Automatic segmentation of epidural hematomas using a computational technique based on intelligent operators: a clinical utility
dc.contributor.author | Salazar, Juan | |
dc.contributor.author | Vera, Miguel | |
dc.contributor.author | Huérfano, Yoleidy | |
dc.contributor.author | Valbuena, Oscar | |
dc.contributor.author | Salazar, Williams | |
dc.contributor.author | Vera, María Isabel | |
dc.contributor.author | Gelvez, Elkin | |
dc.contributor.author | Contreras, Yudith | |
dc.contributor.author | Borrero, Maryury | |
dc.contributor.author | Vivas, Marisela | |
dc.contributor.author | Barrera, Doris | |
dc.contributor.author | Hernández, Carlos | |
dc.contributor.author | Molina, Ángel Valentín | |
dc.contributor.author | Martínez, Luis Javier | |
dc.contributor.author | Sáenz, Frank | |
dc.date.accessioned | 2019-01-25T14:15:54Z | |
dc.date.available | 2019-01-25T14:15:54Z | |
dc.date.issued | 2018 | |
dc.description.abstract | This paper proposes a non-linear computational technique for the segmentation of epidural hematomas (EDH), present in 7 multilayer computed tomography brain imaging databases. This technique consists of 3 stages developed in the three-dimensional domain, namely: pre-processing, segmentation and quantification of the volume occupied by each of the segmented EDHs. To make value judgments about the performance of the proposed technique, the EDH dilated segmentations, obtained automatically, and the EDH segmentations, generated manually by a neurosurgeon, are compared using the Dice coefficient (Dc). The combination of parameters linked to the highest Dc value, defines the optimal parameters of each of the computational algorithms that make up the proposed nonlinear technique. The obtained results allow the reporting of a Dc superior to 0.90 which indicates a good correlation between the manual segmentations and those produced by the computational technique developed. Finally, as an immediate clinical application, considering the automatic segmentations, the volume of each hematoma is calculated considering both the voxel size of each database and the number of voxels that make up the segmented hematomas. | eng |
dc.description.abstract | Este artículo propone una técnica computacional no lineal para la segmentación de los hematomas epidurales (EDH), presente en 7 bases de datos de imágenes cerebrales de tomografía multicapa. Esta técnica consta de 3 etapas desarrolladas en el dominio tridimensional, a saber: preprocesamiento, segmentación y cuantificación del volumen ocupado por cada uno de los EDH segmentados. Para hacer juicios de valor sobre el rendimiento de la técnica propuesta, las segmentaciones dilatadas de EDH, obtenidas automáticamente, y las segmentaciones de EDH, generadas manualmente por un neurocirujano, se comparan utilizando el coeficiente de Dice (Dc). La combinación de parámetros vinculados al valor más alto de Dc define los parámetros óptimos de cada uno de los algoritmos computacionales que conforman la técnica no lineal propuesta. Los resultados obtenidos permiten el reporte de un Dc superior a 0.90 que indica una buena correlación entre las segmentaciones manuales y las producidas por la técnica computacional desarrollada. Finalmente, como aplicación clínica inmediata, considerando las segmentaciones automáticas, el volumen de cada hematoma se calcula considerando tanto el tamaño del vóxel de cada base de datos como el número de vóxeles que conforman los hematomas segmentados. | spa |
dc.identifier.issn | 26107988 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12442/2522 | |
dc.language.iso | eng | eng |
dc.publisher | Sociedad Venezolana de Farmacología Clínica y Terapéutica | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.source | Revista AVFT-Archivos Venezolanos de Farmacología y Terapéutica | spa |
dc.source | Vol. 37, No. 4 (2018) | spa |
dc.source.uri | http://www.revistaavft.com/images/revistas/2018/avft_4_2018/2_automatic_segmentation_of_epidural.pdf | eng |
dc.subject | Brain Tomography | eng |
dc.subject | Epidural Hematomas | eng |
dc.subject | Nonlinear Computational Technique | eng |
dc.subject | Smart Operators | eng |
dc.subject | Segmentation | eng |
dc.subject | Tomografía cerebral | spa |
dc.subject | Hematomas epidurales | spa |
dc.subject | Técnica computacional no lineal | spa |
dc.subject | Operadores inteligentes | spa |
dc.subject | Segmentación | spa |
dc.title | Automatic segmentation of epidural hematomas using a computational technique based on intelligent operators: a clinical utility | eng |
dc.title.alternative | Segmentación automática de hematomas epidurales usando una técnica computacional, basada en operadores inteligentes: utilidad clínica | spa |
dc.type | article | eng |
dcterms.references | Stippler M. Craniocerebral trauma. In: Daroff RB, Jankovic J, Mazziotta JC, Pomeroy SL, eds. Bradley’s Neurology in Clinical Practice. 7th ed. Philadelphia, PA: Elsevier; 2016: chap 62. | eng |
dcterms.references | Mezzadri J., Goland J., y Sokolvsky M. Introducción a la Neurocirugía. Capítulo: Patología vascular II. Ediciones Journal. Segunda edición. 2011. | spa |
dcterms.references | Vera M. Segmentación de estructuras cardiacas en imágenes de tomografía computarizada multi-corte. Ph.D. dissertation, Universidad de los Andes, Mérida-Venezuela, 2014. | spa |
dcterms.references | Maiera A, Wigstrm L, Hofmann H, Hornegger J, Zhu L, Strobel N, Fahrig R. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT. Medical Physics. 2011;38(11):5896–909. | eng |
dcterms.references | Kroft L, De Roos A, Geleijns J. Artifacts in ECG–synchronized MDCT coronary angiography. American Journal of Roentgenology. 2007;189(3):581–91. | eng |
dcterms.references | Liao C., Xiao F., Wong J., Chiang I. Computer-aided diagnosis of intracranial hematoma with brain deformation on computed tomography. Computerized Medical Imaging and Graphics 34 (2010) 563–571. | eng |
dcterms.references | Dice, L. Measures of the amount of ecologic association between species. Ecology, vol. 26, n. 3, pp. 297-302. 1945. | eng |
dcterms.references | Kamnitsas K., Lediga C. , Newcombeb V., Simpsonb J. , Kaneb A. , Menonb D., Rueckerta D., Glockera B. Efficient Multi-Scale 3D CNN with fully connected CRF for Accurate Brain Lesion Segmentation. Medical Image Analysis, Vol 23, pp.1603-1659, 2017. | eng |
dcterms.references | Sezgin M., Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, vol. 13, pp. 146–165, 2004. | eng |
dcterms.references | Pham D., Xu C., Prince J.Current methods in medical image segmentation, Annual Review of Biomedical Engineering. vol. 2, pp. 315–337, 2000. | eng |
dcterms.references | Serra J. Image Analysis Using Mathematical Morphology. London, England: Academic Press, 1982. | eng |
dcterms.references | W. Pratt, Digital Image Processing. USA: John Wiley & Sons Inc, 2007. | eng |
dcterms.references | Mukhopadhyay S., Chanda B. A multiscale morphological approach to local contrast enhancement. Signal Processing, vol. 80, no. 4, pp. 685–696, 2000. | eng |
dcterms.references | Yu Z., Wei G., Zhen C., Jing T., Ling L. Medical images edge detection based on mathematical morphology. En Proceedings of the IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai–China, September 2005, pp. 6492–6495. | eng |
dcterms.references | Chen T., Wu Q., Rahmani R., Hughes J. A pseudo top-hat mathematical morphological approach to edge detection in dark regions. Pattern Recognition. 2002; 35(1):199–210. | eng |
dcterms.references | Passarielo G., Mora F. Imágenes Médicas, Adquisición, Análisis, Procesamiento e Interpretación. Venezuela: Equinoccio Universidad Simón Bolívar. 1995. | spa |
dcterms.references | Fischer M., Paredes J., Arce G. Weighted median image sharpeners for the world wide web. IEEE Transactions on Image Processing. 2002;11(7):717-27. | eng |
dcterms.references | V. Vapnik, Statistical Learning Theory. New York: John Wiley & Sons, 1998. | eng |
dcterms.references | E. Osuna, R. Freund, y F. Girosi, “Training support vector machines: an application to face detection.” en Conference on Computer Vision and Pattern Recognition (CVPR ’97), San Juan, Puerto Rico, 1997, pp. 130–136. | eng |
dcterms.references | A. Smola, “Learning with kernels,” Tesis de Doctorado, Technische Universitt Berlin,Germany, 1998. | eng |
dcterms.references | B. Scholkopf y A. Smola, Learning with Kernels: Support Vector Machines, Regularization,Optimization, and Beyond. Cambridge, MA, USA: The MIT Press, 2002. | eng |
dcterms.references | J. Suykens, T. V. Gestel, y J. D. Brabanter, Least Squares Support Vector Machines.UK: World Scientific Publishing Co., 2002. | eng |
dcterms.references | M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, y T. Poggio, “Pedestrian detection using wavelet templates,” en CVPR ’97: Conference on Computer Vision and Pattern Recognition (CVPR ’97). Washington, DC, USA: IEEE Computer Society, 1997, pp. 193–200. | eng |
dcterms.references | Hu T., Yan L., Yan Peng., Wang X., Yue G. Assessment of the ABC/2 Method of Epidural Hematoma Volume Measurement as Compared to Computer-Assisted Planimetric Analysis. Biological Research for Nursing. 2016, 18(1) 5-11. | eng |
dcterms.references | Freeman, W., Barrett, K., Bestic, J.,Meschia, J., Broderick, D., Brott, T. Computer-assisted volumetric analysis compared with ABC/2 method for assessing warfarinrelated intracranial hemorrhage volumes. 2008, Neurocritical Care, 9, 307–312. | eng |