Inteligencia artificial como instrumento para la toma de decisiones gerenciales en PYMES
| datacite.rights | http://purl.org/coar/access_right/c_f1cf | |
| dc.contributor.advisor | Monsalve Peláez, Magda Andrea | |
| dc.contributor.author | Álvarez Fontalvo, Alberto Mario | |
| dc.date.accessioned | 2025-08-27T20:09:12Z | |
| dc.date.available | 2025-08-27T20:09:12Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Este trabajo de investigación se centra en el análisis del papel que desempeña la Inteligencia Artificial (IA) como herramienta estratégica para la toma de decisiones gerenciales en las pequeñas y medianas empresas (PYMES) de Barranquilla. El objetivo principal fue identificar buenas prácticas de implementación que contribuyan a mejorar la eficiencia organizacional, la competitividad y la sostenibilidad de estas empresas en un entorno cada vez más dinámico y digitalizado. Desde una perspectiva teórica, el estudio se fundamenta en los postulados de la Industria 4.0 y 5.0, que promueven la integración de tecnologías avanzadas en los procesos productivos y de gestión. Asimismo, se incorporan conceptos clave de la gestión del conocimiento, la transformación digital y los modelos de toma de decisiones basados en datos, reconociendo que la IA no solo representa una herramienta tecnológica, sino también un catalizador de cambio organizacional. La investigación destaca que la IA tiene el potencial de optimizar procesos internos, reducir costos operativos, personalizar servicios al cliente, mejorar la capacidad predictiva y facilitar la toma de decisiones informadas. Sin embargo, también se identifican barreras significativas para su adopción en el contexto de las PYMES, tales como la escasez de recursos financieros, la falta de talento humano capacitado en tecnologías emergentes, y la ausencia de marcos éticos y normativos claros que orienten su uso responsable. | spa |
| dc.description.abstract | This research work focuses on the analysis of the role played by Artificial Intelligence (AI) as a strategic tool for managerial decision-making in small and medium-sized enterprises (SMEs) in Barranquilla. The main objective was to identify good implementation practices that contribute to improving the organizational efficiency, competitiveness and sustainability of these companies in an increasingly dynamic and digitized environment. From a theoretical perspective, the study is based on the postulates of Industry 4.0 and 5.0, which promote the integration of advanced technologies in production and management processes. It also incorporates key concepts from knowledge management, digital transformation, and data-driven decision-making models, recognizing that AI not only represents a technological tool, but also a catalyst for organizational change. The research highlights that AI has the potential to optimize internal processes, reduce operational costs, personalize customer services, improve predictive capacity, and facilitate informed decision-making. However, significant barriers to its adoption in the context of SMEs are also identified, such as the scarcity of financial resources, the lack of human talent trained in emerging technologies, and the absence of clear ethical and regulatory frameworks to guide their responsible use. Methodologically, the study adopted a quantitative approach of documentary type, using bibliometric analysis and systematic review of scientific literature as its main technique. We worked with a universe of 7,690 documents extracted from the Scopus database, which were filtered and filtered to select 22 relevant publications that specifically addressed the application of AI in decision-making within SMEs. | spa |
| dc.format.mimetype | ||
| dc.identifier.uri | https://hdl.handle.net/20.500.12442/16888 | |
| dc.language.iso | spa | |
| dc.publisher | Ediciones Universidad Simón Bolívar | spa |
| dc.publisher | Facultad de Administración y Negocios | spa |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | eng |
| dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject | Inteligencia artificial | spa |
| dc.subject | Toma de decisiones | spa |
| dc.subject | PYMES | spa |
| dc.subject | Innovación | spa |
| dc.subject.keywords | Artificial Intelligence | eng |
| dc.subject.keywords | Decision making | eng |
| dc.subject.keywords | SMEs | eng |
| dc.subject.keywords | Innovation | eng |
| dc.title | Inteligencia artificial como instrumento para la toma de decisiones gerenciales en PYMES | spa |
| dc.type.driver | info:eu-repo/semantics/other | |
| dc.type.spa | Otros | |
| dcterms.references | Abrokwah-Larbi, K., & Awuku-Larbi, Y. (2024). The impact of artificial intelligence in marketing on the performance of business organizations: evidence from SMEs in an emerging economy. Journal of Entrepreneurship in Emerging Economies, 16(4), 1090-1117. | eng |
| dcterms.references | Agrawal, A., Gans, J., & Goldfarb, A. (2018). Prediction Machines: The simple economics of artificial intelligence: Harvard Business Press. | eng |
| dcterms.references | Aguirre-Contreras, D., Ceja-Pizano, J. J., & Pineda-Domínguez, D. (2023). Inteligencia artificial como alternativa de desarrollo de las PyMES mexicanas. Repositorio de la Red Internacional de Investigadores en Competitividad, 17. | spa |
| dcterms.references | Aljarboa, S. (2024). Factors influencing the adoption of artificial intelligence in e-commerce by small and medium-sized enterprises. International Journal of Information Management Data Insights, 4(2), 100285. | eng |
| dcterms.references | Allam, Z., & Dhunny, Z. A. (2019). On big data, artificial intelligence and smart cities. Cities, 89, 80-91. | eng |
| dcterms.references | Álvarez, P. D. G. (2021). El cambio y su impacto en las organizaciones. ACADEMO Revista de Investigación en Ciencias Sociales y Humanidades, 8(2), 213-220. | spa |
| dcterms.references | Aria, M., & Cuccurullo, C. (2017). Bibliometrix: an R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. | eng |
| dcterms.references | Arroyabe, M. F., Arranz, C. F., De Arroyabe, I. F., & de Arroyabe, J. C. F. (2024). Analyzing AI adoption in European SMEs: A study of digital capabilities, innovation, and external environment. Technology in Society, 79, 102733. | eng |
| dcterms.references | Ávila, H., Palumbo, G., De la Cruz, H., y Ogosi, J. (2022) Toma de decisiones estratégicas en la gestión pública para el desarrollo social. Revista Venezolana de Gerencia, 27(Especial 7), pp. 648-662. https:// doi.org/10.52080/rvgluz.27.7.42 | spa |
| dcterms.references | Banaszak, Z. A., Zaremba, M. B., & Muszyński, W. (2009). Constraint programming for project-driven manufacturing. International Journal of Production Economics, 120(2), 463-475. | eng |
| dcterms.references | Barata, S. F., Ferreira, F. A., Carayannis, E. G., & Ferreira, J. J. (2023). Determinants of E-commerce, artificial intelligence, and agile methods in smalland medium-sized enterprises. IEEE Transactions on Engineering Management, 71, 6903-6917. | eng |
| dcterms.references | Becerra, J. C. (2025). Estos son los proyectos de ley que buscan regular la IA en Colombia. ELESPECTADOR.COM. https://www.elespectador.com/tecnologia/estos-son-los-proyectos-de-ley-queestan-que-buscan-regular-la-ia-encolombia//?utm_source=interno&utm_medium=boton&utm_campaign=share_c ontent&utm_content=boton_copiar_articulos | spa |
| dcterms.references | Bolaños, J. P. (2021). Internacionalización progresiva de empresas exportadoras: El rol de la toma de decisiones, la formación de rutinas y la búsqueda y elección de alternativas (Doctoral dissertation, Tesis de Licenciatura, Universidad del Pacífico]. Repositorio Institucional UP. https://hdl. handle. net/11354/3109). | spa |
| dcterms.references | Bolívar, J. C. (2024). Barranquilla, abanderada en inteligencia artificial en América. ELESPECTADOR.COM. https://www.elespectador.com/contenidopatrocinado/barranquilla-abanderada-en-inteligencia-artificial-en-america/ | spa |
| dcterms.references | Boonsothonsatit, G. (2017). Generic decision support system to leverage supply chain performance (GLE) for SMEs in Thailand. Journal of Manufacturing Technology Management, 28(6), 737-748. | eng |
| dcterms.references | Borade, A. B., & Sweeney, E. (2015). Decision support system for vendor managed inventory supply chain: a case study. International Journal of Production Research, 53(16), 4789-4818. | eng |
| dcterms.references | Boy, A. M., Osorio, E. D., Rodríguez, L. R., y López, R. d. P. (2024). Inteligencia artificial en la toma de decisiones: implicaciones éticas y eficiencia. Revista venezolana De Gerencia, 29 (Especial 11), 342-355. https://doi.org/10.52080/rvgluz.29.e11.20 | spa |
| dcterms.references | Boy, A., Espinoza, A., Olmos, D., y Carlos, J. (2022) Percepción del liderazgo en organizaciones públicas en Lima, Perú. Revista Venezolana de Gerencia, 27(100), 1462-1473. https://doi.org/10.52080/ rvgluz.27.100.1 | spa |
| dcterms.references | Cano Molina, A. E., & Díaz Penagos, G. M. (2023). Retos de la Inteligencia artificial en Colombia. Un diagnóstico de los principales avances para el periodo 2018-2022. | spa |
| dcterms.references | Cappelli, P., & Rogovsky, N. G. (2023). Artificial intelligence in human resource management: A challenge for the human-centred agenda? (No. 95). ILO Working Paper. | eng |
| dcterms.references | Casado, E. G. (2021). El enfoque europeo de Inteligencia Artificial. Revista de Derecho Administrativo, (20), 268-289. | spa |
| dcterms.references | Cervantes, J. P., García, A. E., Cárdenas, J. E., & Pérez, L. M. (2024). Impacto de la inteligencia artificial en la Institución Universitaria Americana en la ciudad de Barranquilla. Ad-gnosis, 13(13). | spa |
| dcterms.references | CEPAL. (2018). Acerca de Microempresas y Pymes. Comisión Económica para América Latina y el Caribe (CEPAL). https://www.cepal.org/es/temas/pymes/acercamicroempresas-pymes. | spa |
| dcterms.references | Chanis, L. (2024). Tendencias y estrategias en la didáctica universitaria contemporánea con la aplicación de la inteligencia artificial. Entrelíneas, 3(1), 78-91. | spa |
| dcterms.references | Congreso de la República de Colombia. (2004). Ley 905 de 2004 por la cual se modifica la Ley 590 de 2000 sobre promoción del desarrollo de la micro, pequeña y mediana empresa. Diario Oficial N.º 45.628. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=14732 | spa |
| dcterms.references | Creswell, J. W., & Creswell, J. D. (2017). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (5th ed.). Sage Publications. | eng |
| dcterms.references | Czeczot, G., Rojek, I., Mikołajewski, D., & Sangho, B. (2023). AI in IIoT management of cybersecurity for industry 4.0 and industry 5.0 purposes. Electronics, 12(18), 3800. | eng |
| dcterms.references | Das, S. R., & Chen, M. Y. (2007). Yahoo! for Amazon: Sentiment extraction from small talk on the web. Management science, 53(9), 1375-1388. | eng |
| dcterms.references | Davenport, T. H. (2018). From analytics to artificial intelligence. Journal of Business Analytics, 1(2), 73- 8. | eng |
| dcterms.references | De Simone, V., Di Pasquale, V., & Miranda, S. (2023). An overview on the use of AI/ML in manufacturing MSMEs: Solved issues, limits, and challenges. Procedia Computer Science, 217, 1820–1829. https://doi.org/10.1016/j.procs.2022.12.382 | eng |
| dcterms.references | De Torres Ramírez, I. (2002). Las fuentes de información: metodología del repertorio bibliográfico. In Manual de Ciencias de la Documentación (pp. 317- 336). Pirámide. | spa |
| dcterms.references | Dey, P. K., Chowdhury, S., Abadie, A., Vann Yaroson, E., & Sarkar, S. (2024). Artificial intelligence-driven supply chain resilience in Vietnamese manufacturing small-and medium-sized enterprises. International Journal of Production Research, 62(15), 5417-5456. | eng |
| dcterms.references | Diestra, N. M., Cordova, A. J., Caruajulca, C. P., Esquivel, D. L. y Nina, S. A. (2021). La inteligencia artificial y la toma de decisiones gerenciales. Revista de Investigación Valor Agregado, 8(1), 52-69. | spa |
| dcterms.references | Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., ... & Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International journal of information management, 57, 101994. | eng |
| dcterms.references | Dwivedi, Y. K., Ismagilova, E., Hughes, D. L., Carlson, J., Filieri, R., Jacobson, J., ... & Wang, Y. (2021). Setting the future of digital and social media marketing research: Perspectives and research propositions. International journal of information management, 59, 102168. | eng |
| dcterms.references | Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., ... & Wright, R. (2023). Opinion Paper:“So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International journal of information management, 71, 102642. | eng |
| dcterms.references | Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A. A., ... & Welty, C. (2010). Building Watson: An overview of the DeepQA project. AI magazine, 31(3), 59-79. | eng |
| dcterms.references | Fiallos, B. G. V., Fajardo, J. C. J., Sánchez, J. E. M. D. O., & Villacís, M. M. Y. (2025). Enfoques estratégicos para la implementación de inteligencia artificial en PYMES de la ciudad de Coca, Provincia de Orellana. Dilemas contemporáneos: Educación, Política y Valores. | spa |
| dcterms.references | Garvey, C. (2019). Artificial intelligence and Japan’s fifth generation: The information society, neoliberalism, and alternative modernities. Pacific Historical Review, 88(4), 619-658. | eng |
| dcterms.references | Guendulay-León, K. A., Jiménez-Velásco, G., Acevedo-Martínez, J. A., & CruzCabrera, B. C. (2024). Gestión del conocimiento y pymes: un análisis bibliométrico de tendencias. Revista Universidad y Empresa, 26(46). | spa |
| dcterms.references | Guo, J. Y., Ragland, J. D., & Carter, C. S. (2019). Memory and cognition in schizophrenia. Molecular Psychiatry, 24(5), 633-642. https://doi.org/10.1038/s41380-018-0297-2 | eng |
| dcterms.references | Haefner, N., Wincent, J., Parida, V., y Gassmann, O. (2021). Artificial intelligence and innovation management: A review, framework, and research agenda. Technological Forecasting and Social Change, 162, 120-392. https://doi.org/10.1016/J.TECHFORE.2020.120392 | eng |
| dcterms.references | Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California management review, 61(4), 5-14. | eng |
| dcterms.references | hatterjee, S. (2020). AI strategy of India: Policy framework, adoption challenges and actions for government. Ransforming Government: People, Process and Policy, 14(5), 757–775. | eng |
| dcterms.references | Fernández, R. & Baptista, P. (2014). Metodología de la investigación. Sexta edición. México: McGraw-Hill. | spa |
| dcterms.references | OECD (2019). OECD SME and Entrepreneurship Outlook 2019. OECD Publishing, Paris, https://doi.org/10.1787/34907e9c-en. ISBN 978- 92-64- 35882-9 (pdf). | eng |
| dcterms.references | Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577– 586. https://doi.org/10.1016/j.bushor.2018.03.007 | eng |
| dcterms.references | Kalinaki, K., Yahya, U., Malik, O. A., & Lai, D. T. C. (2024). A Review of Big Data Analytics and Artificial Intelligence in Industry 5.0 for Smart DecisionMaking. Human-Centered Approaches in Industry 5.0: Human-Machine Interaction, Virtual Reality Training, and Customer Sentiment Analysis, 24-47. | eng |
| dcterms.references | Kantis, H., Menendez, C., Álvarez-Martínez, P., & Federico, J. (2023). Colaboración entre grandes empresas y startups: una nueva forma de innovación abierta. Tec Empresarial, 17(1), 70-93. | spa |
| dcterms.references | Kolbe, D., Calderón, H., & Frasquet, M. (2022). Multichannel integration through innovation capability in manufacturing SMEs and its impact on performance. Journal of Business & Industrial Marketing, 37(1), 115-127. | eng |
| dcterms.references | Kreitner, R.y Kinicki, A (2018). Comportamiento Organizacional. México: Editorial Mc. Graw Hill Interamericana. | spa |
| dcterms.references | Lu, J., Behbood, V., Hao, P., Zuo, H., Xue, S., & Zhang, G. (2015). Transfer learning using computational intelligence: A survey. Knowledge-Based Systems, 80, 14-23. | eng |
| dcterms.references | Magableh, I. K., Mahrouq, M. H., Ta’Amnha, M. A., & Riyadh, H. A. (2024). The Role of Marketing Artificial Intelligence in Enhancing Sustainable Financial Performance of Medium-Sized Enterprises Through Customer Engagement and Data-Driven Decision-Making. Sustainability, 16(24), 11279. | eng |
| dcterms.references | Maltrás, B. (2003). Los indicadores bibliométricos: fundamentos y aplicación al análisis de la ciencia. Trea. | spa |
| dcterms.references | Marino, A., Pariso, P., & Picariello, M. (2024). Digital Twin in SMEs: Implementing Advanced Digital Technologies for Engineering Advancements. In Macromolecular Symposia (Vol. 413, No. 3, p. 2300176). | eng |
| dcterms.references | Mariyana, A. L. D., Annaufal, A. I., & Roostika, R. (2024). The Impact of Artificial Intelligence on Small and Medium Enterprises in Yogyakarta. In Digital Technology and Changing Roles in Managerial and Financial Accounting: Theoretical Knowledge and Practical Application (pp. 347-354). Emerald Publishing Limited. | eng |
| dcterms.references | Melara, M. (2023). La Inteligencia Artificial en la administración de empresas. Revista Digital. Facultad de Ciencias Administrativas y Recursos Humanos, 6. | spa |
| dcterms.references | MINTIC. (2022). Sala de Noticia. Obtenido de Colombia adopta de formatemprana recomendaciones de ética en Inteligencia Artificial de la Unesco para laregión:https://mintic.gov.co/portal/inicio/Saladeprensa/Noticias/208109:Colombia-adopta-de-forma-tempranarecomendaciones-deetica-en-Inteligencia-Artificial-de-la-Unesco-paralaregion#:~:text=El%20%C3%ADndice%20posicion%C3%B3%20a%20Colomb ia,26%20entre%20160% | spa |
| dcterms.references | Modliński, A., & Gladden, M. E. (2022). An organizational metaphor for the 4th industrial revolution: the organization as Cyborg. World Futures, 78(6), 372- 391. | eng |
| dcterms.references | Molinillo, S., & Japutra, A. (2017). Organizational adoption of digital information and technology: a theoretical review. The Bottom Line, 30(01), 33-46. | eng |
| dcterms.references | Montañez, A., Pozo, C., Prado, H., y Chávez, J. (2020). Gestión Pública Emergente: algunos rasgos desde la perspectiva teórica. Revista Venezolana de Gerencia (RVG), 25(89), 13-25. | spa |
| dcterms.references | Morales, C. A. (2021). La Inteligencia Artificial en empresas peruanas e impactos laborales en los trabajadores. Iberoamerican Business Journal, 5(1), 83-105. | spa |
| dcterms.references | Moreno, E. G., & Balcázar, M. D. C. S. (2023). EFECTOS DE LA APLICACIÓN DE LA INTELIGENCIA ARTIFICIAL EN LA CONTABILIDAD Y LA TOMA DE DECISIONES. Gestión, 1(1). | spa |
| dcterms.references | North, K., Aramburu, N., & Lorenzo, O. J. (2020). Promoting digitally enabled growth in SMEs: a framework proposal. Journal of Enterprise Information Management, 33(1), 238-262. | eng |
| dcterms.references | Oldemeyer, L., Jede, A., & Teuteberg, F. (2024). Investigation of artificial intelligence in SMEs: a systematic review of the state of the art and the main implementation challenges. Management Review Quarterly, 1-43. | eng |
| dcterms.references | Oppedal Berge, L. I., & Kjetil, B. (2015). Human and financial capital for microenterprise development: Evidence from a field and lab experiment. Management science. 4, 707-722. | eng |
| dcterms.references | Panagou, S., W. P. Neumann, and F. Fruggiero. 2024. “A Scoping Review of Human Robot Interaction Research Towards Industry 5.0 Human-Centric Workplaces.” International Journal of Production Research 62 (3): 974–990. https://doi.org/10.1080/00207543.2023.2172473. | eng |
| dcterms.references | Panetta, K. (2018). Gartner Top 10 Strategic Technology Trends for 2018. Retrieved fromhttps://www.gartner.com/smarterwithgartner/gartner-top-10- strategic-technology-trends-for-2018/ | eng |
| dcterms.references | Pérez León, E. V., & Rojas Arévalo, D. I. (2019). Impacto de la inteligencia artificial en las empresas con un enfoque global. | spa |
| dcterms.references | Portafolio, R. (2022). Reducir costos, entre los motivos para adoptar inteligencia artificial. Portafolio.co. Recuperado de: https://www.portafolio.co/economia/finanzas/reducir-costos-entre-los-motivospara-adoptar-inteligencia-artificial-569103 | spa |
| dcterms.references | Pozzo, D. N., Beleño, C. A. G., Correa, K. R., Donado, M. G., Pedroza, F. J. G., & Diaz, J. E. M. (2024). Managers’ attitudes and behavioral intentions towards using artificial intelligence for organizational decision-making: A study with Colombian SMEs. Procedia Computer Science, 238, 956-961. | eng |
| dcterms.references | Proenca, J. C. (2024). Business innovation self-assessment with artificial intelligence support for small and medium-sized enterprises. Бизнес управление, (4), 5-17.Bravo, J. C. C. (2021). La inteligencia artificial y su sostenibilidad en las Pymes. Big Bang Faustiniano, 10(2). | eng |
| dcterms.references | Puche-Regaliza, J. C., Ponte, B., Costas-Gual, J., Pino-Diez, R., & de la Fuente-García, D. (2017). An organizational cybernetics framework for aligning incentives in collaborative supply chains. Dirección y Organización, 50-56. | eng |
| dcterms.references | Quinto, N. M. D., Villodas, A. J. C., Montero, C. P. C., Cueva, D. L. E., & Vera, S. A. N. (2021). La inteligencia artificial y la toma de decisiones gerenciales. Revista de Investigación Valor Agregado, 8(1), 52-69. | spa |
| dcterms.references | Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation–augmentation paradox. Academy of management review, 46(1), 192-210. | eng |
| dcterms.references | Reyes, Y. D. C., Hidalgo, M. G. A., & González, D. C. C. (2023). Industria 4.0 y las implicaciones de la IA para las fuerzas laborales de pymes mexicanas. Entretextos, 15(39), 5. | spa |
| dcterms.references | Rojas Torres, E. A., Carrasco Lino, L. C., Polanco Tintaya, A. N., & Romero Carazas, R. (2022). Disruptive pedagogy in Latin America. Horizontes Revista de Investigación en Ciencias de la Educación, 6(25), 1487-1497. | eng |
| dcterms.references | Rouhiainen, L. (2018). Inteligencia artificial 101 cosas que debes saber hoy sobre nuestro futuro (A. Editorial (ed.)). Editorial Planeta. | spa |
| dcterms.references | Rust, R. T., & Huang, M. H. (2021). Inteligencia artificial en marketing: Aplicaciones de aprendizaje automático para la toma de decisiones.International Journal of Research in Marketing, 38(2), 287- 304.https://doi.org/10.1016/j.ijresmar.2021.01.002. | spa |
| dcterms.references | Sadiku, M. N. O., Fagbohungbe, OmobayodeI., & Musa, S. M. (2020). Artificial Intelligence in Business. International Journal of Engineering Research and Advanced Technology, 06(07), 62–70. | eng |
| dcterms.references | Santos, C. T., Ferreira, F. A., Dabić, M., Ferreira, N. C., & Ferreira, J. J. (2023). “Too small to shine? Not really!”: developing Society 5.0 adaptation initiatives for SMEs. IEEE transactions on engineering management, 71, 9058-9079. | eng |
| dcterms.references | Subramaniam, S., Raju, N., Ganesan, A., Rajavel, N., Chenniappan, M., Prakash, C., ... & Dixit, S. (2022). Artificial intelligence technologies for forecasting air pollution and human health: a narrative review. Sustainability, 14(16), 9951. | eng |
| dcterms.references | T. Sturm, L. Pumplun, J. P. Gerlach, M. Kowalczyk, and P. Buxmann, “Machine learning advice in managerial decision-making: The overlooked role of decision makers’ advice utilization,” Journal of Strategic Information Systems, vol. 32, no. 4, Dec. 2023, doi: 10.1016/j.jsis.2023.101790. | eng |
| dcterms.references | Tang, L. C., & Leung, A. Y. (2009). An entropy‐based financial decision support system (e‐FDSS) for project analysis in construction SMEs. Construction Management and Economics, 27(5), 499-513. | eng |
| dcterms.references | Tawil, A. R. H., Mohamed, M., Schmoor, X., Vlachos, K., & Haidar, D. (2024). Trends and challenges towards effective data-driven decision making in UK Small and Medium-sized Enterprises: Case studies and lessons learnt from the analysis of 85 Small and Medium-sized Enterprises. Big Data and Cognitive Computing, 8(7), 79. | eng |
| dcterms.references | Timming, A. R., & Macneil, J. (2023). Bridging human resource management theory and practice: Implications for industry engaged academic research. Human Resource Management Journal, 33(3), 592–605. https://doi.org/10.1111/1748-8583.12523 | eng |
| dcterms.references | Torrijo, E. M. Q., Ferrín, E. P. C., Chaparro-Martínez, E., & Quindemil, F. P. (2023). Estudio bibliométrico sobre Pymes: análisis de artículos de la base de datos Scopus. Revista Venezolana de Gerencia: RVG, 28(101), 228-247. | spa |
| dcterms.references | Van Erp, T., Carvalho, N. G. P., Gerolamo, M. C., Gonçalves, R., Rytter, N. G. M., & Gladysz, B. (2024). Industry 5.0: A new strategy framework for sustainability management and beyond. Journal of Cleaner Production, 461, 142271. | eng |
| dcterms.references | Varela, B. F. L., Carrillo, L. A. A., Montealegre, A. R. V., & Lara, A. R. (2024). Inteligencia artificial para los procesos de Gestión del Talento Humano. Dominio de las Ciencias, 10(4), 182-203. | spa |
| dcterms.references | Votto A.M.; Valecha R.; Najafirad P.; Rao H.R. (2021). Inteligencia artificial en la gestión táctica de recursos humanos: una revisión sistemática de la literatura. Revista Internacional de gestión de la información Data Insights 1 (2021) 100047. ISSN 2667¬0968. Publicado por Elsevier Ltd. | spa |
| dcterms.references | Wang, J., Lu, Y., Fan, S., Hu, P., & Wang, B. (2022). How to survive in the age of artificial intelligence? Exploring the intelligent transformations of SMEs in central China. International Journal of Emerging Markets, 17(4), 1143-1162. | eng |
| dcterms.references | Warner, K. S., & Wäger, M. (2019). Building dynamic capabilities for digital transformation: An ongoing process of strategic renewal. Long range planning, 52(3), 326-349. | eng |
| dcterms.references | Wirtz, J., Patterson, P. G., Kunz, W. H., Gruber, T., Lu, V. N., Paluch, S., & Martins, A. (2018). Brave new world: service robots in the frontline. Journal of Service Management, 29(5), 907-931. | eng |
| dcterms.references | Wulandari, A., & Diko, M. A. I. M. J. (2024). HR Management Transformation in Indonesia MSMEs: The Role of AI in SOP Making and Recruitment. Journal of Ecohumanism, 3(7), 5325-5338. | eng |
| dcterms.references | Yance, C., Solís, L., Burgos, I., & Hermida, L. (2017). La importancia de las PYMES en el Ecuador. Revista Observatorio de la Economía Latinoamericana. ISSN: 1696- 8352.http://www.eumed.net/cursecon/ecolat/ec/2017/pymesecuador.html , pp.1-18. | spa |
| dcterms.references | Zeng, M., Xie, Y., and Zhang, Y. (2018) Artificial intelligence and marketing: avoiding obsolescence in the digital age. Springer DOI: https://doi.org/10.1234/ai-marketing. | spa |
| oaire.version | info:eu-repo/semantics/acceptedVersion | |
| sb.investigacion | Gestión organizacional | spa |
| sb.programa | Especialización en Gerencia e Innovación | spa |
| sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

