Mechanisms associated with pyrethroid resistance in populations of Aedes aegypti (Diptera: Culicidae) from the Caribbean coast of Colombia

datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
dc.contributor.authorPareja-Loaiza, Paula X.
dc.contributor.authorSantacoloma Varon, Liliana
dc.contributor.authorRey Vega, Gabriela
dc.contributor.authorGómez-Camargo, Doris
dc.contributor.authorMaestre-Serrano, Ronald
dc.contributor.authorLenhart, Audrey
dc.date.accessioned2020-11-12T22:58:32Z
dc.date.available2020-11-12T22:58:32Z
dc.date.issued2020
dc.description.abstractAedes aegypti is the main vector of dengue, chikungunya, and Zika viruses, which are of great public health importance in Colombia. Aedes control strategies in Colombia rely heavily on the use of organophosphate and pyrethroid insecticides, providing constant selection pressure and the emergence of resistant populations. In recent years, insecticide use has increased due to the increased incidence of dengue and recent introductions of chikungunya and Zika. In the present study, pyrethroid resistance was studied across six populations of Ae. aegypti from the Caribbean coast of Colombia. Susceptibility to λ-cyhalothrin, deltamethrin, and permethrin was assessed, and resistance intensity was determined. Activity levels of enzymes associated with resistance were measured, and the frequencies of three kdr alleles (V1016I, F1534C, V410L) were calculated. Results showed variations in pyrethroid susceptibility across Ae. aegypti populations and altered enzyme activity levels were detected. The kdr alleles were detected in all populations, with high variations in frequencies: V1016I (frequency ranging from 0.15–0.70), F1534C (range 0.94–1.00), and V410L (range 0.05–0.72). In assays of phenotyped individuals, associations were observed between the presence of V1016I, F1534C, and V410L alleles and resistance to the evaluated pyrethroids, as well as between the VI1016/CC1534/VL410 tri-locus genotype and λ-cyhalothrin and permethrin resistance. The results of the present study contribute to the knowledge of the mechanisms underlying the resistance to key pyrethroids used to control Ae. aegypti along the Caribbean coast of Colombia.eng
dc.format.mimetypepdfspa
dc.identifier.doihttps://doi.org/10.1371/journal.pone.0228695
dc.identifier.issn0228695
dc.identifier.urihttps://hdl.handle.net/20.500.12442/6794
dc.identifier.urlhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0228695
dc.language.isoengeng
dc.publisherPloseng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcePlos Oneeng
dc.sourceVol. 15, No 10 (2020)
dc.titleMechanisms associated with pyrethroid resistance in populations of Aedes aegypti (Diptera: Culicidae) from the Caribbean coast of Colombiaeng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.spaArtículo científicospa
dcterms.referencesPadilla JC, Lizarazo FE, Murillo OL, Mendigaña FA, Pacho´n E, Vera MJ. Epidemiologı´a de las principales enfermedades transmitidas por vectores en Colombia, 1990–2016. Biomedica. 2017; 37 (Supl.2):27–40.spa
dcterms.referencesWorld Health Organization. Dengue y dengue grave [Internet]. [cited 2018 Apr 30]. Available from: https://www.who.int/es/news-room/fact-sheets/detail/dengue-and-severe-denguespa
dcterms.referencesInstituto Nacional de Salud. Informe de evento. Dengue: Colombia, 2017 [Internet]. [cited 2018 May 20]. Available from: https://www.ins.gov.co/buscador-eventos/Informesdeevento/DENGUE2017.pdfspa
dcterms.referencesInstituto Nacional de Salud. Sistema de Vigilancia Epidemiologico Nacional: Enfermedades Transmitidas por Vectores [Internet]. [cited 2018 May 23]. Available from: http://portalsivigila.ins.gov.co/sivigila/ documentos/Docs_1.phpspa
dcterms.referencesTovar-Sanchez Z, Bolívar_pertuz S, Maestre-Serrano R. Chikungunya: aspectos generales de una enfermedad emergente en Colombia Chikungunya: general aspects of an emerging disease in Colombia. Rev Biociencias. 2015; 10(1):75–88.spa
dcterms.referencesInstituto Nacional de Salud. Informe de evento: Enfermedad por virus Zika. Colombia, 2017 [Internet]. [cited 2018 May 23]. Available from: http://www.ins.gov.co/buscador-eventos/Informesdeevento/ ZIKA2017.pdfspa
dcterms.referencesMaestre-Serrano R. Susceptibility status of Aedes aegypti to insecticides in Colombia. In: Insecticides– Pest Engineering [Internet]. 2012. p. 163–200. Available from: http://www.scielo.org.co/scielo.php? script=sci_arttext&pid=S0120-04882010000200012&lng=en&nrm=iso&tlng=eseng
dcterms.referencesMaestre-Serrano R, Pacheco-Lugo L, Salcedo-Mendoza S.I´ndices de infestación aédica e identificación de conocimientos, actitudes y prácticas sobre dengue en llanterías del Departamento del Atlántico, Colombia. (Spanish). Rev Salud Pu´ blica [Internet]. 2015; 17(5):738–48. Available from: http://10.0.60. 86/rsap.v17n5.3534%5Cnhttp://search.ebscohost.com/login.aspx?direct=true&db=lth&AN= 113247085&lang=es&site=ehost-live https://doi.org/10.15446/rsap.v17n5.35345 PMID: 28453051spa
dcterms.referencesSantacoloma L, Chaves B, Brochero H. Susceptibilidad de Aedes aegypti a DDT, deltametrina y lambdacialotrina en Colombia. Rev Panam Salud Publica/Pan Am J Public Heal. 2010; 27(1):66–73.eng
dcterms.referencesFonseca-González I, Quiñones ML, Lenhart A, Brogdon WG. Insecticide resistance status of Aedes aegypti (L.) from Colombia. Pest Manag Sci. 2011; 67(4):430–7. https://doi.org/10.1002/ps.2081 PMID: 21394876eng
dcterms.referencesOcampo CB, Salazar-Terreros MJ, Mina NJ, McAllister J, Brogdon W. Insecticide resistance status of Aedes aegypti in 10 localities in Colombia. Acta Trop [Internet]. 2011; 118(1):37–44. Available from: https://doi.org/10.1016/j.actatropica.2011.01.007 PMID: 21300017eng
dcterms.referencesArdila-Roldán S, Santacoloma L, Brochero H. Estado de la sensibilidad a los insecticidas de uso en salud pública en poblaciones naturales de Aedes aegypti (Diptera: Culicidae) del departamento de Casanare, Colombia. Biomedica. 2013; 33(3):446–58. https://doi.org/10.7705/biomedica.v33i3.1534 PMID: 24652181spa
dcterms.referencesMaestre-Serrano R, Gomez-Camargo D, Ponce-Garcia G, Flores AE. Susceptibility to insecticides and resistance mechanisms in Aedes aegypti from the Colombian Caribbean Region. Pestic Biochem Physiol [Internet]. 2014; 116:63–73. Available from: https://doi.org/10.1016/j.pestbp.2014.09.014 PMID: 25454522eng
dcterms.referencesConde M, Orjuela LI, Castellanos CA, Herrera-Varela M, Licastro S, Quiñones ML. Evaluación de la sensibilidad a insecticidas en poblaciones de Aedes aegypti (Diptera: Culicidae) del departamento de Caldas, Colombia, en 2007 y 2011. Biomedica. 2015; 35(1):43–52. https://doi.org/10.1590/S0120- 41572015000100007 PMID: 26148033spa
dcterms.referencesGranada Y, Mar A, Strode C, Triana-chavez O. A Point Mutation V419L in the Sodium Channel Gene from Natural Populations of Aedes aegypti Is Involved in Resistance to λ -Cyhalothrin in Colombia. Insects. 2018; 9:23–35.eng
dcterms.referencesBisset LJ a. Uso correcto de insecticidas: control de la resistencia. Rev Cubana Med Trop. 2002; 54 (3):202–19. PMID: 15846946spa
dcterms.referencesDu Y, Nomura Y, Zhorov BS, Dong K. Sodium channel mutations and pyrethroid resistance in Aedes aegypti. Insects. 2016; 7(4):60–71.eng
dcterms.referencesSalazar M, Carvajal A, Cuellar ME, Olaya A, Quiñones J, Velasquez OL, et al. Resistance to insecticides in populations of Aedes aegypti and Anopheles spp. in the departments of Huila, Valle Cauca and Nariño. In: Biomedica, editor. XIII Congreso colombiano de parasitologia y medicina tropical. Bogota; 2007. p. 177.eng
dcterms.referencesMaestre RS, Rey G V., De Las J, Vergara CS, Santacoloma L V., Goenaga SO, et al. Susceptibilidad de Aedes aegypti (Diptera: Culicidae) a temefos en Atlantico-Colombia. Rev Colomb Entomol. 2009; 35 (2):202–5.eng
dcterms.referencesFonseca-González I BD. Variación temporal en la susceptibilidad a malatión y lambdacialotrina en Aedes aegypti (L) de Quibdó , Colombia. In: Biomedica, editor. Congreso de Parasitologia y Medicina Tropical. Ibague; 2009. p. 216–34.spa
dcterms.referencesMaestre-Serrano R, Florez Z, Cabrera C, Goenaga S, Gomez D GC. Susceptibility status of Aedes aegypti to insecticides in la Guajira (colombia). In: Hygiene TAJ of TM and, editor. The American Journal of Tropical Medicine and Hygiene. Atlanta, Georgia; 2010. p. 99–141.eng
dcterms.referencesMaestre-Serrano R, Rey Gabriela, De las salas J, Vergara C, Santacoloma L, Goenaga S, et al. Estado de la susceptibilidad de Aedes aegypti a insecticidas en Atlántico (Colombia). Rev Colomb Entomol. 2010; 36(2):242–8.spa
dcterms.referencesSantacoloma L, Chaves B, Brochero HL. Estado de la susceptibilidad de poblaciones naturales del vector del dengue a insecticidas en trece localidades de Colombia. Biomedica. 2012; 32(3):333–43. https:// doi.org/10.1590/S0120-41572012000300004 PMID: 23715182spa
dcterms.referencesGrisales N, Poupardin R, Gomez S, Fonseca-Gonzalez I, Ranson H, Lenhart A. Temephos Resistance in Aedes aegypti in Colombia Compromises Dengue Vector Control. PLoS Negl Trop Dis. 2013; 7(9).eng
dcterms.referencesAguirre-Obando OA, Dalla Bona AC, Duque L JE, Navarro-Silva MA. Insecticide resistance and genetic variability in natural populations of Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Colombia. Zoologia. 2015; 32(1):14–22.eng
dcterms.referencesInstituto Nacional de Salud. Red de vigilancia de la resistencia a insecticidas de uso en salud pública en Colombia, año 2018 [Internet]. [cited 2018 May 20]. Available from: http://www.ins.gov.co/buscadoreventos/ Informacindelaboratorio/Informe-VRI-2018.pdfspa
dcterms.referencesSuárez MF, González R MC. Temefos resistance to Aedes aegypti in Cali, Colombia. In: Am J Trop Med Hyg, editor. 45th Annual meeting of the American Society of Tropical Medicine and Hygiene. Baltimore, Maryland; 1996. p. 257.eng
dcterms.referencesRojas W, González J, Amud M, Quiñones M VI. Evaluation of the susceptibility of Aedes aegypti of the municipality of Barrancabermeja, Santander, to the insecticides malathion, fenitrothion, temephos, lambda-cyhalothrin, deltamethrin, permethrin, pro. In: Biomedica, editor. Congreso colombiano de medicina tropical. 2003. p. 56.eng
dcterms.referencesAnaya Y, Cochero S, Rey G S l. Assessment of susceptibility to insecticides of Aedes aegypti caught in Sincelejo. In: Biomedica, editor. XIII Congreso colombiano de parasitologia y medicina tropical. Bogota; 2007. p. 257.eng
dcterms.referencesAguirre-Obando OA, Martins AJ, Navarro-Silva MA. First report of the Phe1534Cys kdr mutation in natural populations of Aedes albopictus from Brazil. Parasites and Vectors. 2017; 10(1):160–70. https:// doi.org/10.1186/s13071-017-2089-5 PMID: 28347326eng
dcterms.referencesAtencia MC, Pérez M de J, Jaramillo MC, Caldera SM, Cochero S, Bejarano EE. First report of the F1534C mutation associated with cross-resistance to DDT and pyrethroids in Aedes aegypti from Colombia. Biomedica. 2016; 36(3):432–7. https://doi.org/10.7705/biomedica.v36i3.2834 PMID: 27869391eng
dcterms.referencesMaestre-Serrano R, Pareja-Loaiza P, Gomez Camargo D, Ponce-García G, Flores AE. Co-occurrence of V1016I and F1534C mutations in the voltage-gated sodium channel and resistance to pyrethroids in Aedes aegypti (L.) from the Colombian Caribbean region. Pest Manag Sci. 2019; 75(6):1681–8. https:// doi.org/10.1002/ps.5287 PMID: 30520256eng
dcterms.referencesBrogdon WG, McAllister JC. Insecticide resistance and vector control. Emerg Infect Dis. 1998; 9 (2):605–13.eng
dcterms.referencesWorld Health Organization—WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Second. Ginebra; 2017. 1–50 p.eng
dcterms.referencesValle D, Montella IR. Quantification methodology for enzyme activity related to insecticide resistance in Aedes aegypti. Vol. 1, Brasil. Ministe´ rio da Sau´de. Fundac¸ão Oswaldo Cruz. 2006. 128 p.eng
dcterms.referencesBrogdon WG. Mosquito protein microassay-I. Protein determinations from small portions of single-mosquito homogenates. Comp Biochem Physiol—Part B Biochem. 1984; 79B(3):457–9.eng
dcterms.referencesSaavedra-Rodriguez K, Urdaneta-Marquez L, Rajatileka S, Moulton M, Flores AE, Fernandez-Salas I, et al. A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti. Insect Mol Biol. 2007; 16(6):785–98. https://doi.org/10.1111/j.1365- 2583.2007.00774.x PMID: 18093007eng
dcterms.referencesYanola J, Somboon P, Walton C, Nachaiwieng W, Somwang P, Prapanthadara L aied. Analyses à haut dé bit pour la dé tection de la mutation F1534C dans le gène du canal sodium voltage dépendant d’Aedes aegypti résistant au permé thrine et distribution de cette mutation à travers la Thaïlande. Trop Med Int Heal. 2011; 16(4):501–9.eng
dcterms.referencesHaddi K, Tomé HVV, Du Y, Valbon WR, Nomura Y, Martins GF, et al. Detection of a new pyrethroid resistance mutation (V410L) in the sodium channel of Aedes aegypti: A potential challenge for mosquito control. Sci Rep [Internet]. 2017; 7(March):1–9. Available from: http://dx.doi.org/10.1038/srep46549eng
dcterms.referencesMontella IR, Martins AJ, Viana-Medeiros PF, Lima JBP, Braga IA, Valle D. Insecticide resistance mechanisms of Brazilian Aedes aegypti populations from 2001 to 2004. Am J Trop Med Hyg. 2007; 77 (3):467–77. PMID: 17827362eng
dcterms.referencesZlotkin E, Devonshire AL, Warmke JW. The pharmacological flexibility of the insect voltage gated sodium channel: Toxicity of AaIT to knockdown resistant (kdr) flies. Insect Biochem Mol Biol. 1999; 29 (10):849–53. https://doi.org/10.1016/s0965-1748(99)00079-x PMID: 10528405eng
dcterms.referencesRodríguez MM, Bisset J, Ruiz M, Soca A. Cross-Resistance to Pyrethroid and Organophosphorus Insecticides Induced by Selection with Temephos in Aedes aegypti (Diptera: Culicidae) from Cuba. J Med Entomol. 2002; 39(6):882–8. https://doi.org/10.1603/0022-2585-39.6.882 PMID: 12495187eng
dcterms.referencesTikar SN, Kumar A, Prasad GBKS, Prakash S. Temephos-induced resistance in Aedes aegypti and its cross-resistance studies to certain insecticides from India. Parasitol Res. 2009; 105(1):57–63. https:// doi.org/10.1007/s00436-009-1362-8 PMID: 19229558eng
dcterms.referencesAïzoun N, Ossè R, Azondekon R, Alia R, Oussou O, Gnanguenon V, et al. Comparison of the standard WHO susceptibility tests and the CDC bottle bioassay for the determination of insecticide susceptibility in malaria vectors and their correlation with biochemical and molecular biology assays in Benin, West Africa. Parasites and Vectors. 2013; 6(1):147–56.eng
dcterms.referencesRodríguez M, BIsset M, Ditter F, Omayda P. Resistencia a insecticidas en larvas y adultos de Aedes aegypti: prevalencia de la esterasa A4 asociada con la resistencia a temefos. Rev Cubana Med Trop. 2004; 56(1):54–60. PMID: 15849910spa
dcterms.referencesFlores AE, Albeldaño-Vázquez W, Salas IF, Badii MH, Becerra HL, Garcia GP, et al. Elevated α-esterase levels associated with permethrin tolerance in Aedes aegypti (L.) from Baja California, Mexico. Pestic Biochem Physiol. 2005; 82(1):66–78.eng
dcterms.referencesFlores AE, Grajales JS, Salas IF, Garcia GP, Becerra HL, Lozano S, et al. Mechanisms of Insecticide Resistance in Field Populations of Aedes aegypti (L.) From Mechanisms of Insecticide Resistance in Field Populations. 2006; 22(4):672–7. https://doi.org/10.2987/8756-971X(2006)22[672:MOIRIF]2.0. CO;2 PMID: 17304936eng
dcterms.referencesHarris AF, Rajatileka S, Ranson H. Pyrethroid resistance in Aedes aegypti from Grand Cayman. Am J Trop Med Hyg. 2010; 83(2):277–84. https://doi.org/10.4269/ajtmh.2010.09-0623 PMID: 20682868eng
dcterms.referencesRodríguez MM, Bisset JA, Ricardo Y, Pérez O, Montada D, Figueredo D, et al. Resistencia a insecticidas organofosforados en Aedes aegypti (Diptera: Culicidae) de Santiago de Cuba, 1997–2009. Rev Cubana Med Trop [Internet]. 2010; 62(3):217–23. Available from: http://scielo.sld.cu/scielo.php?script= sci_arttext&pid=S0375-07602010000300009&lng=es&nrm=iso&tlng=es PMID: 23437552spa
dcterms.referencesPolson KA, Brogdon WG, Rawlins SC, Chadee DD. Characterization of insecticide resistance in Trinidadian strains of Aedes aegypti mosquitoes. Acta Trop [Internet]. 2011; 117(1):31–8. Available from: https://doi.org/10.1016/j.actatropica.2010.09.005 PMID: 20858454eng
dcterms.referencesAlvarez LC, Ponce G, Oviedo M, Lopez B, Flores AE. Resistance to Malathion and Deltamethrin in Aedes aegypti (Diptera: Culicidae) From Western Venezuela. J Med Entomol. 2013; 50(5):1031–9. https://doi.org/10.1603/me12254 PMID: 24180108eng
dcterms.referencesSaavedra-Rodriguez K, Maloof FV, Campbell CL, Garcia-Rejon J, Lenhart A, Penilla P, et al. Parallel evolution of vgsc mutations at domains IS6, IIS6 and IIIS6 in pyrethroid resistant Aedes aegypti from Mexico. Sci Rep. 2018; 8(1):6749–55. https://doi.org/10.1038/s41598-018-24642-2 PMID: 29712940eng
dcterms.referencesLiu N. Insecticide Resistance in Mosquitoes: Impact, Mechanisms, and Research Directions. Annu Rev Entomol. 2015; 60(1):537–59.eng
dcterms.referencesAngélica Aponte, R. Patricia Penilla, Rodríguez Américo D.and CBO. Mechanisms of Pyrethroid Resistance in Aedes (Stegomyia) aegypti from Colombia. Acta Trop. 2019; 191(1):146–54.eng
oaire.versioninfo:eu-repo/semantics/publishedVersionspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
1.76 MB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones