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Segmentación automática de hematomas epidurales usando una técnica computacional, basada en operadores inteligentes: utilidad clínica

Abstract

This paper proposes a non-linear computational technique 
for the segmentation of epidural hematomas (EDH), present 
in 7 multilayer computed tomography brain imaging data-
bases. This technique consists of 3 stages developed in the 
three-dimensional domain, namely: pre-processing, segmen-
tation and quantification of the volume occupied by each of 
the segmented EDHs. To make value judgments about the 
performance of the proposed technique, the EDH dilated seg-
mentations, obtained automatically, and the EDH segmenta-
tions, generated manually by a neurosurgeon, are compared 
using the Dice coefficient (Dc). The combination of param-
eters linked to the highest Dc value, defines the optimal pa-
rameters of each of the computational algorithms that make 
up the proposed nonlinear technique. The obtained results 
allow the reporting of a Dc superior to 0.90 which indicates 
a good correlation between the manual segmentations and 
those produced by the computational technique developed.

Finally, as an immediate clinical application, considering the au-
tomatic segmentations, the volume of each hematoma is calcu-
lated considering both the voxel size of each database and the 
number of voxels that make up the segmented hematomas. 

Keywords: Brain Tomography, Epidural Hematomas, Nonlinear 
Computational Technique, Smart Operators, Segmentation. 

Este artículo propone una técnica computacional no lineal 
para la segmentación de los hematomas epidurales (EDH), 
presente en 7 bases de datos de imágenes cerebrales de 
tomografía multicapa. Esta técnica consta de 3 etapas desar-
rolladas en el dominio tridimensional, a saber: preprocesa-
miento, segmentación y cuantificación del volumen ocupado 
por cada uno de los EDH segmentados. Para hacer juicios de 
valor sobre el rendimiento de la técnica propuesta, las seg-
mentaciones dilatadas de EDH, obtenidas automáticamente, 
y las segmentaciones de EDH, generadas manualmente por 
un neurocirujano, se comparan utilizando el coeficiente de 
Dice (Dc). La combinación de parámetros vinculados al valor 
más alto de Dc define los parámetros óptimos de cada uno 
de los algoritmos computacionales que conforman la técnica 
no lineal propuesta. Los resultados obtenidos permiten el re-
porte de un Dc superior a 0.90 que indica una buena correl-
ación entre las segmentaciones manuales y las producidas 
por la técnica computacional desarrollada. Finalmente, como 
aplicación clínica inmediata, considerando las segmentacio-
nes automáticas, el volumen de cada hematoma se calcula 
considerando tanto el tamaño del vóxel de cada base de da-
tos como el número de vóxeles que conforman los hemato-
mas segmentados.

Palabras clave: Tomografía cerebral, Hematomas epidura-
les, Técnica computacional no lineal, Operadores inteligen-
tes, Segmentación.
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Introduction 

The segmentation of anatomical structures of the human 
brain, present in images acquired by any imaging modality, 
constitutes the starting point for the diagnosis of a large num-
ber of diseases or pathologies that affect the brain;, among 
these are intracranial hematomas which can be classified in 
various ways1,2. It is a known fact that digital neural images are 
accompanied by varied imperfections such as noise and arti-
facts3,4,5. These imperfections become real challenges, when 
computational strategies are implemented to generate the 
morphology (normal or abnormal) of the mentioned structures.

Reviewing the state of the art regarding segmentation of 
EDH’s, the works described below were found. Liao et al.6 
describe an automatic computational technique for the seg-
mentation of cerebral hematomas, considering the modality 
of multiscale computer tomography (MSCT). This technique 
consists of: a) Application of a filtering stage, based on the 
maximum filter (MaxF) and the mean filter (MF). b) Use of 
multiresolution Gaussian pyramids (MRGP) generated from 
the filtered images. c) Implementation of multiresolution level 
sets (MRLS) to obtain the EDH segmentations. They report an 
average Dice coefficient7 of 0.9140 for the segmented EDHs.

Recently, Kamnitsas et al.8, reported an automatic technique 
based on convolutional neural networks, that apply deep 
learning, for the segmentation of space-occupying lesions 
that include EDHs present in multimodality medical images. 
They report a Dice Coefficient (Dc) greater than 0.90 in the 
segmentation of this type of injury.

In the work presented in this paper we describe a non-linear 
computational technique (NLCT) for the segmentation of epi-
dural hematomas, as shown in 7 databases conformed by 
three-dimensional brain images of MSCT. This technique 
involves the stages of pre-processing, segmentation, post-
processing and quantification of EDH, via volume occupied 
by the hematoma in the skull. 

Materials and methods

A. Database: The databases (DB) used were supplied by the 
Central Hospital of San Cristóbal-Táchira-Venezuela. They 
were acquired through the MSCT modality and are consti-
tuted by three-dimensional images (3D), corresponding to the 
anatomical structures present in the head of 7 male patients.

B. Proposed computational technique for the automatic 
segmentation of epidural hematomas

In figure 1, a schematic diagram synthesizes the methods 
that make up our proposed technique, to segment the afore-
mentioned hematomas.

C. Pre-processing stage: 
Defining a volume of interest (VOI) which contains each 
hematoma to be considered: In figure 1, the phase which 
establishes a volume of interest corresponds to the block 
called Thresholding. Thresholding algorithms are, generally, 
simple structures and allow for efficient classification of the 
elements of an image considering one or more thresholds9. In 
the present work simple thresholding was used, allowing for 
discrimination between the anatomical structure of interest 
and the rest of the structures present in an image9,10.

Filtering phase: In the block diagram, presented in figure 
1, this phase corresponds to the morphological erosion and 
median filters. A brief explanation of both filters follows.

-	 Morphological Erosion Filter (MEF): 

In practice, Mathematical morphology11,12 is implemented 
through various morphological filters whose basic opera-
tors are erosion and dilation13. These operators are non-
linear spatial filters that can be applied to binary, gray-
scale or color images. In particular, the erosion (Ө) of a 
two-dimensional image (I), composed of gray levels, using 
a two-dimensional structuring element (SE), as shown in 
Equation 114,15.

Where min is the minimum gray level contained in SE, (s, t) 
and defines the size of the SE and (x, y) represents the posi-
tion of the pixel under study.

-	 Median Filter (MF): 
The median filter (MF) is also non-linear and it is used nor-
mally to minimize the impulsive-type noise present in the 
gray levels of the voxels neighboring the voxel object of 
study16. This type of filter is characterized by the conserva-
tion of the edges of the objects present in the image and it 
has the advantage that the final value, of the voxel, is a real 
value present in the image and not an average. In addition, 

Figure 1. Block diagram of the NLCT proposed for epidural hema-
tomas segmentation.
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the median filter is less sensitive to extreme values. One of 
the main drawbacks is that the computation time increases, 
substantially, as the size of the neighborhood increases17.

D. Segmentation stage
-	 Computer intelligence operators: Support vector machines 

(SVM).

Support vector machines (SVM) are paradigms that un-
dergo training and detection processes, and are based on 
both the Vapnik-Chervonenkis learning theory and the mini-
mization principle that considers structural risk18. SVMs can 
be considered as classification and functional approach 
tools19,20.

A variant of the SVM, called the least squares support vector 
machine (LSSVM), can be obtained using robust statistics, 
Fisher discriminant analysis and replacing the inequation 
system that governs the SVM, by an equivalent system of 
linear equations, which can be solved more efficiently21,22,23. 

In this work, the location of the seed voxel, to initialize the 
segmentation technique called Region Growing16 (RG), is 
calculated using LSSVM. For the purposes of this work, 
a radial base function (RBF) is considered in the LSSVM 
as the decision surface and, therefore, a formulation is ob-
tained that depends on the hyperparameters identified as: 
a) Error penalty parameter (γ) and b) a parameter to control 
the selectivity (σ2) of the LSSVM. 

In order to identify automatically the coordinates of the seed 
voxel, the following procedure was implemented:

i)	 A size reduction technique is applied, based on bicubic 
interpolation, optimal reduction factor, is matched with 
that obtained in [3]. The results of this reduction are sub-
sampled images of 64x64 pixels from filtered images of 
512x512.

ii)	A neurosurgeon selects, on the sub-sampled image, a ref-
erence point (P1) given by the centroid of the layer con-
taining the maximum blood pool occupied by the EDH. For 
this point, the manual coordinates that unambiguously es-
tablish their spatial location in each considered image are 
identified.

iii)	A LSSVM is implemented to recognize and detect point 
P1. For this, the processes of: 

Training. Training circle circular neighborhoods of 10 pixels 
are selected, manually traced by a neurosurgeon, containing 
both point P1 (markers) and regions not containing P1 (no 
markers) are selected as a training set. 

Then, each neighborhood is vectorized and, considering its 
gray levels, the attributes are calculated: mean, variance, 
standard deviation and median. Thus, both markers and non-
markers are described by vectors (Va) of statistical attributes, 
given by: Va = [mean, variance, standard deviation and me-
dian]. Additionally, the LSSVM is trained considering the vec-
tors Va as a training pattern and intoning the values of the 
parameters that control its performance, γ and σ2.

The training set is constructed with a ratio of 1:10, which 
means that 10 non-markers are included for each marker. 
During training, a classifier with a decision boundary is gen-
erated to detect LSSVM entry patterns as markers or non-
markers. Subsequently, due to the presence of false positives 
and negatives, a process is applied that allows incorporating 
into the training set the patterns that the LSSVM initially clas-
sifies inappropriately. 

In this sense, we considered a toolbox called LS-SVMLAB 
and the Matlab15 application to implement an LSSVM classi-
fier based on a radial base gaussian kernel with parameters 
σ2 and γ.

Validation. The trained LSSVMs are used to detect P1, in im-
ages not used during training. To do this, a trained LSSVM looks 
for this reference point, in the axial view, from the first to the last 
image that makes up each of the 7 databases considered.

Finally, as a synthesis, figure 2 illustrates the process fol-
lowed to locate the seed voxel in the databases considered.

-	 Unsupervised clustering: Region Growing (RG).
Region Growing is an unsupervised grouping technique, 
which performs an iterative process that tries to character-
ize each of the classes, according to the similarity between 
the voxels that integrate every one of them and thus per-
form the segmentation16. The RG requires a “seed” point 
which can be selected, manually or automatically, to ex-
tract all the pixels connected to it.16. To apply the RG, to the 
pre-processed images, the following considerations were 
made: a) The initial neighborhood, which is constructed 
from the seed, is assigned a cubic shape whose side de-
pends on an arbitrary scalar r. The r parameter requires an 
intonation process. b) As a pre-defined criterion, modeling is 
chosen through Equation 2.

|I(x) − µ| < mσ         (2)

Figure 2. Synthetic diagram that illustrates the operation of the 
LSSVM for the detection of seed voxel coordinates.
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Where I(x) is the intensity of the seed voxel, μ and σ the arith-
metic mean and the standard deviation of the gray levels of the 
initial neighborhood and m a parameter that requires intonation.

-	 Binary dilation filter
In order to compensate the effect produced by the mor-
phological erosion filter, the application of a morphological 
dilation filter (MDF) is considered, taking into account the 
binary image obtained by RG. The effect of morphological 
dilation is to enlarge the regions of the maximum intensity 
image. In particular, the dilation (Ө) of a two-dimensional 
binary image (Ib), using a bidimensional structuring ele-
ment (B), is defined as the result of operating the Ib with 
the values of the SE under the logical operation OR14. For 
the purposes of this work, a cubic structuring element was 
considered and the size of said SE left as a parameter to 
control the performance of the dilatation process.

-	 Tuning parameters: Obtaining optimal parameters
The adequate performance of the proposed technique 
requires obtaining optimal parameters for each of the al-
gorithms that comprise it. To do this, Database 1 (DB1) 
was used as a reference, the parameters to be tuned as-
sociated with the technique are modified by systematically 
going through the values belonging to certain ranges, as 
described below.

The erosion, median and expansion filters have as pa-
rameter the size of the observation window. In order to 
reduce the number of possible combinations, an isotropic 
approach was considered so as to establish the range of 
values which control the size of the window, which is given 
by the odd combinations, given by the following ordered 
lists: (1,1,1), (3,3,3), (5,5,5), (7,7,7) and (9,9,9).

The parameters of the LSSVM, σ2 and γ, are toned assuming 
that the cost function is convex and developing tests based 
on the following steps:

In order to tone the parameter γ, the value of σ2 is arbitrarily 
set and values are systematically assigned to the parameter 
γ. The value of σ2 is initially set at 2.5. Now, γ is varied within 
the range [0,100] with a step size of 0.25. An analogous pro-
cess is applied to tone the parameter σ2; that is, γ is assigned 
the optimal value obtained in the previous step and a step 
size of 0.25 is used as valid to assign to σ the range of values 
contained in the interval [0.50]. 

During the intonation of the parameters of the RG, each one 
of the automatic segmentations of the EDH corresponding to 
the DB1 described, are compared with the manual segmenta-
tions of the EDH generated by a neurosurgeon, considering 
the Dc. The optimal values for the parameters of the RG (r 
and m), are matched to that experiment that generates the 
highest value for the Dc. 

The Dc is a metric that allows comparison of segmentations 
of the same 2D or 3D image, obtained by different methodol-
ogies. In the medical context, usually, the Dc is considered to 
establish how similar in spatial terms are manual segmenta-
tion (RD) and automatic segmentation (RP) in generating the 

morphology of any anatomical structure. Additionally, the Dc 
is at a maximum when a perfect overlap between RD and RP 
is reached but it is minimal when RD and RP do not overlap at 
all. In addition, the expected values for the Dc are real num-
bers between 0 and 1. The mathematical model that defines 
the Dc is given by Equation 3.

In addition, table 1 presents the information related to the pa-
rameters obtained after applying the tuning process.

Table 1. Optimal parameters for the computational algorithms that 
make up the NLCT.

MEF (Size) MF (Size) RG (r,m) MDF (Size)

(3,3,3) (5,5,5) (10,6)* (5,5,5)

 *Values corresponding to the maximum Dc=0.9023 value.

Obtaining the volumes related to manual segmentations: 
The volume of the hematomas, present in the original images, 
can be estimated manually by applying the following protocol, 
applicable only to epidural or intraparenchymal hematomas:

It is assumed that each hematoma, to be characterized, has 
an ellipsoidal shape. The volume of the hematoma is estimat-
ed, considering the axial layers, dividing by 2 the multiplica-
tion of the lengths A, B and C; where A and B are the lengths 
of the major and minor axis of the hematoma, respectively. 
Such lengths are measured in the image with the “pool” of 
blood, linked to the hematoma, of greater area. The length C 
is obtained by multiplying the number of layers, in which the 
hematoma is present, by the thickness (E) of each layer. 

Obtaining the volumes related to the automatic segmen-
tations: The proposed technique generates the automatic 
segmentations of the EDH present in each of the 7 databases 
described. From such segmentations, the volume of each he-
matoma to be characterized, is calculated by multiplying the 
voxel dimensions by the number of voxels that make up the 
automatically segmented EDH.

Clinical utility of the volumes occupied by the hemato-
mas: The main clinical utility of the characterization of the he-
matomas by obtaining the volume lies in the decision-making 
on the behavior to be followed to address the presence of the 
hematomas. 24,25. 

Results

Quantitative results: Regarding the trained LSSVM, the val-
ues of 2.50 and 0.25, respectively, were obtained as optimal 
parameters for γ and σ2. The maximum value of the Dc ob-
tained for the segmentation of the EDH is comparable with 
that reported in references6,8, as shown in table 2.
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Table 2. Comparison of the average Dc generated both by the 
NLCT and other techniques, reported in the literature, for the 3D 
EDHs segmentation. 

Authors Technique Modality Dc Average

Liao et al.
(2010)6

 (MaxF + PF + MRGP + 
MRLS) MSCT 0.9140

Kamnitsas et al
(2017)8

Convolutional neural 
networks MSCT 0.9037

Vera et al.* NLCT MSCT 0.9003

*This paper’s proposed technique.

Qualitative results: Figure 3, shows a 2-D view of both the 
original image and the processed versions after applying the 
NLCT technique.

     

Additionally, table 3 shows the values for the volume calcu-
lated considering the automatic segmentations of the EDHs.

Table 3. Values obtained for the volume occupied by each of the 
segmented hematomas.
Database Volume (cm3)
DB1 9.546

DB2 56.220

DB3 56.893

DB4 30.689

DB5 47.022

DB6 65.041

DB7 23.485

It is important to note that one of the main clinical utilities of 
these numeric values, for the volumes, is that they crucially 
determine the conduct to be followed regarding the patient. 
On the other hand, if only volume is considered, hematomas 
that exceed the threshold of 30 cm3 are susceptible to sur-
gery. Following this line, the patients represented by the data-
bases from 2 to 6, according to the calculated volume should 
be taken to the operating room.

Conclusions 

We have presented a non-linear computational technique 
whose intonation allows a precise segmentation of cerebral 
epidural hematomas, present in computed tomography im-
ages, since the Dc obtained is comparable to that reported 
in the literature. 

The use of intelligent operators, represented by the least 
squares support vector machines, allowed for the automatic 
identification of the coordinates corresponding to the seed vox-
els that play a crucial role in the adequate initialization of the 
unsupervised grouping algorithm based on growth of regions.

The segmentations generated, automatically, by the pro-
posed computational technique allow the calculation of the 
volume of each hematoma considered. This volume is vital 
when deciding whether a patient is surgically treated or not to 
address the hematoma. 
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