Revisión narrativa sobre la efectividad de la terapia fotodinámica en el tratamiento del carcinoma de células escamosas

datacite.rightshttp://purl.org/coar/access_right/c_f1cf
dc.contributor.advisorArroyo Monterroza, Dadier Antonio
dc.contributor.authorCastellón Abril, Darlis Ximena
dc.date.accessioned2025-12-09T13:23:53Z
dc.date.available2025-12-09T13:23:53Z
dc.date.issued2025
dc.description.abstractIntroducción: El carcinoma de células escamosas (CCE) es un cáncer frecuente y agresivo con limitaciones en los tratamientos convencionales, lo que ha impulsado la búsqueda de alternativas como la terapia fotodinámica (TFD). Objetivo: Realizar una revisión narrativa sobre la efectividad de la TFD en el CCE, analizando literatura publicada entre 2015 y 2025. Metodología: Se efectuó una búsqueda exhaustiva en PubMed, Scopus y Web of Science, utilizando los descriptores “photodynamic therapy”, “squamous cell carcinoma”, “nanoparticles” y “combination therapy”, junto con operadores booleanos (AND, OR, NOT). Se aplicaron criterios de inclusión y exclusión que priorizaron estudios clínicos con datos cuantitativos sobre eficacia, uso de fotosensibilizadores y estrategias para reducir la hipoxia tumoral. Se descartaron editoriales, estudios preclínicos sin aplicación clínica y duplicados. El proceso fue realizado por dos revisores independientes mediante una matriz de extracción de datos. Resultados: De 3.124 artículos identificados, 20 cumplieron los criterios metodológicos. Los estudios emplearon fotosensibilizadores, nanopartículas y combinaciones terapéuticas (génica, fototérmica, quimioterapia), reportando reducciones tumorales entre 55% y 80%, mejoras en hipoxia tumoral y tasas de apoptosis superiores al 70%. Nanopartículas como MnO₂-IR780, Mn-CD y AuNR-Ce6 aumentaron la especificidad tumoral y redujeron efectos adversos. Las combinaciones TFD + terapia génica o fototérmica mostraron un incremento del 15– 20% en eficacia respecto a TFD sola. Conclusión: La TFD integrada con nanopartículas y terapias adyuvantes representa una alternativa innovadora y eficaz para el tratamiento del CCE, aunque requiere mayor validación clínica y estandarización de protocolos.spa
dc.description.abstractIntroduction: Squamous cell carcinoma (SCC) is a common and aggressive cancer with limitations in conventional treatments, which has driven the search for alternatives such as photodynamic therapy (PDT). Objective: To conduct a narrative review on the effectiveness of PDT in SCC, analyzing literature published between 2015 and 2025. Methodology: An exhaustive search was carried out in PubMed, Scopus, and Web of Science using the descriptors “photodynamic therapy,” “squamous cell carcinoma,” “nanoparticles,” and “combination therapy,” along with Boolean operators (AND, OR, NOT). Inclusion and exclusion criteria prioritized clinical studies with quantitative data on efficacy, photosensitizer use, and strategies to reduce tumor hypoxia. Editorials, preclinical studies without clinical application, and duplicates were excluded. The process was conducted by two independent reviewers using a data extraction matrix. Results: Of 3,124 identified articles, 20 met the methodological criteria. The studies used photosensitizers, nanoparticles, and combined therapies (gene, photothermal, chemotherapy), reporting tumor reductions between 55% and 80%, improved tumor hypoxia, and apoptosis rates above 70%. Nanoparticles such as MnO₂-IR780, Mn-CD, and AuNR-Ce6 increased tumor specificity and reduced adverse effects. PDT combined with gene or photothermal therapy showed a 15 20% increase in efficacy compared to PDT alone. Conclusion: PDT integrated with nanoparticles and adjuvant therapies represents an innovative and effective alternative for SCC treatment, although further clinical validation and standardized protocols are required.eng
dc.format.mimetypepdf
dc.identifier.urihttps://hdl.handle.net/20.500.12442/17175
dc.language.isospa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ciencias Básicas y Biomédicasspa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.subjectTerapia fotodinámicaspa
dc.subjectCarcinoma de células escamosasspa
dc.subjectNanopartículasspa
dc.subjectHipoxia tumoralspa
dc.subjectTerapias combinadasspa
dc.subjectEspecies reactivas de oxígenospa
dc.subject.keywordsPhotodynamic therapyeng
dc.subject.keywordsSquamous cell carcinomaeng
dc.subject.keywordsNanoparticleseng
dc.subject.keywordsTumor hypoxiaeng
dc.subject.keywordsCombination therapieseng
dc.subject.keywordsReactive oxygen specieseng
dc.titleRevisión narrativa sobre la efectividad de la terapia fotodinámica en el tratamiento del carcinoma de células escamosasspa
dc.type.driverinfo:eu-repo/semantics/other
dc.type.spaTrabajo de grado - pregrado
dcterms.referencesAgostinis, P., Berg, K., Cengel, K. A., Foster, T. H., Girotti, A. W., Gollnick, S. O., ... & Kessel, D. (2011). Photodynamic therapy of cancer: an update. CA: A Cancer Journal for Clinicians, 61(4), 250-281. https://doi.org/10.3322/caac.20114eng
dcterms.referencesBray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394- 424. https://doi.org/10.3322/caac.21492eng
dcterms.referencesDolmans, D. E. J. G. J., Fukumura, D., & Jain, R. K. (2003). Photodynamic therapy for cancer. Nature Reviews Cancer, 3(5), 380-387. https://doi.org/10.1038/nrc1071eng
dcterms.referencesPan, X., Wang, H., Wang, S., Sun, X., Wang, L., Wang, W., ... & Zhang, F. (2022). IR780loaded hollow MnO₂ nanoparticles for enhanced photodynamic therapy via modulating tumor hypoxia. https://doi.org/10.7150/thno.60209eng
dcterms.referencesSung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209- 249. https://doi.org/10.3322/caac.21660eng
dcterms.referencesSung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209- 249. https://doi.org/10.3322/caac.21660eng
dcterms.referencesWang, Y., Li, X., Chen, Y., Wang, Y., Li, B., & Li, C. (2021). Chitosan tripolyphosphate nanoparticles-mediated co-delivery of photosensitizer and gene for enhanced photodynamic therapy of squamous cell carcinoma. International Journal of Biological Macromolecules, https://doi.org/10.1016/j.ijbiomac.2021.06.103eng
dcterms.referencesZhang, L., Wang, D., Yang, K., Sheng, D., Tan, B., Wang, Z., ... & Liu, Z. (2022). Nearinfrared light-triggered oxygen generator for enhanced photodynamic therapy of hypoxic tumors. ACS https://doi.org/10.1021/acsnano.1c11111eng
dcterms.referencesZhang, Y., Liu, Y., Liu, H., Tang, Y., Wang, Y., & Zhang, Q. (2023). Manganese doped carbon dots as hypoxia-mitigating agents for enhanced photodynamic therapy in squamous cell carcinoma. Journal of Nanobiotechnology, 21(1), 1-15. https://doi.org/10.1186/s12951- 023-01895- 4eng
dcterms.referencesLi, X., Lee, S., & Yoon, J. (2018). Supramolecular photosensitizers rejuvenate photodynamic therapy. Chemical Society 1174- 1188. https://doi.org/10.1039/C7CS00693Aeng
dcterms.referencesLi, X., Lovell, J. F., Yoon, J., & Chen, X. (2020). Clinical development and potential of photothermal and photodynamic therapies for cancer. Nature Reviews Clinical Oncology, 17(11), 657-674. https://doi.org/10.1038/s41571- 020-0410-0eng
dcterms.referencesShao, J., Xue, J., Dai, Y., Liu, H., Chen, N., Jia, L., ... & Huang, W. (2020). Emerging strategies for improving the selectivity and efficacy of photodynamic therapy. Frontiers in Chemistry, 8, 582090. https://doi.org/10.3389/fchem.2020.582090eng
dcterms.referencesKwiatkowski, S., Knap, B., Przystupski, D., Saczko, J., Kędzierska, E., Knap- Czop, K., ... & Kulbacka, J. (2018). Photodynamic therapy–mechanisms, photosensitizers and combinations. Biomedicine & Pharmacotherapy, 106, 1098- 1107. https://doi.org/10.1016/j.biopha.2018.07.049eng
dcterms.referencesYang, Y., Zhu, W., Dong, Z., Chao, Y., Xu, L., Chen, M., ... & Liu, Z. (2017). 1D coordination polymer nanofibers for low-toxicity photothermal therapy and enhanced photodynamic therapy of https://doi.org/10.1021/acsnano.6b06667eng
dcterms.referencesde Freitas, L. F., & Hamblin, M. R. (2016). Proposed mechanisms of photodynamic therapy-induced cell death. Photochemical & Photobiological Sciences, 15(12), 14171427. https://doi.org/10.1039/C6PP00265Keng
oaire.versioninfo:eu-repo/semantics/acceptedVersion
sb.programaQuímica y Farmacia spa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
520.28 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
PDF_Resumen.pdf
Tamaño:
301.58 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.93 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones