc.source.bibliographicCitation | Nakasone, M.A.; Livnat-Levanon, N.; Glickman, M.H.; Cohen, R.E.; Fushman, D. Mixed-linkage ubiquitin chains send mixed messages. Structure 2013, 21, 727–740. | eng |
dc.source.bibliographicCitation | Erpapazoglou, Z.; Walker, O.; Haguenauer-Tsapis, R. Versatile roles of k63-linked ubiquitin chains in traffcking. Cells 2014, 3, 1027–1088. | eng |
dc.source.bibliographicCitation | Saavedra Hernández, D. La molécula CD28 y su función en la activación de células T. Rev. Cuba. Hematol. Inmunol. Hemoter. 2013, 29, 359–367. | eng |
dc.source.bibliographicCitation | Ding, X.; Wang, A.; Ma, X.; Demarque, M.; Jin, W.; Xin, H.; Dejean, A.; Dong, C. Protein SUMOylation Is Required for Regulatory T Cell Expansion and Function. Cell Rep. 2016, 16, 1055–1066. | eng |
dc.source.bibliographicCitation | Rider, V.; Abdou, N.I.; Kimler, B.F.; Lu, N.; Brown, S.; Fridley, B.L. Gender bias in human systemic lupus erythematosus: A problem of steroid receptor action? Front. Immunol. 2018, 9, 1–10. | eng |
dc.source.bibliographicCitation | Barry, R.; John, S.W.; Liccardi, G.; Tenev, T.; Jaco, I.; Chen, C.H.; Choi, J.; Kasperkiewicz, P.; Fernandes-Alnemri, T.; Alnemri, E.; et al. SUMO-mediated regulation of NLRP3 modulates inflammasome activity. Nat. Commun. 2018, 9, 3001. | eng |
dc.source.bibliographicCitation | Guzmán-Flores, J.M.; Portales-Pérez, D.P. Mecanismos de supresión de las células T reguladoras (Treg). Gac. Med. Mex. 2013, 149, 630–638. | spa |
dc.source.bibliographicCitation | Hernández, A.S. Células colaboradoras (TH1, TH2, TH17) y reguladoras (Treg, TH3, NKT) en la artritis reumatoide. Reumatol. Clin. Supl. 2009, 5 (Suppl. 1), 1–5. | eng |
dc.source.bibliographicCitation | Crabtree, G.R.; Schreiber, S.L. Snapshot: Calcium-calcineurin-NFAT signaling. Cell 2010, 138, 1–4. | eng |
dc.source.bibliographicCitation | Biermann, M.H.; Gri ante, G.; Podolska, M.J.; Boeltz, S.; Stürmer, J.; Muñoz, L.E.; Bilyy, R.; Herrmann, M. Sweet but dangerous–The role of immunoglobulin G glycosylation in autoimmunity and inflammation. Lupus 2016, 25, 934–942. | eng |
dc.source.bibliographicCitation | Magnelli, P.E.; Bielik, A.M.; Guthrie, E.P. Identification and characterization of protein glycosylation using specific endo- and exoglycosidases. J. Vis. Exp. 2011, e3749. | eng |
dc.source.bibliographicCitation | Valliere-Douglass, J.F.; Kodama, P.; Mujacic, M.; Brady, L.J.; Wang, W.; Wallace, A.; Yan, B.; Reddy, P.; Treuheit, M.J.; Balland, A. Asparagine-linked oligosaccharides present on a non-consensus amino acid sequence in the CH1 domain of human antibodies. J. Biol. Chem. 2009, 284, 32493–32506. | eng |
dc.source.bibliographicCitation | Hashii, N.; Kawasaki, N.; Itoh, S.; Nakajima, Y.; Kawanishi, T.; Yamaguchi, T. Alteration of N-glycosylation in the kidney in a mouse model of systemic lupus erythematosus: Relative quantification of N-glycans using an isotope-tagging method. Immunology 2009, 126, 336–345. | eng |
dc.source.bibliographicCitation | Vidarsson, G.; Dekkers, G.; Rispens, T. IgG subclasses and allotypes: From structure to effector functions. Front. Immunol. 2014, 5, 520. | eng |
dc.source.bibliographicCitation | Abès, R.; Teillaud, J.-L. Impact of Glycosylation on Effector Functions of Therapeutic IgG. Pharmaceuticals 2010, 3, 146–157. | eng |
dc.source.bibliographicCitation | Jennewein, M.F.; Alter, G. The Immunoregulatory Roles of Antibody Glycosylation. Trends Immunol. 2017, 38, 358–372. | eng |
dc.source.bibliographicCitation | Reily, C.; Stewart, T.J.; Renfrow, M.B.; Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 2019, 15, 346–366. | eng |
dc.source.bibliographicCitation | Anthony, R.M.; Ravetch, J.V. A Novel Role for the IgG Fc Glycan: The Anti-inflammatory Activity of Sialylated IgG Fcs. J. Clin. Immunol. 2010, 30, 9–14. | eng |
dc.source.bibliographicCitation | Saxena, A.; Wu, D. Advances in Therapeutic Fc Engineering - Modulation of IgG-Associated Effector Functions and Serum Half-life. Front. Immunol. 2016, 7, 580. | eng |
dc.source.bibliographicCitation | Leong, K.W.; Ding, J.L. The unexplored roles of human serum IgA. DNA Cell Biol. 2014, 33, 823–829. | eng |
dc.source.bibliographicCitation | Papista, C.; Berthelot, L.; Monteiro, R.C. Dysfunctions of the Iga system: A common link between intestinal and renal diseases. Cell. Mol. Immunol. 2011, 8, 126–134. | eng |
dc.source.bibliographicCitation | Kawa, I.A.; Masood, A.; Amin, S.; Mustafa, M.F.; Rashid, F. Chapter 2—Clinical Perspective of Posttranslational Modifications. In Protein Modificomics; Dar, T.A., Singh, L.R., Eds.; Academic Press: London, UK, 2019; pp. 37–68. | eng |
dc.source.bibliographicCitation | Zurlo, G.; Guo, J.; Takada, M.;Wei,W.; Zhang, Q. New Insights into Protein Hydroxylation and Its Important Role in Human Diseases. Biochim. Biophys. Acta 2016, 1866, 208–220. | eng |
dc.source.bibliographicCitation | Mansoor, F.; Ali, A.; Ali, R. Binding of circulating SLE autoantibodies to oxygen free radical damage chromatin. Autoimmunity 2005, 38, 431–438. | eng |
dc.source.bibliographicCitation | Lahita, R.G.; Bradlow, L.; Fishman, J.; Kunkel, H.G. Estrogen metabolism in systemic lupus erythematosus. Patients and family members. Arthritis Rheum. 1982, 25, 843–846. | eng |
dc.source.bibliographicCitation | Garg, D.K.; Ali, R. Reactive oxygen species modified polyguanylic acid: Immunogenicity and implications for systemic autoimmunity. J. Autoimmun. 1998, 11, 371–378. | eng |
dc.source.bibliographicCitation | Ardito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Lo Muzio, L. The crucial role of protein phosphorylation in cell signalingand its use as targeted therapy (Review). Int. J. Mol. Med. 2017, 40, 271–280. | eng |
dc.source.bibliographicCitation | Skourti-Stathaki, K.; Proudfoot, N. Histone 3 S10 Phosphorylation: ‘Caught in the R Loop!’. Mol. Cell 2013, 52, 470–472. | eng |
dc.source.bibliographicCitation | Eichten, S.R.; Schmit, R.J.; Springer, N.M. Epigenetics: Beyond chromatin modifications and complex genetic regulation. Plant Physiol. 2014, 165, 933–947. | eng |
dc.source.bibliographicCitation | Rossetto, D.; Avvakumov, N.; Côté, J. Histone phosphorylation. Epigenetics 2012, 7, 1098–1108. | eng |
dc.source.bibliographicCitation | Rossy, J.; Williamson, D.J.; Gaus, K. How does the kinase Lck phosphorylate the T cell receptor? Spatial organization as a regulatory mechanism. Front. Immunol. 2012, 3, 1–6. | eng |
dc.source.bibliographicCitation | Wu, T.; Xie, C.; Han, J.; Ye, Y.;Weiel, J.; Li, Q.; Blanco, I.; Ahn, C.; Olsen, N.; Putterman, C.; et al. Metabolic disturbances associated with systemic lupus erythematosus. PLoS ONE 2012, 7, e37210. | eng |
dc.source.bibliographicCitation | Hsu, W.; Rosenquist, G.L.; Ansari, A.A.; Gershwin, M.E. Autoimmunity and tyrosine sulfation. Autoimmun. Rev. 2005, 4, 429–435. | eng |
dc.source.bibliographicCitation | Tonks, N.K. Protein tyrosine phosphatases: From genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 2006, 7, 833–834. | eng |
dc.source.bibliographicCitation | Kehoe, J.W.; Bertozzi, C.R. Tyrosine sulfation: A modulator of extracellular protein-protein interactions. Chem. Biol. 2000, 7, 57–61. | eng |
dc.source.bibliographicCitation | Seibert, C.; Sakmar, T.P. Toward a framework for sulfoproteomics: Synthesis and characterization of sulfotyrosine-containing peptides. Biopolym. 2008, 90, 459–477. | eng |
dc.source.bibliographicCitation | Farzan, M.; Mirzabekov, T.; Kolchinsky, P.;Wyatt, R.; Cayabyab, M.; Gerard, N.P.; Gerard, C.; Sodroski, J.; Choe, H. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 1999, 96, 667–676. | eng |
dc.source.bibliographicCitation | Carvalho, C.; Calvisi, S.L.; Leal, B.; Bettencourt, A.; Marinho, A.; Almeida, I.; Farinha, F.; Costa, P.P.; Silva, B.M.; Vasconcelos, C. CCR5-Delta32: Implications in SLE development. Int. J. Immunogenet. 2014, 41, 236–241. | eng |
dc.source.bibliographicCitation | Ren, J.; Panther, E.; Liao, X.; Grammer, A.C.; Lipsky, P.E.; Reilly, C.M. The Impact of Protein Acetylation/Deacetylation on Systemic Lupus Erythematosus. Int. J. Mol. Sci. 2018, 19, 4007. | eng |
dc.source.bibliographicCitation | Shahbazian, M.D.; Grunstein, M. Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem. 2007, 76, 75–100. | eng |
dc.source.bibliographicCitation | Cheung,W.L.; Briggs, S.D.; Allis, C.D. Acetylation and chromosomal functions. Curr. Opin. Cell Biol. 2000, 12, 326–333. | eng |
dc.source.bibliographicCitation | Wang, Z.; Chang, C.; Peng, M.; Lu, Q. Translating epigenetics into clinic: Focus on lupus. Clin. Epigenetics 2017, 9, 1–15. | eng |
dc.source.bibliographicCitation | Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 2011, 21, 381–395. | eng |
dc.source.bibliographicCitation | Drazic, A.; Myklebust, L.M.; Ree, R.; Arnesen, T. The world of protein acetylation. Biochim. Biophys. Acta 2016, 1864, 1372–1401. [ | eng |
dc.source.bibliographicCitation | Parthun, M.R. Hat1: The emerging cellular roles of a type B histone acetyltransferase. Oncogene 2007, 26, 5319–5328. | eng |
dc.source.bibliographicCitation | Leung, Y.T.; Shi, L.; Maurer, K.; Song, L.; Zhang, Z.; Petri, M.; Sullivan, K.E. Interferon regulatory factor 1 and histone H4 acetylation in systemic lupus erythematosus. Epigenetics 2015, 10, 191–199. | eng |
dc.source.bibliographicCitation | Tsai, K.L.; Liao, C.C.; Chang, Y.S.; Huang, C.W.; Huang, Y.C.; Chen, J.H.; Lin, S.H.; Tai, C.C.; Lin, Y.F.; Lin, C.Y. Low Levels of IgM and IgA Recognizing Acetylated C1-Inhibitor Peptides Are Associated with Systemic Lupus Erythematosus in Taiwanese Women. Molecules 2019, 24, 1645. | eng |
dc.source.bibliographicCitation | Nettis, E.; Colanardi, M.C.; Loria, M.P.; Vacca, A. Acquired C1-inhibitor deficiency in a patient with systemic lupus erythematosus: A case report and review of the literature. Eur. J. Clin. Invest. 2005, 35, 781–784. | eng |
dc.source.bibliographicCitation | Dunn, J.; Simmons, R.; Thabet, S.; Jo, H. The role of epigenetics in the endothelial cell shear stress response and atherosclerosis. Int. J. Biochem. Cell Biol. 2015, 67, 167–176. | eng |
dc.source.bibliographicCitation | Rodríguez-Dorantes, M.; Téllez-Ascencio, N.; Cerbón, M.A.; Lez, M.; Cervantes, A. Metilación del ADN: Un fenómeno epigenético de importancia Médica. Rev. Invest. Clin. 2004, 56, 56–71. | eng |
dc.source.bibliographicCitation | Pedroza Díaz, N.J.; Ortiz Reyes, B.L.; Vásquez Duque, G.M. Protein Biomarkers in Neuropsychiatric Lupus. Rev. Colomb. Reumatol. 2012, 19, 158–171. | eng |
dc.source.bibliographicCitation | Godsell, J.; Rudloff, I.; Kandane-Rathnayake, R.; Hoi, A.; Nold, M.F.; Morand, M.F.; Harris, J. Clinical associations of IL-10 and IL-37 in systemic lupus erythematosus. Sci. Rep. 2016, 6, 1–10. | eng |
dc.source.bibliographicCitation | Lu, Q.; Wu, A.; Richardson, B.C. Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J. Immunol. 2005, 174, 6212–6219. | eng |
dc.source.bibliographicCitation | Pretel, M.; Marquès, l.; España, A. Lupus eritematoso inducido por fármacos. Actas Dermosifiliogr. 2012, 105, 18–30. | spa |
dc.source.bibliographicCitation | Richardson, B. Epigenetically Altered T Cells Contribute to Lupus Flares. Cells 2019, 8, 127. | eng |
dc.source.bibliographicCitation | Teruel, M.; Sawalha, A.H. Epigenetic Variability in Systemic Lupus Erythematosus: What We Learned from Genome-Wide DNA Methylation Studies. Curr. Rheumatol. Rep. 2017, 19, 32. | eng |
dc.source.bibliographicCitation | Díaz, J.P.; Muñoz Vahos, C.H.; Luján Chavarría, T.P.; Vásquez Duque, G.M.; Ortiz Reyes, B.L. Análisis proteómico del líquido cefalorraquídeo de pacientes con lupus neuropsiquiátrico, un abordaje inicial para la búsqueda de biomarcadores. Rev. Colomb. Reumatol. 2014, 21, 115–124. | spa |
dc.source.bibliographicCitation | Cheung, P.; Lau, P. Epigenetic Regulation by Histone Methylation and Histone Variants. Mol. Endocrinol. 2005, 19, 563–573. | eng |
dc.source.bibliographicCitation | Mondal, S.; Gong, X.; Zhang, X.; Salinger, A.J.; Zheng, L.; Sen, S.;Weerapana, E.; Zhang, X.; Thompson, P.R. Halogen Bonding Increases the Potency and Isozyme-selectivity of Protein Arginine Deiminase 1 Inhibitors. Angew. Chemie 2019, 58, 12476–12480. | eng |
dc.source.bibliographicCitation | Knuckley, B.; Causey, C.P.; Jones, J.E.; Bhatia, M.; Dreyton, C.J.; Osborne, T.C.; Takahara, H.; Thompson, P.R. Substrate specificity and kinetic studies of PADs 1, 3, and 4 identify potent and selective inhibitors of protein arginine deiminase 3. Biochemistry 2010, 49, 4852–4863. | eng |
dc.source.bibliographicCitation | Nakashima, K.; Hagiwara, T.; Yamada, M. Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J. Biol. Chem. 2002, 277, 49562–49568. | eng |
dc.source.bibliographicCitation | Kakumanu, P.; Sobel, E.S.; Narain, S.; Li, Y.; Akaogi, J.; Yamasaki, Y.; Segal, M.S.; Hahn, P.C.; Chan, E.K.; Reeves, W.H.; et al. Citrulline dependence of anti-cyclic citrullinated peptide antibodies in systemic lupus erythematosus as a marker of deforming/erosive arthritis. J. Rheumatol. 2009, 36, 2682–2690. | eng |
dc.source.bibliographicCitation | Muller, S.; Radic, M. Citrullinated Autoantigens: From Diagnostic Markers to Pathogenetic Mechanisms. Clin. Rev. Allergy Immunol. 2015, 49, 232–239. | eng |
dc.source.bibliographicCitation | Navarro Quiroz, E.; Navarro Quiroz, R.; Pacheco Lugo, L.; Aroca Martínez, G.; Gómez Escorcia, L.; Gonzalez Torres, H.; Cadena Bonfanti, A.; Marmolejo, M.D.C.; Sanchez, E.; Villarreal Camacho, J.L.; et al. Integrated analysis of microRNA regulation and its interaction with mechanisms of epigenetic regulation in the etiology of systemic lupus erythematosus. PLoS ONE 2019, 14, e0218116. | eng |
dc.source.bibliographicCitation | Kronimus, Y.; Dodel, R.; Galuska, S.P.; Neumann, S. IgG Fc N-glycosylation: Alterations in neurologic diseases and potential therapeutic target? J. Autoimmun. 2019, 96, 14–23. | eng |
dc.source.bibliographicCitation | Gruszewska, E.; Chludzinska, A.; Chrostek, L.; Cylwik, B.; Gindzienska-Sieskiewicz, E.; Szmitkowski, M.; Sierakowski, S. Carbohydrate-deficient transferrin depends on disease activity in rheumatoid arthritis and systemic sclerosis. Scand. J. Rheumatol. 2013, 42, 203–206. | eng |
dc.source.bibliographicCitation | Pozo, M.C. Inestabilidad Genética y Cambios en la Cromatina en Mutantes del Complejo THO en Mitosis y Meiosis de Eucariotas Modelo. Ph.D. Thesis, Universidad de Sevilla, Seville, Spain, December 2013. | spa |
dc.source.uri | https://doi.org/10.3390/ijms20225679 | spa |
dc.subject | Posttranslational modifications | eng |
dc.subject | Epigenetic mechanisms | eng |
dc.subject | Systemic lupus erythematosus | eng |
dc.subject | Ubiquitination | eng |
dc.subject | SUMOylation | eng |
dc.subject | Glycosylation | eng |
dc.subject | Hydroxylation | eng |
dc.subject | Phosphorylation | eng |
dc.subject | Sulfation | eng |
dc.subject | Acetylation | eng |
dc.title | Epigenetic mechanisms and posttranslational modifications in systemic Lupus Erythematosus | eng |
dc.type | article | eng |