Caracterización Genómica del Bacteriófago vB_EcoP_BaqEco_A
datacite.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.contributor.advisor | Lozano Solano, Dayan | |
dc.contributor.author | Quiñones Vásquez, Solangie | |
dc.date.accessioned | 2025-07-01T21:55:28Z | |
dc.date.available | 2025-07-01T21:55:28Z | |
dc.date.issued | 2025 | |
dc.description.abstract | La resistencia a los antibióticos representa una amenaza creciente para la salud pública global, lo que ha impulsado la búsqueda urgente de estrategias terapéuticas alternativas. Los bacteriófagos, en especial aquellos que codifican enzimas líticas como las endolisinas, han surgido como agentes prometedores capaces de eliminar bacterias resistentes sin afectar las células humanas ni alterar la microbiota beneficiosa. No obstante, la escasa caracterización genómica y funcional de nuevos fagos limita su aplicación clínica. En este estudio, se caracterizó el fago vB_EcoP_BaqEcoA, evidenciando una organización genómica modular y la presencia de un gen que codifica un ARNt para arginina. Esta característica podría mejorar su eficiencia lítica contra Escherichia coli y respalda su clasificación dentro de la familia Kuravirus. Estos hallazgos contribuyen al creciente catálogo de fagos con potencial terapéutico y destacan la importancia de seguir explorando la biodiversidad fágica como herramienta frente a infecciones bacterianas multirresistentes. | spa |
dc.description.abstract | Antibiotic resistance poses a growing threat to global public health, prompting the urgent need for alternative therapeutic strategies. Bacteriophages, particularly those encoding lytic enzymes such as endolysins, have emerged as promising agents capable of selectively targeting resistant bacteria without harming human cells or disrupting beneficial microbiota. Despite this potential, the limited genomic and functional characterization of novel phages hinders their clinical application. In this study, we characterized the phage vB_EcoP_BaqEcoA, revealing a modular genomic organization and the presence of a gene encoding a tRNA for arginine. This genomic feature may enhance its lytic efficiency against Escherichia coli and supports its classification within the Kuravirus family. These findings contribute to the expanding catalog of phages with therapeutic potential and highlight the importance of continued exploration of phage biodiversity for combating multidrug-resistant bacterial infections. | eng |
dc.format.mimetype | ||
dc.identifier.uri | https://hdl.handle.net/20.500.12442/16780 | |
dc.language.iso | spa | |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias Básicas y Biomédicas | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | eng |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Bacteriófago | spa |
dc.subject | Escherichia coli | spa |
dc.subject | Fagoterapia | spa |
dc.subject | Anotación | spa |
dc.subject.keywords | Bacteriophage | eng |
dc.subject.keywords | Escherichia coli | eng |
dc.subject.keywords | Phage therapy | eng |
dc.subject.keywords | Annotation | eng |
dc.title | Caracterización Genómica del Bacteriófago vB_EcoP_BaqEco_A | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.spa | Trabajo de grado máster | |
dcterms.references | Camacho Silvas LA. Resistencia bacteriana, una crisis actual. Rev Esp Salud Publica [Internet]. 2023 [cited 2025 May 2];97:e202302013. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10541255/ | spa |
dcterms.references | Hatfull GF, Dedrick RM, Schooley RT. Phage Therapy for Antibiotic-Resistant Bacterial Infections. Annu Rev Med [Internet]. 2022 Jan 27 [cited 2025 May 2];73(Volume 73, 2022):197–211. Available from: https://www.annualreviews.org/content/journals/10.1146/annurev-med-080219-122208 | eng |
dcterms.references | Cooper CJ, Koonjan S, Nilsson AS. Enhancing Whole Phage Therapy and Their Derived Antimicrobial Enzymes through Complex Formulation. Pharmaceuticals 2018, Vol 11, Page 34 [Internet]. 2018 Apr 19 [cited 2025 May 2];11(2):34. Available from: https://www.mdpi.com/1424-8247/11/2/34/htm | eng |
dcterms.references | Bibby K. Improved Bacteriophage Genome Data is Necessary for Integrating Viral and Bacterial Ecology. Microb Ecol [Internet]. 2014 Feb 1 [cited 2025 May 2];67(2):242–4. Available from: https://link.springer.com/article/10.1007/s00248-013-0325-x | eng |
dcterms.references | Hatfull GF. The Secret Lives of Mycobacteriophages. Adv Virus Res [Internet]. 2012 [cited 2025 Apr 28];82:179–288. Available from: https://pubmed.ncbi.nlm.nih.gov/22420855/ | eng |
dcterms.references | Eghbalpoor F, Gorji M, Alavigeh MZ, Moghadam MT. Genetically engineered phages and engineered phage-derived enzymes to destroy biofilms of antibiotics resistance bacteria. Heliyon [Internet]. 2024 Aug 15 [cited 2025 May 4];10(15). Available from: https://pubmed.ncbi.nlm.nih.gov/39170521/ | eng |
dcterms.references | Hatfull GF. Dark Matter of the Biosphere: the Amazing World of Bacteriophage Diversity. J Virol [Internet]. 2015 Aug 15 [cited 2025 Apr 28];89(16):8107–10. Available from: /doi/pdf/10.1128/jvi.01340- 15?download=true | eng |
dcterms.references | Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nature Medicine 2019 25:5 [Internet]. 2019 May 8 [cited 2025 Jun 18];25(5):730–3. Available from: https://www.nature.com/articles/s41591-019-0437-z | eng |
dcterms.references | Ellis EL, Delbrück M. THE GROWTH OF BACTERIOPHAGE. Journal of General Physiology. 1939 Jan 20;22(3):365–84. | eng |
dcterms.references | Doermann AH. Lysis and Lysis Inhibition with Escherichia coli Bacteriophage. J Bacteriol [Internet]. 1948 Feb 1 [cited 2025 May 1];55(2):257–76. Available from: /doi/pdf/10.1128/jb.55.2.257- 276.1948?download=true | eng |
dcterms.references | Luria SE, Delbrück M. MUTATIONS OF BACTERIA FROM VIRUS SENSITIVITY TO VIRUS RESISTANCE. Genetics [Internet]. 1943 Nov 20 [cited 2025 May 1];28(6):491–511. Available from: https://dx.doi.org/10.1093/genetics/28.6.491 | eng |
dcterms.references | Kellenberger E. DNA viruses: cooperativity and regulation through conformational changes as features of phage assembly. Philos Trans R Soc Lond B Biol Sci [Internet]. 1976 [cited 2025 May 1];276(943):3–13. Available from: https://pubmed.ncbi.nlm.nih.gov/13433/ | eng |
dcterms.references | ZINDER ND, LEDERBERG J. Genetic exchange in Salmonella. J Bacteriol [Internet]. 1952 Nov [cited 2025 May 1];64(5):679–99. Available from: /doi/pdf/10.1128/jb.64.5.679-699.1952?download=true | eng |
dcterms.references | BERTANI G, WEIGLE JJ. Host controlled variation in bacterial viruses. J Bacteriol [Internet]. 1953 Feb [cited 2025 May 2];65(2):113–21. Available from: /doi/pdf/10.1128/jb.65.2.113-121.1953?download=true | eng |
dcterms.references | Arber W, Dussoix D. Host specificity of DNA produced by Escherichia coli: I. Host controlled modification of bacteriophage λ. J Mol Biol [Internet]. 1962 Jul 1 [cited 2025 May 2];5(1):18–36. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0022283662800588 | eng |
dcterms.references | Kortright KE, Chan BK, Koff JL, Turner PE. Phage Therapy: A Renewed Approach to Combat Antibiotic Resistant Bacteria. Cell Host Microbe [Internet]. 2019 Feb 13 [cited 2025 Jun 18];25(2):219–32. Available from: https://pubmed.ncbi.nlm.nih.gov/30763536/ | eng |
dcterms.references | A. NS, B. EH, V. OL, A. OT. Los bacteriófagos como una alternativa en el tratamiento de enfermedades infecciosas Bacterianas (Fagoterapia). Revista Mexicana de Ciencias Farmacéuticas [Internet]. 2010 [cited 2025 Apr 28];41(3):17–26. Available from: https://www.redalyc.org/articulo.oa?id=57916078003 | spa |
dcterms.references | White HE, Orlova E V., White HE, Orlova E V. Bacteriophages: Their Structural Organisation and Function. Bacteriophages - Perspectives and Future [Internet]. 2019 May 21 [cited 2025 May 3]; Available from: https://www.intechopen.com/chapters/66740 | eng |
dcterms.references | On an invisible microbe antagonistic to dysentery bacilli . Note by M. F. d’Herelle, presented by M. Roux. Comptes Rendus Academie des Sciences 1917; 165:373–5 . Bacteriophage [Internet]. 2011 Jan [cited 2025 May 3];1(1):3–5. Available from: http://www.tandfonline.com/doi/pdf/10.4161/bact.1.1.14941 | eng |
dcterms.references | Diallo K, Dublanchet A. A Century of Clinical Use of Phages: A Literature Review. Antibiotics 2023, Vol 12, Page 751 [Internet]. 2023 Apr 13 [cited 2025 May 2];12(4):751. Available from: https://www.mdpi.com/2079-6382/12/4/751/htm | eng |
dcterms.references | Brady A, Felipe-Ruiz A, Gallego Del Sol F, Marina A, Quiles-Puchalt N, Penadés JR. Molecular Basis of Lysis Lysogeny Decisions in Gram-Positive Phages. Annu Rev Microbiol [Internet]. 2021 Oct 8 [cited 2025 May 3];75(Volume 75, 2021):563–81. Available from: https://www.annualreviews.org/content/journals/10.1146/annurev-micro-033121-020757 | eng |
dcterms.references | Clokie MRJ, Millard AD, Letarov A V., Heaphy S. Phages in nature. Bacteriophage [Internet]. 2011 Jan [cited 2025 Apr 28];1(1):31–45. Available from: https://pubmed.ncbi.nlm.nih.gov/21687533/ | eng |
dcterms.references | Guliy OI, Evstigneeva SS. Bacteria- and Phage-Derived Proteins in Phage Infection. Front Biosci (Landmark Ed) [Internet]. 2025 Feb 1 [cited 2025 May 3];30(2):24478. Available from: https://www.imrpress.com/journal/FBL/30/2/10.31083/FBL24478/htm | eng |
dcterms.references | Domingo-Calap P, Delgado-Martínez J. Bacteriophages: Protagonists of a Post-Antibiotic Era. Antibiotics 2018, Vol 7, Page 66 [Internet]. 2018 Jul 27 [cited 2025 Apr 29];7(3):66. Available from: https://www.mdpi.com/2079-6382/7/3/66/htm | eng |
dcterms.references | Fuentes Valencia MA, Gil Correa AC, Martínez Palacios CA, Baizabal Aguirre VM, Valdez Alarcón JJ. El enemigo de mi enemigo es… Un virus que ataca a las bacterias: los bacteriófagos. Revista Digital Universitaria. 2021 Jul 1;22(4). | spa |
dcterms.references | Ackermann HW. Bacteriophage observations and evolution. Res Microbiol [Internet]. 2003 May 1 [cited 2025 Apr 29];154(4):245–51. Available from: https://www.sciencedirect.com/science/article/pii/S0923250803000676?via%3Dihub | eng |
dcterms.references | Orlova EV, Orlova EV. Bacteriophages and Their Structural Organisation. Bacteriophages [Internet]. 2012 Mar 14 [cited 2025 Apr 29]; Available from: https://www.intechopen.com/chapters/32276 | eng |
dcterms.references | Turner D, Shkoporov AN, Lood C, Millard AD, Dutilh BE, Alfenas-Zerbini P, et al. Abolishment of morphology-based taxa and change to binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee. Arch Virol [Internet]. 2023 Feb 1 [cited 2025 Apr 30];168(2):1–9. Available from: https://link.springer.com/article/10.1007/s00705-022-05694-2 | eng |
dcterms.references | Simmonds P, Adriaenssens EM, Lefkowitz EJ, Oksanen HM, Siddell SG, Zerbini FM, et al. Changes to virus taxonomy and the ICTV Statutes ratified by the International Committee on Taxonomy of Viruses (2024). Archives of Virology 2024 169:11 [Internet]. 2024 Nov 3 [cited 2025 May 2];169(11):1–12. Available from: https://link.springer.com/article/10.1007/s00705-024-06143-y | eng |
dcterms.references | Wright A, Hawkins CH, Änggård EE, Harper DR. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; A preliminary report of efficacy. Clinical Otolaryngology [Internet]. 2009 Aug [cited 2025 Apr 28];34(4):349–57. Available from: https://pubmed.ncbi.nlm.nih.gov/19673983/ | eng |
dcterms.references | Fabijan AP, Iredell J, Danis-Wlodarczyk K, Kebriaei R, Abedon ST. Translating phage therapy into the clinic: Recent accomplishments but continuing challenges. PLoS Biol [Internet]. 2023 May 1 [cited 2025 May 2];21(5):e3002119. Available from: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3002119 | eng |
dcterms.references | Jimenez Quiceno MSc, PhD. JN, Gallego Gómez MA. Bacteriófagos más allá de la fagoterapia. Hechos Microbiológicos. 2022 Aug 16;13(1):20–36. | spa |
dcterms.references | Hagens S, Loessner M. Bacteriophage for Biocontrol of Foodborne Pathogens: Calculations and Considerations. Curr Pharm Biotechnol [Internet]. 2010 Feb 14 [cited 2025 Apr 28];11(1):58–68. Available from: https://pubmed.ncbi.nlm.nih.gov/20214608/ | eng |
dcterms.references | Hagens S, Loessner MJ. Phages of Listeria offer novel tools for diagnostics and biocontrol. Front Microbiol [Internet]. 2014 [cited 2025 May 2];5(APR). Available from: https://pubmed.ncbi.nlm.nih.gov/24782847/ | eng |
dcterms.references | Almutairi M, Imam M, Alammari N, Hafiz R, Patel F, Alajel S. Using Phages to Reduce Salmonella Prevalence in Chicken Meat: A Systematic Review. PHAGE: Therapy, Applications, and Research [Internet]. 2022 Mar 1 [cited 2025 May 2];3(1):15–27. Available from: https://pubmed.ncbi.nlm.nih.gov/36161190/ | eng |
dcterms.references | Jaruszewicz-Błońska J, Lipniacki T. Genetic toggle switch controlled by bacterial growth rate. BMC Syst Biol [Internet]. 2017 Dec 2 [cited 2025 May 4];11(1):1–11. Available from: https://bmcsystbiol.biomedcentral.com/articles/10.1186/s12918-017-0483-4 | eng |
dcterms.references | Tenaillon O, Skurnik D, Picard B, Denamur E. The population genetics of commensal Escherichia coli. Nat Rev Microbiol [Internet]. 2010 Mar [cited 2025 Apr 29];8(3):207–17. Available from: https://pubmed.ncbi.nlm.nih.gov/20157339/ | eng |
dcterms.references | Nash JHE, Villegas A, Kropinski AM, Aguilar-Valenzuela R, Konczy P, Mascarenhas M, et al. Genome sequence of adherent-invasive Escherichia coli and comparative genomic analysis with other E. coli pathotypes. BMC Genomics [Internet]. 2010 Nov 25 [cited 2025 May 4];11(1):1–15. Available from: https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-11-667 | spa |
dcterms.references | Clements A, Young JC, Constantinou N, Frankel G. Infection strategies of enteric pathogenic Escherichia coli. Gut Microbes [Internet]. 2012 Mar [cited 2025 May 4];3(2):71–87. Available from: https://scholar.google.com/scholar_url?url=https://www.tandfonline.com/doi/pdf/10.4161/gmic.19182 &hl=es&sa=T&oi=ucasa&ct=ufr&ei=KSwZaJDoHpPOieoPlcDpoQc&scisig=AAZF9b_LtkQNVqljQIag4D04JzB n | eng |
dcterms.references | Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev [Internet]. 2013 Oct [cited 2025 May 3];26(4):822– 80. Available from: /doi/pdf/10.1128/cmr.00022-13?download=true | eng |
dcterms.references | Pitout JDD. Extraintestinal pathogenic Escherichia coli: A combination of virulence with antibiotic resistance. Front Microbiol [Internet]. 2012 Jan 19 [cited 2025 May 3];3(JAN):20728. Available from: www.frontiersin.org | eng |
dcterms.references | Ochieng JB, Powell H, Sugerman CE, Omore R, Ogwel B, Juma J, et al. Epidemiology of Enteroaggregative, Enteropathogenic, and Shiga Toxin-Producing Escherichia coli among Children Aged <5 Years in 3 Countries in Africa, 2015-2018: Vaccine Impact on Diarrhea in Africa (VIDA) Study. Clinical Infectious Diseases [Internet]. 2023 Apr 1 [cited 2025 May 3];76(76 Suppl1):S77–86. Available from: https://pubmed.ncbi.nlm.nih.gov/37074433/ | eng |
dcterms.references | Osborn B, Hatfield J, Lanier W, Wagner J, Oakeson K, Casey R, et al. Shiga Toxin–Producing Escherichia coli O157:H7 Illness Outbreak Associated with Untreated, Pressurized, Municipal Irrigation Water — Utah, 2023. MMWR Morb Mortal Wkly Rep [Internet]. 2024 May 9 [cited 2025 May 3];73(18):411–6. Available from: https://www.cdc.gov/mmwr/volumes/73/wr/mm7318a1.htm | eng |
dcterms.references | Patotipos diarreagénicos emergentes de escherichia coli en colombia | Innovaciencia [Internet]. [cited 2025 May 3]. Available from: https://revistas.udes.edu.co/innovaciencia/article/view/1882 | spa |
dcterms.references | Gómez-Duarte OG. Acute diarrheal disease caused by enteropathogenic Escherichia coli in Colombia. Revista chilena de infectología [Internet]. 2014 [cited 2025 May 3];31(5):577–86. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716- 10182014000500010&lng=en&nrm=iso&tlng=en | eng |
dcterms.references | Surig D, Solano L. Análisis molecular in-silico del mecanismo de acción de las enzimas depolimerasas de los bacteriófagos vB_KpnP_BaqKPR2 de K. pneumoniae y vB_SauS_BaqSau1 de S. aureus. | spa |
dcterms.references | Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014 Aug 1;30(15):2114–20. | eng |
dcterms.references | Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology. 2012 May;19(5):455–77. | eng |
dcterms.references | Mikheenko A, Saveliev V, Gurevich A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics. 2016 Apr 1;32(7):1088–90. | eng |
dcterms.references | Holt A, Saldana R, Moreland R, Gill JJ, Liu M, Ramsey J. Complete Genome Sequence of Escherichia coli Phage Paul. Microbiol Resour Announc [Internet]. 2019 Oct 10 [cited 2025 May 4];8(41). Available from: https://pubmed.ncbi.nlm.nih.gov/31601672/ | eng |
dcterms.references | Escherichia phage vB_EcoP_IMEP8, complete genome - Nucleotide - NCBI [Internet]. [cited 2025 May 3]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/NC_070993.1 | eng |
dcterms.references | Escherichia phage vB_EcoP_WFI101126, complete genome - Nucleotide - NCBI [Internet]. [cited 2025 May 3]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/NC_070991.1 | eng |
dcterms.references | Li Y, Chen M, Tang F, Yao H, Lu C, Zhang W. Complete Genome Sequence of the Novel Lytic Avian Pathogenic Coliphage NJ01. J Virol [Internet]. 2012 Dec 15 [cited 2025 May 4];86(24):13874–5. Available from: https://pubmed.ncbi.nlm.nih.gov/23166270/ | eng |
dcterms.references | Escherichia phage phiEco32, complete genome - Nucleotide - NCBI [Internet]. [cited 2025 May 3]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/NC_010324.1 | eng |
dcterms.references | Mirzaei MK, Eriksson H, Kasuga K, Haggård-Ljungquist E, Nilsson AS. Genomic, proteomic, morphological, and phylogenetic analyses of vB-EcoP-SU10, a podoviridae phage with C3 morphology. PLoS One [Internet]. 2014 Dec 31 [cited 2025 May 4];9(12). Available from: https://pubmed.ncbi.nlm.nih.gov/25551446/ | eng |
dcterms.references | Escherichia phage ES17, complete genome - Nucleotide - NCBI [Internet]. [cited 2025 May 3]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/NC_070984.1 | eng |
dcterms.references | Escherichia phage EC.W14-3, complete genome - Nucleotide - NCBI [Internet]. [cited 2025 May 3]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/2707984722 | eng |
dcterms.references | Escherichia phage LAMP, complete genome - Nucleotide - NCBI [Internet]. [cited 2025 May 3]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/MG673519.1 | eng |
dcterms.references | Escherichia phage vB_EcoP_PAS59, complete genome - Nucleotide - NCBI [Internet]. [cited 2025 May 3]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/2575778061 | eng |
dcterms.references | Escherichia phage ECBP2, complete genome - Nucleotide - NCBI [Internet]. [cited 2025 May 3]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/NC_018859.1 | eng |
dcterms.references | Escherichia phage vB_EcoP_SU7, complete genome - Nucleotide - NCBI [Internet]. [cited 2025 May 3]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/NC_070980.1?report=genbank&log$=seqview | eng |
dcterms.references | Escherichia phage vB_EcoP-101114BS3, complete genome - Nucleotide - NCBI [Internet]. [cited 2025 May 3]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/2258626750 | eng |
dcterms.references | Escherichia phage vB_EcoP-101114UKE3, complete genome - Nucleotide - NCBI [Internet]. [cited 2025 May 3]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/NC_070982.1 | eng |
dcterms.references | Escherichia phage KBNP1711, complete genome - Nucleotide - NCBI [Internet]. [cited 2025 May 3]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/NC_023593.1 | eng |
dcterms.references | Escherichia phage AV128, complete genome - Nucleotide - NCBI [Internet]. [cited 2025 May 3]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/OR352958.1 | eng |
dcterms.references | Escherichia phage EP335, complete genome - Nucleotide - NCBI [Internet]. [cited 2025 May 3]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/NC_070979.1 | eng |
dcterms.references | Escherichia phage IME267, complete genome - Nucleotide - NCBI [Internet]. [cited 2025 May 3]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/NC_070983.1 | eng |
dcterms.references | Escherichia phage EK010 DNA, complete sequence - Nucleotide - NCBI [Internet]. [cited 2025 May 3]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/NC_070981.1 | eng |
dcterms.references | Escherichia phage vB_EcoS_UTEC10, complete genome - Nucleotide - NCBI [Internet]. [cited 2025 May 3]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/2697036943 | eng |
dcterms.references | Escherichia phage fEg-Eco06, complete genome - Nucleotide - NCBI [Internet]. [cited 2025 May 3]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/2784346245 | eng |
dcterms.references | Escherichia phage ECO71P1, complete genome - Nucleotide - NCBI [Internet]. [cited 2025 May 3]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/2416391168 | eng |
dcterms.references | Escherichia phage vB_Eco4M-7n, complete genome - Nucleotide - NCBI [Internet]. [cited 2025 May 3]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/2718570947 | eng |
dcterms.references | Escherichia phage vB_EcoM_WFC, complete genome - Nucleotide - NCBI [Internet]. [cited 2025 May 3]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/NC_048195.1 | eng |
dcterms.references | Escherichia phage vB_EcoM_WFH, complete genome - Nucleotide - NCBI [Internet]. [cited 2025 May 3]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/NC_048194.1 | eng |
dcterms.references | Jacobs-Sera D, Abad LA, Alvey RM, Anders KR, Aull HG, Bhalla SS, et al. Genomic diversity of bacteriophages infecting Microbacterium spp. PLoS One. 2020 Jun 1;15(6). | eng |
dcterms.references | Cui J, Zhong W, Liu W, Zhang C, Zou L, Ren H. Whole genome sequencing and annotation of a lysogenic phage vB_EcoP_DE5 isolated from donkey-derived Escherichia coli. Virus Genes [Internet]. 2023 Apr 1 [cited 2025 May 3];59(2):290–300. Available from: https://link.springer.com/article/10.1007/s11262- 022-01964-y | eng |
dcterms.references | Brouillard-Galipeau M, Chau BA, Cyr J, Intrevado R, Kim S, Koger-Pease C, et al. Genome Annotation of Novel K1 Subcluster Mycobacteriophage Blizzard. McGill Science Undergraduate Research Journal [Internet]. 2022 Apr 8 [cited 2025 May 3];17(1):23–9. Available from: https://msurjonline.mcgill.ca/article/view/173 | eng |
dcterms.references | Zsak L, Day JM, Oakley BB, Seal BS. The complete genome sequence and genetic analysis of φφCA82 a novel uncultured microphage from the turkey gastrointestinal system. Virol J [Internet]. 2011 Jun 29 [cited 2025 May 3];8(1):1–7. Available from: https://virologyj.biomedcentral.com/articles/10.1186/1743- 422X-8-331 | eng |
dcterms.references | Lima-Mendez G, Toussaint A, Leplae R. A modular view of the bacteriophage genomic space: identification of host and lifestyle marker modules. Res Microbiol [Internet]. 2011 Oct 1 [cited 2025 Apr 30];162(8):737–46. Available from: https://www.sciencedirect.com/science/article/pii/S0923250811001112?via%3Dihub | eng |
dcterms.references | Lomeli-Ortega CO, Balcázar JL. Why tRNA acquisition could be relevant to bacteriophages? Microb Biotechnol [Internet]. 2024 Apr 1 [cited 2025 May 3];17(4):e14464. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC11025619/ | eng |
dcterms.references | Bailly-Bechet M, Vergassola M, Rocha E. Causes for the intriguing presence of tRNAs in phages. Genome Res [Internet]. 2007 Oct [cited 2025 May 19];17(10):1486–95. Available from: https://pubmed.ncbi.nlm.nih.gov/17785533/ | eng |
dcterms.references | Wang Y, Tsao ML. Reassigning Sense Codon AGA to Encode Noncanonical Amino Acids in Escherichia coli. ChemBioChem [Internet]. 2016 Dec 2 [cited 2025 May 19];17(23):2234–9. Available from: /doi/pdf/10.1002/cbic.201600448 | eng |
dcterms.references | Mruk I, Kaczorowski T, Witczak A. Natural tuning of restriction endonuclease synthesis by cluster of rare arginine codons. Sci Rep [Internet]. 2019 Dec 1 [cited 2025 May 19];9(1). Available from: https://pubmed.ncbi.nlm.nih.gov/30967604/ | eng |
dcterms.references | Abedon ST, Danis-Wlodarczyk KM, Wozniak DJ. Phage cocktail development for bacteriophage therapy: Toward improving spectrum of activity breadth and depth. Pharmaceuticals [Internet]. 2021 Oct 1 [cited 2025 May 3];14(10):1019. Available from: https://www.mdpi.com/1424-8247/14/10/1019/htm | eng |
dcterms.references | Menor-Flores M, Vega-Rodríguez MA, Molina F. Computational design of phage cocktails based on phage-bacteria infection networks. Comput Biol Med [Internet]. 2022 Mar 1 [cited 2025 May 3];142:105186. Available from: https://www.sciencedirect.com/science/article/pii/S001048252100980X?via=ihub | eng |
dcterms.references | Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596:7873 [Internet]. 2021 Jul 15 [cited 2025 May 19];596(7873):583–9. Available from: https://www.nature.com/articles/s41586-021-03819-2 | eng |
dcterms.references | Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science (1979) [Internet]. 2021 Aug 20 [cited 2025 May 19];373(6557):871–6. Available from: /doi/pdf/10.1126/science.abj8754 | eng |
dcterms.references | Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL 0003 3527 8101, Solden LM, et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res [Internet]. 2020 Sep 18 [cited 2025 May 19];48(16):8883–900. Available from: https://dx.doi.org/10.1093/nar/gkaa621 | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | |
sb.investigacion | Genética microbiana | spa |
sb.programa | Maestría en Genética | spa |
sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: