Segmentation of brain tumors using a semi-automatic computational strategy

dc.contributor.authorVera, M.
dc.contributor.authorHuérfano, Y.
dc.contributor.authorGelvez, E.
dc.contributor.authorValbuena, O.
dc.contributor.authorSalazar, J.
dc.contributor.authorMolina, V.
dc.contributor.authorVera, M I.
dc.contributor.authorSalazar, W.
dc.contributor.authorSáenz, F.
dc.date.accessioned2019-03-06T21:32:50Z
dc.date.available2019-03-06T21:32:50Z
dc.date.issued2019
dc.description.abstractIn this work, a semi-automatic computational strategy is proposed for brain tumor segmentation. The filtering (erosion + gaussian filters), segmentation (level set technique) and quantification (BT volume) stages are applied to magnetic resonance imaging in order to generate the three-dimensional morphology of brain tumors. The Jaccard's Similarity Index is considered to contrast manual segmentation with semi-automatic segmentations of brain tumor. In this sense, the highest Jaccard's Similarity Index provides the best parameters of the techniques that constitute the semi-automatic computational strategy. Results are promising, showing an excellent correlation between these segmentations. The volume is used for the brain tumors characterization.eng
dc.identifier.issn09767673
dc.identifier.urihttp://hdl.handle.net/20.500.12442/2740
dc.language.isoengeng
dc.publisherIOP Publishingeng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.sourceJournal of Physicseng
dc.sourceIOP Conf. Series: Journal of Physics: Conf. Series 1160 (2019) 012002eng
dc.source.uridoi:10.1088/1742-6596/1160/1/012002eng
dc.subjectHead - Tumorseng
dc.subjectMagnetic resonanceeng
dc.subjectJaccardeng
dc.titleSegmentation of brain tumors using a semi-automatic computational strategyeng
dc.typeConferenceeng
dcterms.referencesLouis DN, Ohgaki H, Wiestler OD, Cavenee WK 2007 Classification of tumours of the central nervous system, 4th edition vol 1 (Lyon: International Agency for Research on Cancer)eng
dcterms.referencesGudbjartsson H and Patz S 1995 The rician distribution of noisy MRI data Magn. Reson. Med. 34(1) 910eng
dcterms.referencesMacovski A 1996 Noise in MRI Magn. Reson. Med. 36(1) 494eng
dcterms.referencesCasamitjana A, Puch S, Aduriz A and Vilaplana V 2017 3D convolutional neural networks for brain tumor segmentation: A comparison of multi-resolution architectures Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries vol 10154, ed Crimi A, Menze B, Maier O, Reyes M, Winzeck S, Handels H (Berlin: Springer International Publishing) p 150-161eng
dcterms.referencesZhang J, Shen X, Zhuo T and Zhou H 2017 Brain tumor segmentation based on refined fully convolutional neural networks with a hierarchical Dice score Computer Science (preprint arXiv:1712.09093)eng
dcterms.referencesKleesiek J, Biller A, Urban G, Kothe U, Bendszus M and Hamprecht F 2014 Ilastik for multi-modal brain tumor segmentation Proc. MICCAI BraTS Challenge (Boston: Harvard Medical School) p 12-17eng
dcterms.referencesHsieh T, Liu Y, Liao C, Xiao F, Chiang I and Wong J 2011 Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing BMC Medical Informatics and Decision Making 11(1) 11eng
dcterms.referencesKaus M, Warfield S, Nabavi A, Chatzidakis E, Black P and Jolesz F 1999 Segmentation of Meningiomas and low grade Gliomas in MRI vol 1679, ed Taylor C, Colchester A Medical Image Computing and Computer-Assisted Intervention -MICCAI'99 (Berlin: Springer) p 1-10eng
dcterms.referencesJones T, Bymes T and Yang G 2015 Brain tumor classification using the diffusion tensor image segmentation technique Neuro-Oncology 17(3) 466eng
dcterms.referencesCho H and Park H 2017 Classification of low-grade and high-grade glioma using multi-modal image radiomics features 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Seogwipo: IEEE) p 3081-3084eng
dcterms.referencesSeow P, Win MT, Wong JH, Abdullah NA, Ramli N 2016 Segmentation of solid subregion of high grade gliomas in MRI images based on active contour model (ACM) Journal of Physics: Conference Series 694(1) 012043 1-12eng
dcterms.referencesHans J. Johnson, Matthew M. McCormick, Luis Ibáñez and the Insight Software Consortium 2018 The ITK Software Guide Fourth Edition (New York: Kitware Inc.)eng
dcterms.referencesKoenderink J 1984 The structure of images Biol. Cybern. 50 363eng
dcterms.referencesPratt W 2007 Digital image processing (New York: John Wiley & Sons Inc)eng
dcterms.referencesNadal E, Rupérez Moreno MJ, Martinez-Sanchis S, Monserrat Aranda C, Tur Valiente M and Fuenmayor Fernández FJ 2017 Evaluación basada en el método del gradiente de las propiedades elásticas de tejidos humanos in vivo Revista UIS Ingenierías 16(1) 15spa
dcterms.referencesYushkevich P, Piven J, Cody H, Ho S, Gee J and Gerig G 2005 User-Guided Level Set Segmentation of Anatomical Structures with ITK-SNAP The Insight Journal MICCAI Open-Source Workshop 1-9eng
dcterms.referencesReal R and Vargas J 1996. The probabilistic basis of Jaccard's index of similarity Sys. Biol. 45(3) 380eng
dcterms.referencesHu T, Yan L, Yan P, Wang X and Yue G 2016 Assessment of the ABC/2 method of epidural hematoma volume measurement as compared to computer-assisted planimetric analysis Biological Research for Nursing 18 5eng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
550.2 KB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
368 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones