Genetic variation underpinning ADHD risk in a caribbean community

dc.contributor.authorPuentes-Rozo, Pedro J.
dc.contributor.authorAcosta-López, Johan E.
dc.contributor.authorCervantes-Henríquez, Martha L.
dc.contributor.authorMartínez-Banfi, Martha L.
dc.contributor.authorMejia-Segura, Elsy
dc.contributor.authorSánchez-Rojas, Manuel
dc.contributor.authorAnaya-Romero, Marco E.
dc.contributor.authorAcosta-Hoyos, Antonio
dc.contributor.authorGarcía-Llinás, Guisselle A.
dc.contributor.authorMastronardi, Claudio A.
dc.contributor.authorPineda, David A.
dc.contributor.authorCastellanos, F. Xavier
dc.contributor.authorArcos-Burgos, Mauricio
dc.contributor.authorVélez, Jorge I.
dc.date.accessioned2019-09-03T15:34:39Z
dc.date.available2019-09-03T15:34:39Z
dc.date.issued2019
dc.description.abstractAttention Deficit Hyperactivity Disorder (ADHD) is a highly heritable and prevalent neurodevelopmental disorder that frequently persists into adulthood. Strong evidence from genetic studies indicates that single nucleotide polymorphisms (SNPs) harboured in the ADGRL3 (LPHN3), SNAP25, FGF1, DRD4, and SLC6A2 genes are associated with ADHD. We genotyped 26 SNPs harboured in genes previously reported to be associated with ADHD and evaluated their potential association in 386 individuals belonging to 113 nuclear families from a Caribbean community in Barranquilla, Colombia, using family-based association tests. SNPs rs362990-SNAP25 (T allele; p = 2.46 10x-4), rs2282794-FGF1 (A allele; p = 1.33 10x-2), rs2122642-ADGRL3 (C allele, p = 3.5 10x-2), and ADGRL3 haplotype CCC (markers rs1565902-rs10001410-rs2122642, OR = 1.74, Ppermuted = 0.021) were significantly associated with ADHD. Our results confirm the susceptibility to ADHD conferred by SNAP25, FGF1, and ADGRL3 variants in a community with a significant African American component, and provide evidence supporting the existence of specific patterns of genetic stratification underpinning the susceptibility to ADHD. Knowledge of population genetics is crucial to define risk and predict susceptibility to disease.eng
dc.identifier.issn20734409
dc.identifier.urihttps://hdl.handle.net/20.500.12442/3886
dc.language.isoengeng
dc.publisherPublished by MDPeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceRevista Cellspa
dc.sourceVol. 8 No. 8 (2019)spa
dc.source.urihttps://doi.org/10.3390/cells8080907spa
dc.subjectADHDeng
dc.subjectADGRL3eng
dc.subjectLPHN3eng
dc.subjectSNAP25eng
dc.subjectFGF1eng
dc.subjectGeneticseng
dc.subjectCaribbean communityeng
dc.subjectFBATeng
dc.subjectPredictive genomicseng
dc.titleGenetic variation underpinning ADHD risk in a caribbean communityeng
dc.typearticleeng
dcterms.referencesVisser, S.; Bitsko, R.; Danielson, M.; Perou, R. Increasing prevalence of parent-reported attention-deficit/hyperactivity disorder among children—United States, 2003 and 2007. Mortal. Morb. Wkly. Rep. 2010, 59, 1439–1443.eng
dcterms.referencesJain, M.; Velez, J.I.; Acosta, M.T.; Palacio, L.G.; Balog, J.; Roessler, E.; Pineda, D.; Londono, A.C.; Palacio, J.D.; Arbelaez, A.; et al. A cooperative interaction between lphn3 and 11q doubles the risk for adhd. Mol. Psychiatry 2011, 17, 741–747eng
dcterms.referencesAcosta, M.T.; Velez, J.I.; Bustamante, M.L.; Balog, J.Z.; Arco-Burgos, M.; Muenke, M. A two-locus genetic interaction between lphn3 and 11q predicts adhd severity and long-term outcome. Transl. Psychiatry 2011, 1, e17.eng
dcterms.referencesBukstein, O.G. Attention deficit hyperactivity disorder and substance use disorders. Curr. Top. Behav. Neurosci. 2012, 9, 145–172.eng
dcterms.referencesPelham,W.E., Jr.; Fabiano, G.A. Evidence-based psychosocial treatments for attention-deficit/hyperactivity disorder. J. Clin. Child. Adolesc. Psychol. 2008, 37, 184–214.eng
dcterms.referencesArcos-Burgos, M.; Jain, M.; Acosta, M.T.; Shively, S.; Stanescu, H.; Wallis, D.; Domene, S.; Velez, J.I.; Karkera, J.D.; Balog, J.; et al. A common variant of the latrophilin 3 gene, lphn3, confers susceptibility to adhd and predicts e ectiveness of stimulant medication. Mol. Psychiatry 2010, 15, 1053–1066.eng
dcterms.referencesSibley, M.H.; Pelham,W.E., Jr.; Molina, B.S.; Gnagy, E.M.;Waschbusch, D.A.; Garefino, A.C.; Kuriyan, A.B.; Babinski, D.E.; Karch, K.M. Diagnosing adhd in adolescence. J. Consult. Clin. Psychol. 2012, 80, 139–150.eng
dcterms.referencesSibley, M.H.; Pelham, W.E.; Molina, B.S.; Gnagy, E.M.; Waschbusch, D.A.; Biswas, A.; MacLean, M.G.; Babinski, D.E.; Karch, K.M. The delinquency outcomes of boys with adhd with and without comorbidity. J. Abnorm. Child. Psychol. 2011, 39, 21–32.eng
dcterms.referencesMolina, B.S.; Pelham, W.E.; Gnagy, E.M.; Thompson, A.L.; Marshal, M.P. Attention-deficit/hyperactivity disorder risk for heavy drinking and alcohol use disorder is age specific. Alcohol Clin. Exp. Res. 2007, 31, 643–654.eng
dcterms.referencesJain, M.; Palacio, L.G.; Castellanos, F.X.; Palacio, J.D.; Pineda, D.; Restrepo, M.I.; Munoz, J.F.; Lopera, F.; Wallis, D.; Berg, K.; et al. Attention-deficit/hyperactivity disorder and comorbid disruptive behavior disorders: Evidence of pleiotropy and new susceptibility loci. Biol. Psychiatry 2007, 61, 1329–1339.eng
dcterms.referencesArcos-Burgos, M.; Castellanos, F.X.; Pineda, D.; Lopera, F.; Palacio, J.D.; Palacio, L.G.; Rapoport, J.L.; Berg, K.; Bailey-Wilson, J.E.; Muenke, M. Attention-deficit/hyperactivity disorder in a population isolate: Linkage to loci at 4q13.2, 5q33.3, 11q22, and 17p11. Am. J. Hum. Genet. 2004, 75, 998–1014.eng
dcterms.referencesAcosta, M.T.; Arcos-Burgos, M.; Muenke, M. Attention deficit/hyperactivity disorder (adhd): Complex phenotype, simple genotype? Genet. Med. 2004, 6, 1–15.eng
dcterms.referencesMartinez, A.F.; Muenke, M.; Arcos-Burgos, M. From the black widow spider to human behavior: Latrophilins, a relatively unknown class of g protei-coupled receptors, are implicated in psychiatric disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2011, 156B, 1–10.eng
dcterms.referencesBruxel, E.M.; Salatino-Oliveira, A.; Akutagava-Martins, G.C.; Tovo-Rodrigues, L.; Genro, J.P.; Zeni, C.P.; Polanczyk, G.V.; Chazan, R.; Schmitz, M.; Arcos-Burgos, M.; et al. Lphn3 and attention-deficit/hyperactivity disorder: A susceptibility and pharmacogenetic study. Genes Brain Behav. 2015, 14, 419–427.eng
dcterms.referencesGomez-Sanchez, C.I.; Riveiro-Alvarez, R.; Soto-Insuga, V.; Rodrigo, M.; Tirado-Requero, P.; Mahillo-Fernandez, I.; Abad-Santos, F.; Carballo, J.J.; Dal-Re, R.; Ayuso, C. Attention deficit hyperactivity disorder: Genetic association study in a cohort of spanish children. Behav. Brain Funct. 2016, 12, 2.eng
dcterms.referencesHwang, I.W.; Lim, M.H.; Kwon, H.J.; Jin, H.J. Association of lphn3 rs6551665 a/g polymorphism with attention deficit and hyperactivity disorder in korean children. Gene 2015, 566, 68–73.eng
dcterms.referencesRibases, M.; Ramos-Quiroga, J.A.; Sanchez-Mora, C.; Bosch, R.; Richarte, V.; Palomar, G.; Gastaminza, X.; Bielsa, A.; Arcos-Burgos, M.; Muenke, M.; et al. Contribution of lphn3 to the genetic susceptibility to adhd in adulthood: A replication study. Genes Brain Behav. 2010, 10, 149–157.eng
dcterms.referencesAcosta, M.T.; Swanson, J.; Stehli, A.; Molina, B.S.; Team, M.T.A.; Martinez, A.F.; Arcos-Burgos, M.; Muenke, M. Adgrl3 (lphn3) variants are associated with a refined phenotype of adhd in the mta study. Mol. Genet. Genom. Med. 2016, 4, 540–547.eng
dcterms.referencesSong, J.; Kim, S.W.; Hong, H.J.; Lee, M.G.; Lee, B.W.; Choi, T.K.; Lee, S.H.; Yook, K.H. Association of snap-25, slc6a2, and lphn3 with oros methylphenidate treatment response in attention-deficit/hyperactivity disorder. Clin. Neuropharmacol. 2014, 37, 136–141.eng
dcterms.referencesLabbe, A.; Liu, A.; Atherton, J.; Gizenko, N.; Fortier, M.E.; Sengupta, S.M.; Ridha, J. Refining psychiatric phenotypes for response to treatment: Contribution of lphn3 in adhd. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2012, 159, 776–785.eng
dcterms.referencesFallgatter, A.J.; Ehlis, A.C.; Dresler, T.; Reif, A.; Jacob, C.P.; Arcos-Burgos, M.; Muenke, M.; Lesch, K.P. Influence of a latrophilin 3 (lphn3) risk haplotype on event-related potential measures of cognitive response control in attention-deficit hyperactivity disorder (adhd). Eur Neuropsychopharmacol. 2013, 23, 458–468.eng
dcterms.referencesVillalón, J. Colonias Extranjeras en Barranquilla, Colombia; Ediciones Uninorte: Barranquilla, Colombia, 2008.spa
dcterms.referencesMathias, R.A.; Taub, M.A.; Gignoux, C.R.; Fu,W.; Musharo , S.; O0Connor, T.D.; Vergara, C.; Torgerson, D.G.; Pino-Yanes, M.; Shringarpure, S.S.; et al. A continuum of admixture in the western hemisphere revealed by the african diaspora genome. Nat. Commun. 2016, 7, 12522.eng
dcterms.referencesArcos-Burgos, M.; Muenke, M. Genetics of population isolates. Clin. Genet. 2002, 61, 233–247.eng
dcterms.referencesBravo, M.L.; Valenzuela, C.Y.; Arcos-Burgos, O.M. Polymorphisms and phyletic relationships of the paisa community from antioquia (colombia). Gene Geogr. 1996, 10, 11–17.eng
dcterms.referencesDe Castro, M.; Restrepo, C.M. Genetics and genomic medicine in colombia. Mol. Genet. Genom. Med. 2015, 3, 84–91.eng
dcterms.referencesOssa, H.; Aquino, J.; Pereira, R.; Ibarra, A.; Ossa, R.H.; Perez, L.A.; Granda, J.D.; Lattig, M.C.; Groot, H.; Fagundes de Carvalho, E.; et al. Outlining the ancestry landscape of colombian admixed populations. PLoS ONE 2016, 11, e0164414.eng
dcterms.referencesMapa Genético de los Colombianos. Available online: http://historico.unperiodico.unal.edu.co/ediciones/ 105/15.html (accessed on 8 March 2019).spa
dcterms.referencesPineda, D.A.; Acosta-López, J.E.; Cervantes-Henríquez, M.L.; Jimenez-Figueroa, G.; Sánchez-Rojas, M.; Pineda-Alhucema, W.; Mejía-Segura, E.; Puentes-Rozo, J. Conglomerados de clases latentes en 408 miembros de 120 familias nucleares de barranquilla con un caso índice afectado de trastorno de atención hiperactividad. Acta Neurol. Colomb. 2016, 32, 275–284.spa
dcterms.referencesCervantes-Henriquez, M.L.; Acosta-Lopez, J.E.; Martinez-Banfi, M.L.; Velez, J.I.; Mejia-Segura, E.; Lozano-Gutierrez, S.G.; Sanchez-Rojas, M.; Zurbaran, M.A.; Zurek, E.E.; Arcos-Burgos, M.; et al. Adhd endophenotypes in caribbean families. J. Atten. Disord. 2018.eng
dcterms.referencesReich,W. Diagnostic interview for children and adolescents (dica). J. Am. Acad. Child. Adolesc. Psychiatry 2000, 39, 59–66.eng
dcterms.referencesPalacio, J.D.; Castellanos, F.X.; Pineda, D.A.; Lopera, F.; Arcos-Burgos, M.; Quiroz, Y.T.; Henao, G.C.; Puerta, I.C.; Ramirez, D.L.; Rapoport, J.L.; et al. Attention-deficit/hyperactivity disorder and comorbidities in 18 paisa colombian multigenerational families. J. Am. Acad. Child. Adolesc. Psychiatry 2004, 43, 1506–1515.eng
dcterms.referencesTacchini, G.; Coppola, M.T.; Musazzi, A.; Altamura, A.C.; Invernizzi, G. multinational validation of the composite international diagnostic interview (cidi). Minerva Psichiatr. 1994, 35, 63–80.eng
dcterms.referencesAcosta-Lopez, J.; Cervantes-Henriquez, M.L.; Jiménez-Figueroa, G.; Nunez, B.M.; Sanchez, R.M.; Puentes, R.P. Uso de una escala comportamental wender utah para evaluar en retrospectiva trastorno de atención-hiperactividad en adultos de la ciudad de barranquilla. Rev. Univ. Salud 2013, 15, 45–61.spa
dcterms.referencesPineda, D.A.; Kamphaus, R.W.; Mora, O.; Restrepo, M.A.; Puerta, I.C.; Palacio, L.G.; Jimenez, I.; Mejia, S.; Garcia, M.; Arango, J.C.; et al. A system of multidimensional behavior assessment. A scale for parents of children from 6 to 11 years of age. Colombian version. Rev. Neurol. 1999, 28, 672–681.eng
dcterms.referencesAPA. Diagnostic and Statistical Manual of Mental Disorders (Dsm), 4th ed.; American Psychiatric Association: Washington, DC, USA, 2000.eng
dcterms.referencesDSM-IV. Manual Diagnóstico y Estadístico de Los Trastornos Mentales: Texto Revisado; Masson: Pontarlier, France, 2002.spa
dcterms.referencesPuentes-Rozo, P.J.; Pineda, D.A.; Acosta-López, J.E.; Cervantes-Henríquez, M.L.; Martinez-Banfi, M.L.; Jiménez-Figueroa, G.; Mejía-Segura, E.; Sánchez-Rojas, M.; Pineda-Alhucema, W.; Zurbarán, M.A.; et al. Attention Deficit/Hyperactivity Disorder and Comorbidities in 120 Nuclear Families From a Caribbean Community. Unpublished work. 2017.eng
dcterms.referencesZhang, L.; Chang, S.; Li, Z.; Zhang, K.; Du, Y.; Ott, J.;Wang, J. Adhdgene: A genetic database for attention deficit hyperactivity disorder. Nucleic Acids Res. 2012, 40, D1003–D1009eng
dcterms.referencesMastronardi, C.A.; Pillai, E.; Pineda, D.A.; Martinez, A.F.; Lopera, F.; Velez, J.I.; Palacio, J.D.; Patel, H.; Easteal, S.; Acosta, M.T.; et al. Linkage and association analysis of adhd endophenotypes in extended and multigenerational pedigrees from a genetic isolate. Mol. Psychiatry 2016, 21, 1434–1440.eng
dcterms.referencesBansal, V.; Libiger, O.; Torkamani, A.; Schork, N.J. Statistical analysis strategies for association studies involving rare variants. Nat. Rev. Genet. 2010, 11, 773–785.eng
dcterms.referencesEaston, D.F.; Pooley, K.A.; Dunning, A.M.; Pharoah, P.D.; Thompson, D.; Ballinger, D.G.; Struewing, J.P.; Morrison, J.; Field, H.; Luben, R.; et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 2007, 447, 1087–1093.eng
dcterms.referencesFu,W.;Wang, Y.;Wang, Y.; Li, R.; Lin, R.; Jin, L. Missing call bias in high-throughput genotyping. BMC Genom. 2009, 10, 106.eng
dcterms.referencesHunter, D.J.; Kraft, P.; Jacobs, K.B.; Cox, D.G.; Yeager, M.; Hankinson, S.E.;Wacholder, S.;Wang, Z.;Welch, R.; Hutchinson, A.; et al. A genome-wide association study identifies alleles in fgfr2 associated with risk of sporadic postmenopausal breast cancer. Nat. Genet. 2007, 39, 870–874eng
dcterms.referencesWhittaker, P.; Bumpstead, S.; Downes, K.; Ghori, J. Snp analysis by maldi-tof mass spectrometry. In Cell Biology: A Laboratory Handbook, 3rd ed.; Celis, J., Simons, K., Small, J., Hunter, T., Shotton, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2005.eng
dcterms.referencesLaird, N.M.; Horvath, S.; Xu, X. Implementing a unified approach to family-based tests of association. Genet. Epidemiol. 2000, 19, S36–S42.eng
dcterms.referencesSpielman, R.S.; McGinnis, R.E.; Ewens, W.J. Transmission test for linkage disequilibrium: The insulin gene region and insulin-dependent diabetes mellitus (iddm). Am. J. Hum. Genet. 1993, 52, 506–516.eng
dcterms.referencesMowlem, F.D.; Rosenqvist, M.A.; Martin, J.; Lichtenstein, P.; Asherson, P.; Larsson, H. Sex differences in predicting adhd clinical diagnosis and pharmacological treatment. Eur. Child. Adolesc. Psychiatry 2018, 28, 481–489.eng
dcterms.referencesOerbeck, B.; Overgaard, K.; Pripp, A.H.; Aase, H.; Reichborn-Kjennerud, T.; Zeiner, P. Adult adhd symptoms and satisfaction with life: Does age and sex matter? J. Atten. Disord 2019, 23, 3–1eng
dcterms.referencesRamtekkar, U.P.; Reiersen, A.M.; Todorov, A.A.; Todd, R.D. Sex and age differences in attention-deficit/hyperactivity disorder symptoms and diagnoses: Implications for dsm-v and icd-11. J. Am. Acad. Child. Adolesc. Psychiatry 2010, 49, 217–228.eng
dcterms.referencesSkogli, E.W.; Teicher, M.H.; Andersen, P.N.; Hovik, K.T.; Oie, M. Adhd in girls and boys–Gender differences in co-existing symptoms and executive function measures. BMC Psychiatry 2013, 13, 298.eng
dcterms.referencesLange, C.; Laird, N.M. On a general class of conditional tests for family-based association studies in genetics: The asymptotic distribution, the conditional power, and optimality considerations. Genet. Epidemiol. 2002, 23, 165–180.eng
dcterms.referencesLange, C.; Laird, N.M. Power calculations for a general class of family-based association tests: Dichotomous traits. Am. J. Hum. Genet. 2002, 71, 575–584.eng
dcterms.referencesRabinowitz, D.; Laird, N. A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum. Hered. 2000, 50, 211–223.eng
dcterms.referencesBenjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300.eng
dcterms.referencesVélez, J.I.; Correa, J.C.; Arcos-Burgos, M. A new method for detecting significant p-values with applications to genetic data. Rev. Colomb. Estad. 2014, 37, 67–76.eng
dcterms.referencesLange, C.; DeMeo, D.; Silverman, E.K.; Weiss, S.T.; Laird, N.M. Pbat: Tools for family-based association studies. Am. J. Hum. Genet. 2004, 74, 367–369.eng
dcterms.referencesLunetta, K.L.; Faraone, S.V.; Biederman, J.; Laird, N.M. Family-based tests of association and linkage that use unaffected sibs, covariates, and interactions. Am. J. Hum. Genet. 2000, 66, 605–614.eng
dcterms.referencesXu, X.; Rakovski, C.; Xu, X.; Laird, N. An effcient family-based association test using multiple markers. Genet. Epidemiol. 2006, 30, 620–626.eng
dcterms.referencesBarrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of ld and haplotype maps. Bioinformatics 2005, 21, 263–265.eng
dcterms.referencesEvangelou, E.; Trikalinos, T.A.; Salanti, G.; Ioannidis, J.P. Family-based versus unrelated case-control designs for genetic associations. PLoS Genet. 2006, 2, e123.eng
dcterms.referencesLaird, N.M.; Lange, C. Family-based designs in the age of large-scale gene-association studies. Nat. Rev. Genet. 2006, 7, 385–394.eng
dcterms.referencesOtt, J.; Kamatani, Y.; Lathrop, M. Family-based designs for genome-wide association studies. Nat. Rev. Genet. 2011, 12, 465–474.eng
dcterms.referencesLeung, P.W.; Chan, J.K.; Chen, L.H.; Lee, C.C.; Hung, S.F.; Ho, T.P.; Tang, C.P.; Moyzis, R.K.; Swanson, J.M. Family-based association study of drd4 gene in methylphenidate-responded attention deficit/hyperactivity disorder. PLoS ONE 2017, 12, e0173748.eng
dcterms.referencesThakur, G.A.; Sengupta, S.M.; Grizenko, N.; Choudhry, Z.; Joober, R. Family-based association study of adhd and genes increasing the risk for smoking behaviours. Arch. Dis. Child. 2012, 97, 1027–1033.eng
dcterms.referencesTuric, D.; Williams, H.; Langley, K.; Owen, M.; Thapar, A.; O’Donovan, M.C. A family based study of catechol-o-methyltransferase (comt) and attention deficit hyperactivity disorder (adhd). Am. J. Med. Genet. B Neuropsychiatr. Genet. 2005, 133B, 64–67.eng
dcterms.referencesNeale, B.M.; Lasky-Su, J.; Anney, R.; Franke, B.; Zhou, K.; Maller, J.B.; Vasquez, A.A.; Asherson, P.; Chen, W.; Banaschewski, T.; et al. Genome-wide association scan of attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008, 147B, 1337–1344.eng
dcterms.referencesGu, X.; Yuan, F.F.; Huang, X.; Hou, Y.;Wang, M.; Lin, J.;Wu, J. Association of pik3cg gene polymorphisms with attention-deficit/hyperactivity disorder: A case-control study. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017.eng
dcterms.referencesSanchez-Mora, C.; Richarte, V.; Garcia-Martinez, I.; Pagerols, M.; Corrales, M.; Bosch, R.; Vidal, R.; Viladevall, L.; Casas, M.; Cormand, B.; et al. Dopamine receptor drd4 gene and stressful life events in persistent attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2015, 168, 480–491.eng
dcterms.referencesLasky-Su, J.; Banaschewski, T.; Buitelaar, J.; Franke, B.; Brookes, K.; Sonuga-Barke, E.; Ebstein, R.; Eisenberg, J.; Gill, M.; Manor, I.; et al. Partial replication of a drd4 association in adhd individuals using a statistically derived quantitative trait for adhd in a family-based association test. Biol. Psychiatry 2007, 62, 985–990.eng
dcterms.referencesBrem, S.; Grunblatt, E.; Drechsler, R.; Riederer, P.; Walitza, S. The neurobiological link between ocd and adhd. Atten. Defic Hyperact. Disord. 2014, 6, 175–202.eng
dcterms.referencesHawi, Z.; Matthews, N.;Wagner, J.;Wallace, R.H.; Butler, T.J.; Vance, A.; Kent, L.; Gill, M.; Bellgrove, M.A. DNA variation in the snap25 gene confers risk to adhd and is associated with reduced expression in prefrontal cortex. PLoS ONE 2013, 8, e60274.eng
dcterms.referencesArcos-Burgos, M.; Velez, J.I.; Martinez, A.F.; Ribases, M.; Ramos-Quiroga, J.A.; Sanchez-Mora, C.; Richarte, V.; Roncero, C.; Cormand, B.; Fernandez-Castillo, N.; et al. Adgrl3 (lphn3) variants predict substance use disorder. Transl. Psychiatry 2019, 9, 42.eng
dcterms.referencesChoudhry, Z.; Sengupta, S.M.; Grizenko, N.; Fortier, M.E.; Thakur, G.A.; Bellingham, J.; Joober, R. Lphn3 and attention-deficit/hyperactivity disorder: Interaction with maternal stress during pregnancy. J. Child Psychol. Psychiatry 2012, 53, 892–902.eng
dcterms.referencesKappel, D.B.; Schuch, J.B.; Rovaris, D.L.; da Silva, B.S.; Cupertino, R.B.; Winkler, C.; Teche, S.P.; Vitola, E.S.; Karam, R.G.; Rohde, L.A.; et al. Further replication of the synergistic interaction between lphn3 and the ntad gene cluster on adhd and its clinical course throughout adulthood. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 79, 120–127.eng
dcterms.referencesSollner, T.; Whiteheart, S.W.; Brunner, M.; Erdjument-Bromage, H.; Geromanos, S.; Tempst, P.; Rothman, J.E. Snap receptors implicated in vesicle targeting and fusion. Nature 1993, 362, 318–324.eng
dcterms.referencesBrophy, K.; Hawi, Z.; Kirley, A.; Fitzgerald, M.; Gill, M. Synaptosomal-associated protein 25 (snap-25) and attention deficit hyperactivity disorder (adhd): Evidence of linkage and association in the irish population. Mol. Psychiatry 2002, 7, 913–917.eng
dcterms.referencesHess, E.J.; Collins, K.A.; Wilson, M.C. Mouse model of hyperkinesis implicates snap-25 in behavioral regulation. J. Neurosci. 1996, 16, 3104–3111.eng
dcterms.referencesGalvez, J.M.; Forero, D.A.; Fonseca, D.J.; Mateus, H.E.; Talero-Gutierrez, C.; Velez-van-Meerbeke, A. Evidence of association between snap25 gene and attention deficit hyperactivity disorder in a latin american sample. Atten. Defic. Hyperact. Disord. 2014, 6, 19–23.eng
dcterms.referencesEvans, S.J.; Choudary, P.V.; Neal, C.R.; Li, J.Z.; Vawter, M.P.; Tomita, H.; Lopez, J.F.; Thompson, R.C.; Meng, F.; Stead, J.D.; et al. Dysregulation of the fibroblast growth factor system in major depression. Proc. Natl. Acad. Sci. USA 2004, 101, 15506–15511.eng
dcterms.referencesYun, Y.R.; Won, J.E.; Jeon, E.; Lee, S.; Kang, W.; Jo, H.; Jang, J.H.; Shin, U.S.; Kim, H.W. Fibroblast growth factors: Biology, function, and application for tissue regeneration. J. Tissue Eng. 2010, 2010, 218142.eng
dcterms.referencesMashayekhi, F.; Hadavi, M.; Vaziri, H.R.; Naji, M. Increased acidic fibroblast growth factor concentrations in the serum and cerebrospinal fluid of patients with alzheimer’s disease. J. Clin. Neurosci. 2010, 17, 357–359.eng
dcterms.referencesTao, Q.Q.; Sun, Y.M.; Liu, Z.J.; Ni, W.; Yang, P.; Li, H.L.; Lu, S.J.; Wu, Z.Y. A variant within fgf1 is associated with alzheimer’s disease in the han chinese population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2014, 165, 131–136.eng
dcterms.referencesYamagata, H.; Chen, Y.; Akatsu, H.; Kamino, K.; Ito, J.; Yokoyama, S.; Yamamoto, T.; Kosaka, K.; Miki, T.; Kondo, I. Promoter polymorphism in fibroblast growth factor 1 gene increases risk of definite alzheimer’s disease. Biochem. Biophys. Res. Commun. 2004, 321, 320–323.eng
dcterms.referencesLange, M.; Norton, W.; Coolen, M.; Chaminade, M.; Merker, S.; Proft, F.; Schmitt, A.; Vernier, P.; Lesch, K.P.; Bally-Cuif, L. The adhd-susceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development. Mol. Psychiatry 2012, 17, 946–954.eng
dcterms.referencesMartinez, A.F.; Abe, Y.; Hong, S.; Molyneux, K.; Yarnell, D.; Lohr, H.; Driever, W.; Acosta, M.T.; Arcos-Burgos, M.; Muenke, M. An ultraconserved brain-specific enhancer within adgrl3 (lphn3) underpins attention-deficit/hyperactivity disorder susceptibility. Biol. Psychiatry 2016, 80, 943–954.eng
dcterms.referencesOrsini, C.A.; Setlow, B.; DeJesus, M.; Galaviz, S.; Loesch, K.; Ioerger, T.; Wallis, D. Behavioral and transcriptomic profiling of mice null for lphn3, a gene implicated in adhd and addiction. Mol. Genet. Genom. Med. 2016, 4, 322–343.eng
dcterms.referencesWallis, D.; Arcos-Burgos, M.; Jain, M.; Castellanos, F.X.; Palacio, J.D.; Pineda, D.; Lopera, F.; Stanescu, H.; Pineda, D.; Berg, K.; et al. Polymorphisms in the neural nicotinic acetylcholine receptor alpha4 subunit (chrna4) are associated with adhd in a genetic isolate. Atten. Defic. Hyperact. Disord. 2009, 1, 19–24.eng
dcterms.referencesAdewuya, A.O.; Famuyiwa, O.O. Attention deficit hyperactivity disorder among nigerian primary school children: Prevalence and co-morbid conditions. Eur. Child. Adolesc. Psychiatry 2007, 16, 10–15.eng
dcterms.referencesMiller, T.W.; Nigg, J.T.; Miller, R.L. Attention deficit hyperactivity disorder in african american children: What can be concluded from the past ten years? Clin. Psychol. Rev. 2009, 29, 77–86.eng
dcterms.referencesMorgan, P.L.; Staff, J.; Hillemeier, M.M.; Farkas, G.; Maczuga, S. Racial and ethnic disparities in adhd diagnosis from kindergarten to eighth grade. Pediatrics 2013, 132, 85–93.eng
dcterms.referencesSamuel, V.J.; Biederman, J.; Faraone, S.V.; George, P.; Mick, E.; Thornell, A.; Curtis, S.; Taylor, A.; Brome, D. Clinical characteristics of attention deficit hyperactivity disorder in african american children. Am. J. Psychiatry 1998, 155, 696–698.eng
dcterms.referencesCastellanos, F.X.; Tannock, R. Neuroscience of attention-deficit/hyperactivity disorder: The search for endophenotypes. Nat. Rev. Neurosci. 2002, 3, 617–628.eng
dcterms.referencesPineda, D.A.; Lopera, F.; Puerta, I.C.; Trujillo-Orrego, N.; Aguirre-Acevedo, D.C.; Hincapie-Henao, L.; Arango, C.P.; Acosta, M.T.; Holzinger, S.I.; Palacio, J.D.; et al. Potential cognitive endophenotypes in multigenerational families: Segregating adhd from a genetic isolate. Atten. Defic. Hyperact. Disord. 2011, 3, 291–299.eng
dcterms.referencesArcos-Burgos, M.; Muenke, M. Toward a better understanding of adhd: Lphn3 gene variants and the susceptibility to develop adhd. Atten. Defic. Hyperact. Disord. 2010, 2, 139–147.eng
dcterms.referencesJimenez-Figueroa, G.; Ardila-Duarte, C.; Pineda, D.A.; Acosta-Lopez, J.E.; Cervantes-Henriquez, M.L.; Pineda-Alhucema, W.; Cervantes-Gutierrez, J.; Quintero-Ibarra, M.; Sanchez-Rojas, M.; Velez, J.I.; et al. Prepotent response inhibition and reaction times in children with attention deficit/hyperactivity disorder from a caribbean community. Atten. Defic. Hyperact. Disord. 2017, 9, 199–211.eng
dcterms.referencesBarnett, I.J.; Lee, S.; Lin, X. Detecting rare variant effects using extreme phenotype sampling in sequencing association studies. Genet. Epidemiol. 2013, 37, 142–151.eng
dcterms.referencesEmond, M.J.; Louie, T.; Emerson, J.; Zhao, W.; Mathias, R.A.; Knowles, M.R.; Wright, F.A.; Rieder, M.J.; Tabor, H.K.; Nickerson, D.A.; et al. Exome sequencing of extreme phenotypes identifies dctn4 as a modifier of chronic pseudomonas aeruginosa infection in cystic fibrosis. Nat. Genet. 2012, 44, 886–889.eng
dcterms.referencesJohar, A.S.; Anaya, J.M.; Andrews, D.; Patel, H.R.; Field, M.; Goodnow, C.; Arcos-Burgos, M. Candidate gene discovery in autoimmunity by using extreme phenotypes, next generation sequencing and whole exome capture. Autoimmun. Rev. 2015, 14, 204–209.eng
dcterms.referencesPaz-Filho, G.; Boguszewski, M.C.; Mastronardi, C.A.; Patel, H.R.; Johar, A.S.; Chuah, A.; Huttley, G.A.; Boguszewski, C.L.;Wong, M.L.; Arcos-Burgos, M.; et al. Whole exome sequencing of extreme morbid obesity patients: Translational implications for obesity and related disorders. Genes 2014, 5, 709–725.eng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Genetic_Variation_Underpinning_ADHD_Risk.pdf
Tamaño:
482.77 KB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
368 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones