Aplicación de las redes neuronales en el Internet de las Cosas para el diagnóstico de fibrilación auricular
datacite.rights | http://purl.org/coar/access_right/c_16ec | spa |
dc.contributor.author | Yoliani, E. | |
dc.contributor.author | Poveda, J. | |
dc.contributor.author | Martínez, J. | |
dc.date.accessioned | 2023-01-20T20:48:54Z | |
dc.date.available | 2023-01-20T20:48:54Z | |
dc.date.issued | 2022 | |
dc.description.abstract | El objetivo de este articulo consiste en realizar una revisión y análisis acerca de los distintos métodos de detección de fibrilación auricular, a través de IoT y redes neuronales. En los últimos años, la industria ha generado avances a nivel tecnológico acerca del internet de las cosas y las redes neuronales, traduciéndose en mejores herramientas en distintos campos que suplen la intervención humana y métodos convencionales de los cuales resultan ser costosos y poco prácticos, que en algunos casos no logran detectar la fibrilación auricular correctamente lo cual puede afectar la vida diaria si no es detectada a tiempo. El aprendizaje en línea consiste en entrenar una red neuronal sin disponer previamente de todos los datos. La idea que subyace a este enfoque es que, si no disponemos de todos los datos de entrenamiento, podemos entrenar nuestro sistema para que sea capaz de generalizar lo suficientemente bien para nosotros más adelante, cuando tengamos información más completa sobre lo sucedido durante el historial de cada paciente (como las grabaciones del ECG). Este enfoque ha demostrado ser útil en muchos campos, entre ellos la medicina, donde no siempre hay tiempo para que los pacientes acudan a las clínicas y se sometan a pruebas exhaustivas antes de ser diagnosticados correctamente; por lo tanto, el uso de técnicas de aprendizaje automático podría ayudar a los médicos a diagnosticar afecciones antes de lo que podrían hacerlo de otro modo, al tiempo que se reducen los costes asociados a los procedimientos de pruebas de diagnóstico. | spa |
dc.description.abstract | The objective of this article is to review and analyze the different methods of detecting atrial fibrillation using IoT and neural networks. In recent years, the industry has generated technological advances in the internet of things and neural networks, resulting in better tools in different fields that replace human intervention and conventional methods which are expensive and impractical, and in some cases fail to detect atrial fibrillation correctly, which can affect daily life if not detected in time. Online learning consists of training a neural network without first having all the data. The idea behind this approach is that if we do not have all the training data, we can train our system to be able to generalize well enough for us later when we have more complete information about what happened during each patient's history (such as ECG recordings). This approach has proven useful in many fields, including medicine, where there is not always time for patients to come to clinics and undergo extensive testing before being properly diagnosed; therefore, using machine learning techniques could help doctors diagnose conditions earlier than they might otherwise, while reducing the costs associated with diagnostic testing procedures. | eng |
dc.format.mimetype | spa | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/11742 | |
dc.language.iso | spa | spa |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ingenierías | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Fibrilación auricular | spa |
dc.subject | Electrocardiograma | spa |
dc.subject | Redes neuronales | spa |
dc.subject | IoT | spa |
dc.subject | Atrial fibrillation | eng |
dc.subject | Electrocardiogram | eng |
dc.subject | Neural networks | eng |
dc.title | Aplicación de las redes neuronales en el Internet de las Cosas para el diagnóstico de fibrilación auricular | spa |
dc.title.translated | Application of neural networks on the Internet of Things for the diagnosis of atrial fibrillation | eng |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.spa | Trabajo de grado - pregrado | spa |
dcterms.references | S. Liu, A. Wang, X. Deng, and C. Yang, “MGNN : A multiscale grouped convolutional neural network for efficient atrial fibrillation detection,” Comput. Biol. Med., vol. 148, no. June, p. 105863, 2022, doi: 10.1016/j.compbiomed.2022.105863. | eng |
dcterms.references | Y. Sun, Y. Y. Yang, B. J. Wu, P. W. Huang, S. E. Cheng, and B. F. Wu, “Contactless facial video recording with deep learning models for the detection of atrial fibrillation,” Sci. Rep., no. 0123456789, pp. 1–10, 2022, doi: 10.1038/s41598-021-03453-y. | eng |
dcterms.references | L. Guo, Y., Shao, H., Gong, D., Li, H., Chen, “Atrial Fibrillation Detection Based on Hilbert-Huang Transform and Deep Convolutional Neural Network [ Article @ 基于希尔伯特黄变换和深度卷积神经网络的房颤检测 ],” p. 211171, 2022, doi: 10.11999/JEIT211171. | eng |
dcterms.references | Z. Xiong, M. K. Stiles, A. M. Gillis, and J. Zhao, “Enhancing the detection of atrial fibrillation from wearable sensors with neural style transfer and convolutional recurrent networks,” Comput. Biol. Med., vol. 146, no. April, p. 105551, 2022, doi: 10.1016/j.compbiomed.2022.105551. | eng |
dcterms.references | W. Cai et al., “Accurate detection of atrial fi brillation from 12-lead ECG using deep neural network,” Comput. Biol. Med., vol. 116, no. August 2019, p. 103378, 2020, doi: 10.1016/j.compbiomed.2019.103378. | eng |
dcterms.references | H. Lee et al., “Exploiting exercise electrocardiography to improve early diagnosis of atrial fibrillation with deep learning neural networks,” vol. 146, no. May, 2022, doi: 10.1016/j.compbiomed.2022.105584. | eng |
dcterms.references | Y. Gao, H. Wang, and Z. Liu, “Knowledge-Based Systems An end-to-end atrial fibrillation detection by a novel residual-based temporal attention convolutional neural network with exponential,” Knowledge-Based Syst., vol. 212, p. 106589, 2021, doi: 10.1016/j.knosys.2020.106589. | eng |
dcterms.references | R. S. Bs et al., “PO-678-07 POSTER PO-679 : Posters : Catheter Ablation at Pod 6,” Hear. Rhythm, vol. 19, no. 5, pp. S352–S353, 2022, doi: 10.1016/j.hrthm.2022.03.483. | eng |
dcterms.references | J. Wang, “Knowledge-Based Systems Automated detection of atrial fibrillation and atrial flutter in ECG signals based on convolutional and improved Elman neural network ✩,” Knowledge-Based Syst., vol. 193, p. 105446, 2020, doi: 10.1016/j.knosys.2019.105446. | eng |
dcterms.references | L. Subramanyan and U. Ganesan, “Knowledge-Based Systems A novel deep neural network for detection of Atrial Fibrillation using ECG signals,” Knowledge-Based Syst., vol. 258, p. 109926, 2022, doi: 10.1016/j.knosys.2022.109926. | eng |
dcterms.references | I. Suhail and S. Pillai, “IoT enabled applications for Healthcare decisions,” pp. 47–54, 2022. | eng |
dcterms.references | Z. Jia, Y. Shi, and J. Hu, “Personalized Neural Network for Patient-Specific Health Monitoring in IoT : A Meta-Learning Approach,” vol. 1, no. 1, pp. 1–14, 2022, doi: 10.1109/TCAD.2022.3162182. | eng |
dcterms.references | E. Rajan and S. Nadar, “Atrial fibrillation classification using deep learning algorithm in Internet of Things – based smart healthcare system,” 2019, doi: 10.1177/1460458219891384. | eng |
dcterms.references | J. A. Rincon, S. Guerra-ojeda, and C. Carrascosa, “An IoT and Fog Computing-Based Monitoring System for Cardiovascular Patients with Automatic ECG Classification Using Deep Neural Networks,” 2020, doi: 10.3390/s20247353. | eng |
dcterms.references | X. Chen, Z. Cheng, S. Wang, G. Lu, G. Xv, and Q. Liu, “Computer Methods and Programs in Biomedicine Atrial fibrillation detection based on multi-feature extraction and convolutional neural network for processing ECG signals,” vol. 202, 2021, doi: 10.1016/j.cmpb.2021.106009. | eng |
dcterms.references | M. Deshmane and S. Madhe, “Convolutional Neural Network in Smart Health Applications,” 2018. | eng |
dcterms.references | M. Rodrigo et al., “Atrial fibrillation signatures on intracardiac electrograms identified by deep learning,” Comput. Biol. Med., vol. 145, no. April, p. 105451, 2022, doi: 10.1016/j.compbiomed.2022.105451. | eng |
dcterms.references | T. Wang and Y. Qin, “A novel multi-scale convolutional network with attention-based bidirectional gated recurrent unit for atrial fibrillation discrimination,” Biocybern. Biomed. Eng., vol. 41, no. 2, pp. 445–455, 2021, doi: 10.1016/j.bbe.2021.02.010. | eng |
dcterms.references | J. Rahul, M. Sora, L. Dev, and V. Kumar, “An improved cardiac arrhythmia classification using an RR interval-based approach,” Biocybern. Biomed. Eng., vol. 41, no. 2, pp. 656–666, 2021, doi: 10.1016/j.bbe.2021.04.004. | eng |
dcterms.references | M. O. Agyeman, S. Member, A. F. Guerrero, Q. Vien, and S. Member, “Classification Techniques for Arrhythmia Patterns Using Convolutional Neural Networks and Internet of Things ( IoT ) Devices,” IEEE Access, vol. 10, no. August, pp. 87387–87403, 2022, doi: 10.1109/ACCESS.2022.3192390. | eng |
dcterms.references | H. W. Lim, Y. W. Hau, M. A. Othman, C. W. Lim, M. Engineering, and S. Buloh, “Embedded System-on-Chip Design of Atrial Fibrillation Classifier,” pp. 90–91, 2017. | eng |
dcterms.references | Y. Lin et al., “Artificial Intelligence of Things Wearable System for Cardiac Disease Detection,” pp. 67–70, 2019. | eng |
dcterms.references | X. Q. Chang et al., “Atrial Fibrillation Detection Using Weight-Pruned , Log-Quantised Convolutional Neural Networks,” pp. 11–14. | eng |
dcterms.references | J. Wang and S. Zhang, “Neurocomputing An improved deep learning approach based on exponential moving average algorithm for atrial fibrillation signals identification,” Neurocomputing, vol. 513, pp. 127–136, 2022, doi: 10.1016/j.neucom.2022.09.079. | eng |
dcterms.references | P. Panindre, “Comparison of Performance of Artificial Intelligence Algorithms for Real-Time Atrial Fibrillation Detection using Instantaneous Heart Rate,” pp. 168–172, 2020. | eng |
dcterms.references | “A smart decision support system to diagnose arrhythymia using ensembled ConvNet and ConvNet-LSTM model.pdf.” | eng |
dcterms.references | X. Zhang, M. Jiang, and W. Wu, “Hybrid feature fusion for classification optimization of short ECG segment in IoT based intelligent healthcare system,” Neural Comput. Appl., vol. 1, 2021, doi: 10.1007/s00521-021-06693-1. | eng |
dcterms.references | A. P. Shrestha, “ECG Data Analysis with IoT and Machine Learning,” pp. 323–327, 2022. | eng |
dcterms.references | O. Faust, M. Kareem, A. Shenfield, A. Ali, and U. R. Acharya, “Validating the robustness of an internet of things based atrial fibrillation detection system,” Pattern Recognit. Lett., vol. 133, pp. 55–61, May 2020, doi: 10.1016/j.patrec.2020.02.005. | eng |
dcterms.references | S. Cheng, L. S. Tamil, and B. Levine, “A Mobile Health System to Identify the Onset of Paroxysmal Atrial Fibrillation,” pp. 189–192, 2015, doi: 10.1109/ICHI.2015.29. | eng |
dcterms.references | S. Chung et al., “The Lancet Regional Health - Europe Atrial fi brillation epidemiology , disparity and healthcare contacts : a population-wide study of 5 . 6 million individuals,” Lancet Reg. Heal. - Eur., vol. 7, p. 100157, 2021, doi: 10.1016/j.lanepe.2021.100157. | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | spa |
sb.programa | Ingeniería de Sistemas | spa |
sb.sede | Sede Barranquilla | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- PDF.pdf
- Tamaño:
- 391.1 KB
- Formato:
- Adobe Portable Document Format