Segmentation of brain tumors using a semi-automatic computational strategy

Cargando...
Miniatura

Fecha

2019

Autores

Vera, M.
Huérfano, Y.
Gelvez, E.
Valbuena, O.
Salazar, J.
Molina, V.
Vera, M I.
Salazar, W.
Sáenz, F.

Título de la revista

ISSN de la revista

Título del volumen

Editor

IOP Publishing

Resumen

In this work, a semi-automatic computational strategy is proposed for brain tumor segmentation. The filtering (erosion + gaussian filters), segmentation (level set technique) and quantification (BT volume) stages are applied to magnetic resonance imaging in order to generate the three-dimensional morphology of brain tumors. The Jaccard's Similarity Index is considered to contrast manual segmentation with semi-automatic segmentations of brain tumor. In this sense, the highest Jaccard's Similarity Index provides the best parameters of the techniques that constitute the semi-automatic computational strategy. Results are promising, showing an excellent correlation between these segmentations. The volume is used for the brain tumors characterization.

Descripción

Palabras clave

Head - Tumors, Magnetic resonance, Jaccard

Citación

Enlace DOI

Enlace URL externo

Colecciones