Barreras en la implementación Big Data y BI en PYMES
| datacite.rights | http://purl.org/coar/access_right/c_f1cf | |
| dc.contributor.advisor | Sánchez Otero, John Enrique | |
| dc.contributor.author | Ramos De La Rosa, Adams Andrés | |
| dc.contributor.author | Martínez Teheran, Cristhian Andrés | |
| dc.contributor.author | Camelo Villa, Noriel Paola | |
| dc.date.accessioned | 2026-01-26T22:24:35Z | |
| dc.date.available | 2026-01-26T22:24:35Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | La competitividad de las PYMES colombianas, que representan el 99.5% del tejido empresarial, depende de su capacidad para adoptar tecnologías de datos. Sin embargo, existe una brecha digital crítica: mientras herramientas como Business Intelligence (BI) y Big Data pueden optimizar procesos y reducir costos logísticos hasta en un 35%, solo el 30% de las PYMES formales alcanza un nivel avanzado de transformación digital, lo que limita su sostenibilidad y contribuye a una alta mortalidad empresarial. Esta investigación diagnosticó los retos que obstaculizan la implementación de BI y Big Data en este sector. Mediante un enfoque metodológico mixto y utilizando el marco teórico TOE (Tecnología-Organización-Entorno), se identificaron cuatro barreras principales: 1) Falta de capacidad personal (34.50%), donde el 63.6% de las empresas carece de equipos especializados, creando un ciclo vicioso que impide medir el ROI y justificar la inversión en talento; 2) Falta de infraestructura tecnológica (29.30%); 3) Costos elevados (24.10%), con la mayoría destinando menos del 10% de su presupuesto a estas tecnologías; y 4) Resistencia al cambio organizacional (12.10%), resultado de un "abismo ejecutivo-operacional" donde la visión directiva no se traduce en recursos. | spa |
| dc.description.abstract | In the current digital era, the competitiveness of Colombian Small and Medium-sized Enterprises (SMEs), which constitute 99.5% of the national business fabric, critically depends on their ability to adopt data technologies. However, a significant gap exists: while tools like Business Intelligence (BI) and Big Data can optimize processes and reduce logistical costs by up to 35%, only 30% of formal SMEs achieve an advanced level of digital transformation, limiting their sustainability and contributing to a high business mortality rate. This study aimed to diagnose the multifaceted challenges hindering the implementation of BI and Big Data in this sector. Using a mixed-methods approach and the TOE (Technology-Organization-Environment) theoretical framework, the research identified four main barriers: 1) Lack of personal capacity (34.50%), where 63.6% of companies lack specialized teams, creating a vicious cycle that prevents measuring ROI; 2) Lack of technological infrastructure (29.30%); 3) High costs (24.10%), with most companies allocating less than 10% of their budget to these initiatives; and 4) Organizational resistance to change (12.10%), a consequence of an "executive-operational abyss" where leadership's vision fails to translate into resource allocation. | eng |
| dc.format.mimetype | ||
| dc.identifier.uri | https://hdl.handle.net/20.500.12442/17296 | |
| dc.language.iso | spa | |
| dc.publisher | Ediciones Universidad Simón Bolívar | spa |
| dc.publisher | Facultad de Administración y Negocios | spa |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | eng |
| dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject | Barreras de Adopción | spa |
| dc.subject | Marco TOE | spa |
| dc.subject | Colombia | spa |
| dc.subject | Retorno de la Inversión (ROI) | spa |
| dc.subject.keywords | Big Data | eng |
| dc.subject.keywords | Business Intelligence | eng |
| dc.subject.keywords | PYMES | eng |
| dc.title | Barreras en la implementación Big Data y BI en PYMES | spa |
| dc.type.driver | info:eu-repo/semantics/other | |
| dc.type.spa | Trabajo de grado - pregrado | |
| dcterms.references | Acopi. (2025, 10 de abril). Panorama actual de las pymes en Colombia. Audinet Consulting. https://www.audinetconsulting.com/panorama-actualde-las-pymes-en-colombia/ | spa |
| dcterms.references | Al-Okaily, A., Ping, T. A., & Al-Okaily, M. (2021). Towards business intelligence success measurement in an organization: A conceptual study. Journal of System and Management Sciences, 11(2), 155- 170. https://doi.org/10.33168/JSMS.2021.0210 | eng |
| dcterms.references | Al-Rousan, M. A., & Ababneh, A. W. (2025). The impact of digital leadership on institutional excellence in the Jordanian social security corporation: business intelligence as a moderating variable. Future Business Journal, 11(1), 94. https://doi.org/10.1186/s43093-025-00523-9 | eng |
| dcterms.references | Alawneh, O. M., Tawalbeh, J., & AlOqaily, A. N. (2025). Reveling the interrelationship of digital transformation and business intelligence techniques to boost human capital development. Economics: Innovative and Economic Research Journal, 13(1), 509–524. https://doi.org/10.2478/eoik-2025-0024 | eng |
| dcterms.references | Awad, H. A., & Mahmoud, Y. (2024). Impact of business intelligence (BI) on e-HRM practices within NGOs in Jordan. Quality - Access to Success, 25(200), 10-20. https://doi.org/10.47750/qas/25.200.02 | eng |
| dcterms.references | Barragán Ramírez, C., Zurita Altamirano, J., Fierro, S., & Montenegro Ramírez, A. (2025). Inteligencia de negocios para gestión de inventarios en las empresas importadoras de estructurales de calzado. Revista Venezolana de Gerencia, 30(110), 994-1009. https://doi.org/10.52080/rvgluz.30.110.14 | spa |
| dcterms.references | Bernier, E., Gosselin, P., Badard, T., & Bédard, Y. (2009). Easier surveillance of climate-related health vulnerabilities through a Web-based spatial OLAP application. International Journal of Health Geographics, 8, 18. https://doi.org/10.1186/1476-072X-8-18 | eng |
| dcterms.references | Bose, R. (2009). Advanced analytics: opportunities and challenges. Industrial Management & Data Systems, 109(2), 155- 172. https://doi.org/10.1108/02635570910930073 | eng |
| dcterms.references | Brunswicker, S., & van de Vrande, V. (2014). Exploring open innovation in small and medium-sized enterprises. En H. Chesbrough, W. Vanhaverbecke, & J. West (Eds.), New frontiers in open innovation (pp. 135-156). Oxford University Press. https://www.oxforduniversitypress.com/book/new-frontiersin-open-innovation-9780198842186 | eng |
| dcterms.references | Cerdán, A. (2025, 20 de mayo). Cinco retos al adoptar una estrategia datadriven en tu empresa. director tic. https://directortic.es/noticias/cinco-retos-aladoptar-una-estrategia-data-driven-en-tu-empresa-2025052044467.htm | spa |
| dcterms.references | CESUMA. (2025). Desafíos y soluciones en la implementación de proyectos de Big Data y Business Analytics. https://www.cesuma.mx/blog/desafios-ysoluciones-en-la-implementacion-de-proyectos-de-big-data-y-businessanalytics.html | spa |
| dcterms.references | Charkaoui, A., & Jabraoui, S. (2024). 20 Years of Scientific Study on Business Intelligence and Decision-Making Performance: A Bibliometric Analysis. Journal of Information Systems Engineering and Business Intelligence, 10(3), 408–421. https://doi.org/10.20473/jisebi.10.3.408-421 | eng |
| dcterms.references | Cheng, T. C. E., Kamble, S. S., Belhadi, A., Ndubisi, N. O., Lai, K.-H., & Kharat, M. G. (2022). Linkages between big data analytics, circular economy, sustainable supply chain flexibility, and sustainable performance in manufacturing firms. International Journal of Production Research, 60(22), 6908-6922. https://doi.org/10.1080/00207543.2021.1906971 | eng |
| dcterms.references | Christozov, D. (2011). The role of the recommender systems in the consumer choice process. Issues in Informing Science and Information Technology, 8, 309-323. https://doi.org/10.28945/1435 | eng |
| dcterms.references | Creswell, J. W., & Plano Clark, V. L. (2018). Designing and conducting mixed methods research (3rd ed.). SAGE Publications. https://us.sagepub.com/enus/nam/designing-and-conducting-mixed-methods-research/book249781 | eng |
| dcterms.references | Ermaya, S. K., Ermaya, H. N. L., Saefudin, A., & Gunawan, A. W. (2025). Business intelligence, strategy innovation, and digital value creation for business performance on digital creative industries. International Journal of Business and Society, 26(1), 80– 100. https://doi.org/10.33736/ijbs.9548.2025 | eng |
| dcterms.references | Fatan, B., Keramati, M. A., & Amin Mousavi, S. A. (2024). Presentation of the Business Intelligence Capabilities Model and Its Role in Innovation Considering the Impact of Network Learning and Performance (Case Study: Insurance Industry). International Journal of Innovation Management and Organizational Behavior, 4(2), 205- 212. https://doi.org/10.61838/kman.ijimob.4.2.24 | eng |
| dcterms.references | Forbes Staff. (2024, 26 de julio). 95% de las empresas en Latinoamérica lucha con la gestión de datos, según estudio de Dell Technologies. Forbes Centroamérica. https://forbescentroamerica.com/2024/07/26/95-de-lasempresas-en-latinoamerica-lucha-con-la-gestion-de-datos-segun-estudiode-dell-technologies | spa |
| dcterms.references | Hernández-Sampieri, R., Fernández-Collado, C., & Baptista-Lucio, P. (2014). Metodología de la investigación (6ª ed.). McGraw-Hill Interamericana. https://www.mheducation.com/highered/product/metodologi a-de-la-investigacion-hernandez-sampieri-fernandezcollado/9786071512108.html | spa |
| dcterms.references | Hsu, Y.-H., Cheng, C.-H., Ko, P.-H., Tang, C.-P., Huang, C.-W., & Tseng, C.- W. (2025). Assessment of the impact of power business intelligence on adenoma detection rate: a prospective observational trial. BMC Gastroenterology, 25(1), 275. https://doi.org/10.1186/s12876-025-03894-z | eng |
| dcterms.references | Ikegwu, A. C., Nweke, H. F., Mkpojiogu, E., Anikwe, C. V., Igwe, S. A., & Alo, U. R. (2024). Recently emerging trends in big data analytic methods for modeling and combating climate change effects. Energy Informatics, 7, 6. https://doi.org/10.1186/s42162-024-00307-5 | eng |
| dcterms.references | Jorfi, M., Esfahani, M. J., & Ghanbari, A. (2023). A bibliometric analysis of earnings management, corporate social responsibility, and corporate governance. Journal of Business Research, 155, 113391. https://doi.org/10.1016/j.jbusres.2022.113391 | eng |
| dcterms.references | Jurić, S. (2024). Intuition and Business Intelligence – The Integration Key to Correct Business Decision-Making. Journal of Accounting and Management, 14(1), 1-11. https://hrcak.srce.hr/320116 | eng |
| dcterms.references | Kaci, Y. (2024). The reality of funding for startups in Algeria and their utilization of business intelligence tools. El-Manhel Economic Journal, 7(2), 1279-1290. https://asjp.cerist.dz/en/article/257638 | eng |
| dcterms.references | Karpenko, N. A., Sazonov, A. N., Zhelobkova, E. V., & Gennadievna, T. S. (2023). Model of sustainable development management of agricultural enterprises in the context of food security. TEM Journal, 12(1), 154- 161. https://doi.org/10.18421/TEM121-19 | eng |
| dcterms.references | Kumar, M., Raut, R. D., Mangla, S. K., Ferraris, A., & Choubey, V. K. (2022). The adoption of artificial intelligence powered workforce management for effective revenue growth of micro, small, and medium scale enterprises (MSMEs). Production Planning & Control, 35(12), 1639- 1655. https://doi.org/10.1080/09537287.2022.2131620 | eng |
| dcterms.references | Laney, D. B. (2018). Infonomics: How to monetize, manage, and measure information as an asset for competitive advantage. Routledge. https://www.routledge.com/Infonomics-How-to-MonetizeManage-and-Measure-Information-as-an-Asset-for-CompetitiveAdvantage/Laney/p/book/9781138090385 | eng |
| dcterms.references | Maedche, A., Rederer, M., & Morana, S. (2019). The design of digital nudges in the context of online privacy–a review of empirical studies. En Proceedings of the 27th European Conference on Information Systems (ECIS). https://aisel.aisnet.org/ecis2019_rp/156/ | eng |
| dcterms.references | March, S. T., & Hevner, A. R. (2007). Integrated decision support systems: A data warehousing perspective. Decision Support Systems, 43(3), 1031- 1043. https://doi.org/10.1016/j.dss.2005.05.029 | eng |
| dcterms.references | Marr, B. (2024, 11 de noviembre). The 10 most powerful data trends that will transform business in 2025. Bernard Marr & Co. https://bernardmarr.com/the10-most-powerful-data-trends-that-will-transform-business-in-2025/ | eng |
| dcterms.references | Márquez Vásquez, J. A., & Caicedo, J. C. (2024). Inteligencia de negocios para el mejoramiento de la vigilancia tecnológica en las universidades privadas colombianas. Desarrollo Gerencial, 16(1), 1- 22. https://doi.org/10.17981/dege.16.1.2024.03 | spa |
| dcterms.references | Mavutha, W. (2024). Identifying obstacles to evaluating business intelligence in Micro-Small Apparel Enterprises: a case study in Durban, South Africa. International Journal of Research in Business and Social Science, 13(5), 121-132. https://doi.org/10.20525/ijrbs.v13i5.3314 | eng |
| dcterms.references | Moscoso-Zea, O., Paredes-Gualtor, J., & Luján-Mora, S. (2018). A holistic view of data warehousing in education. IEEE Access, 6, 64659- 64673. https://doi.org/10.1109/ACCESS.2018.2876753 | eng |
| dcterms.references | Nelson, R. R., Todd, P. A., & Wixom, B. H. (2005). Antecedents of information and system quality: An empirical examination within the context of data warehousing. Journal of Management Information Systems, 21(4), 199- 235. https://doi.org/10.1080/07421222.2005.11045823 | eng |
| dcterms.references | Olan, F., Ogiemwonyi Arakpogun, E., Suklan, J., Nakpodia, F., Damij, N., & Jayawickrama, U. (2022). Artificial intelligence and knowledge sharing: Contributing factors to organizational performance. Journal of Business Research, 145, 605-615. https://doi.org/10.1016/j.jbusres.2022.03.008 | eng |
| dcterms.references | Pareek, D. (2006). Business intelligence for telecommunications. Auerbach Publications. https://doi.org/10.1201/9780849387913 | eng |
| dcterms.references | Pérez Marqués, M. (2015). Business intelligence: técnicas, herramientas y aplicaciones. Alfaomega Grupo Editor / RC Libros. https://www.alfaomega.com.mx/default/business-intelligencetecnicas-herramientas-y-aplicaciones-9786076224335.html | spa |
| dcterms.references | Ratten, V., Babar, M. A., & Graf-Vlachy, L. (2023). Digital transformation and dynamic capabilities: A review, framework, and research agenda. Electronic Markets, 33(1), 32. https://doi.org/10.1007/s12525-023-00621-0 | eng |
| dcterms.references | Ratten, V., Hasan, R., Kumar, D., Bustard, J., Ojala, A., & Salamzadeh, Y. (2024). Learning from artificial intelligence researchers about international business implications. Thunderbird International Business Review, 66(2), 211–219. https://doi.org/10.1002/tie.22374 | eng |
| dcterms.references | Sabanovic, A., & Pinto, M. (2012). Tendencias actuales en la gestión estratégica de empresas: la gestión basada en recursos y capacidades. Administración & Sociedad, (22), 1- 22. https://revistas.uexternado.edu.co/index.php/admsoc/article/view/3547 | spa |
| dcterms.references | Sharda, R., Delen, D., Turban, E., & King, D. (2014). Business intelligence: A managerial perspective on analytics (3rd ed.). Pearson Education. https://www.pearson.com/en-us/subject-catalog/p/businessintelligence-analytics-and-data-science-a-managerialperspective/P200000006296/9780136979294 | eng |
| dcterms.references | Shehada, D., Al-Far, A., Fahmawi, S. A., & Arafeh, A. (2023). Business intelligence systems for analyzing university students’ data. Information, 14(11), 598. https://doi.org/10.3390/info14110598 | eng |
| dcterms.references | Skyrius, R., & Valentukevičė, J. (2024). Redefining business intelligence agility: integrating the human-centred dimensions and developing a new measurement scale. Journal of Decision Systems, 33(sup1), 322- 336. https://doi.org/10.1080/12460125.2024.2354581 | eng |
| dcterms.references | Solberg, A., & Gerrits, H. (2013, 11-13 de septiembre). Exploring the role of public managers in ICT-enabled innovations: Lessons from European local governments [Ponencia de congreso]. European Group for Public Administration (EGPA) Conference 2013, Edimburgo, Escocia. https://www.econstor.eu/bitstream/10419/121773/1/77028122X.pdf | eng |
| dcterms.references | Stebbins, R. A. (2001). Exploratory research in the social sciences. SAGE Publications. https://us.sagepub.com/en-us/nam/exploratory-research-inthe-social-sciences/book209420 | eng |
| dcterms.references | Tornatzky, L. G., & Fleischer, M. (1990). The processes of technological innovation. Lexington Books. https://archive.org/details/processesoftechn0000torn | eng |
| dcterms.references | Torres, A. (2025). 2025: el año en que las pymes colombianas deberán reinventarse o desaparecer. Alegra.com. https://prensa.alegra.com/2025-elano-en-que-las-pymes-colombianas-deberan-reinventarse-o-desaparecer | spa |
| dcterms.references | Torres, A. (2025). Digitalización, clave para supervivencia de PYMES. Radar Tecnológico. https://radartecnologico.com/ | spa |
| dcterms.references | Vieira, V. A., Agnihotri, R., & Dugan, R. (2024). Research note: the impact of CI diversity and organizational tenure on the relationship between competitive intelligence and sales performance: a meta-analytic review. Journal of Personal Selling & Sales Management, 44(3), 268- 283. https://doi.org/10.1080/08853134.2024.2366127 | eng |
| dcterms.references | Vitt, E., Luckevich, M., & Misner, S. (2002). Business intelligence: Making better decisions faster. Microsoft Press. https://openlibrary.org/books/OL7890958M/Business_Intelligence | eng |
| oaire.version | info:eu-repo/semantics/acceptedVersion | |
| sb.investigacion | Gestión y control | spa |
| sb.programa | Administración de Empresas | spa |
| sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

