Segmentation of brain tumors using a semi-automatic computational strategy
dc.contributor.author | Vera, M. | |
dc.contributor.author | Huérfano, Y. | |
dc.contributor.author | Gelvez, E. | |
dc.contributor.author | Valbuena, O. | |
dc.contributor.author | Salazar, J. | |
dc.contributor.author | Molina, V. | |
dc.contributor.author | Vera, M I. | |
dc.contributor.author | Salazar, W. | |
dc.contributor.author | Sáenz, F. | |
dc.date.accessioned | 2019-03-06T21:32:50Z | |
dc.date.available | 2019-03-06T21:32:50Z | |
dc.date.issued | 2019 | |
dc.description.abstract | In this work, a semi-automatic computational strategy is proposed for brain tumor segmentation. The filtering (erosion + gaussian filters), segmentation (level set technique) and quantification (BT volume) stages are applied to magnetic resonance imaging in order to generate the three-dimensional morphology of brain tumors. The Jaccard's Similarity Index is considered to contrast manual segmentation with semi-automatic segmentations of brain tumor. In this sense, the highest Jaccard's Similarity Index provides the best parameters of the techniques that constitute the semi-automatic computational strategy. Results are promising, showing an excellent correlation between these segmentations. The volume is used for the brain tumors characterization. | eng |
dc.identifier.issn | 09767673 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12442/2740 | |
dc.language.iso | eng | eng |
dc.publisher | IOP Publishing | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.source | Journal of Physics | eng |
dc.source | IOP Conf. Series: Journal of Physics: Conf. Series 1160 (2019) 012002 | eng |
dc.source.uri | doi:10.1088/1742-6596/1160/1/012002 | eng |
dc.subject | Head - Tumors | eng |
dc.subject | Magnetic resonance | eng |
dc.subject | Jaccard | eng |
dc.title | Segmentation of brain tumors using a semi-automatic computational strategy | eng |
dc.type | Conference | eng |
dcterms.references | Louis DN, Ohgaki H, Wiestler OD, Cavenee WK 2007 Classification of tumours of the central nervous system, 4th edition vol 1 (Lyon: International Agency for Research on Cancer) | eng |
dcterms.references | Gudbjartsson H and Patz S 1995 The rician distribution of noisy MRI data Magn. Reson. Med. 34(1) 910 | eng |
dcterms.references | Macovski A 1996 Noise in MRI Magn. Reson. Med. 36(1) 494 | eng |
dcterms.references | Casamitjana A, Puch S, Aduriz A and Vilaplana V 2017 3D convolutional neural networks for brain tumor segmentation: A comparison of multi-resolution architectures Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries vol 10154, ed Crimi A, Menze B, Maier O, Reyes M, Winzeck S, Handels H (Berlin: Springer International Publishing) p 150-161 | eng |
dcterms.references | Zhang J, Shen X, Zhuo T and Zhou H 2017 Brain tumor segmentation based on refined fully convolutional neural networks with a hierarchical Dice score Computer Science (preprint arXiv:1712.09093) | eng |
dcterms.references | Kleesiek J, Biller A, Urban G, Kothe U, Bendszus M and Hamprecht F 2014 Ilastik for multi-modal brain tumor segmentation Proc. MICCAI BraTS Challenge (Boston: Harvard Medical School) p 12-17 | eng |
dcterms.references | Hsieh T, Liu Y, Liao C, Xiao F, Chiang I and Wong J 2011 Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing BMC Medical Informatics and Decision Making 11(1) 11 | eng |
dcterms.references | Kaus M, Warfield S, Nabavi A, Chatzidakis E, Black P and Jolesz F 1999 Segmentation of Meningiomas and low grade Gliomas in MRI vol 1679, ed Taylor C, Colchester A Medical Image Computing and Computer-Assisted Intervention -MICCAI'99 (Berlin: Springer) p 1-10 | eng |
dcterms.references | Jones T, Bymes T and Yang G 2015 Brain tumor classification using the diffusion tensor image segmentation technique Neuro-Oncology 17(3) 466 | eng |
dcterms.references | Cho H and Park H 2017 Classification of low-grade and high-grade glioma using multi-modal image radiomics features 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Seogwipo: IEEE) p 3081-3084 | eng |
dcterms.references | Seow P, Win MT, Wong JH, Abdullah NA, Ramli N 2016 Segmentation of solid subregion of high grade gliomas in MRI images based on active contour model (ACM) Journal of Physics: Conference Series 694(1) 012043 1-12 | eng |
dcterms.references | Hans J. Johnson, Matthew M. McCormick, Luis Ibáñez and the Insight Software Consortium 2018 The ITK Software Guide Fourth Edition (New York: Kitware Inc.) | eng |
dcterms.references | Koenderink J 1984 The structure of images Biol. Cybern. 50 363 | eng |
dcterms.references | Pratt W 2007 Digital image processing (New York: John Wiley & Sons Inc) | eng |
dcterms.references | Nadal E, Rupérez Moreno MJ, Martinez-Sanchis S, Monserrat Aranda C, Tur Valiente M and Fuenmayor Fernández FJ 2017 Evaluación basada en el método del gradiente de las propiedades elásticas de tejidos humanos in vivo Revista UIS Ingenierías 16(1) 15 | spa |
dcterms.references | Yushkevich P, Piven J, Cody H, Ho S, Gee J and Gerig G 2005 User-Guided Level Set Segmentation of Anatomical Structures with ITK-SNAP The Insight Journal MICCAI Open-Source Workshop 1-9 | eng |
dcterms.references | Real R and Vargas J 1996. The probabilistic basis of Jaccard's index of similarity Sys. Biol. 45(3) 380 | eng |
dcterms.references | Hu T, Yan L, Yan P, Wang X and Yue G 2016 Assessment of the ABC/2 method of epidural hematoma volume measurement as compared to computer-assisted planimetric analysis Biological Research for Nursing 18 5 | eng |