Estudio sobre la interacción entre nanopartículas de oro y las bacterias Escherichia coli y Staphylococcus aureus mediante dispersión luz laser como método de detección y clasificación

datacite.rightshttp://purl.org/coar/access_right/c_16ecspa
dc.contributor.advisorPacheco Londoño, Leonardo Carlos
dc.contributor.authorGarcía Moreno, Karen Lorena
dc.contributor.authorBothia Martínez, Daniel Alberto
dc.date.accessioned2023-11-28T19:29:47Z
dc.date.available2023-11-28T19:29:47Z
dc.date.issued2023
dc.description.abstractLa detección de bacterias representa un desafío fundamental para salvaguardar la salud pública. Las nanopartículas de oro (AuNPs) emergen como una opción prometedora gracias a su notable sensibilidad frente al tamaño y estructura de las partículas. Esta investigación resalta la urgencia de lograr una detección bacteriana un poco mas ágil, rentable y precisa, resaltando su importancia para la salud y el bienestar humano, en lo que la estrategia presentada se centra en aprovechar la interacción entre las bacterias y las nanopartículas de oro, lo que permite detectar diversas especies bacterianas, incluso en concentraciones mínimas. Se evaluó la utilización de la dispersión de luz láser para detectar y clasificar bacterias empleando AuNPs, la cual partió de la síntesis de nanopartículas a partir de borohidruro de sodio y ácido cloroáurico, determinando su concentración a través del método de espectrofotometría. Posteriormente, se inocularon 100uL de Escherichia coli y Staphylococcus aureus, tanto en placas solas, como con la adición de AuNPs. Este proceso facilitó el análisis de dispersión luz láser, que reveló una disminución en la intensidad de la luz dispersada ante bacterias, indicando la presencia de partículas en suspensión. Además, se observó una variación en la intensidad de luz dispersada entre ambas bacterias, permitiendo su clasificación diferenciada. La detección de bacterias mediante nanopartículas de oro se considera como una estrategia prometedora en el campo de la salud pública. Este estudio, muestra la viabilidad de la dispersión de luz láser para detectar y clasificar bacterias utilizando AuNPs. Sin embargo, para perfeccionar este enfoque, se requiere una investigación más profunda con el objetivo de optimizar las propiedades de las AuNPs. Esto involucra explorar técnicas de detección adicionales que puedan complementar el método actual y validar clínicamente los biosensores Estos esfuerzos adicionales tienen el potencial de conducir al desarrollo de herramientas de detección que sean rápidas, precisas y rentables, y que puedan ser de gran utilidad en la esfera de la salud pública. La importancia de esta investigación radica en su capacidad para revolucionar la detección de bacterias, lo que podrá desempeñar un papel vital en el control y prevención de enfermedades infecciosas. Además, la mejora de estas técnicas podría tener aplicaciones en áreas diversas, desde la industria alimentaria hasta la medicina, mejorando así la calidad y seguridad en diferentes aspectos de la vida diaria. Por lo tanto, la continuación de estas investigaciones es esencial para aprovechar plenamente el potencial de las nanopartículas de oro en la detección bacteriana.spa
dc.description.abstractThe detection of bacteria represents a fundamental challenge to safeguard public health. Gold nanoparticles (AuNPs) emerge as a promising option thanks to their notable sensitivity to particle size and structure. This research highlights the urgency of achieving a more agile, cost-effective and accurate bacterial detection, highlighting its importance for human health and well-being, in which the strategy presented focuses on taking advantage of the interaction between bacteria and gold nanoparticles. , which allows the detection of various bacterial species, even in minimal concentrations. The use of laser light scattering to detect and classify bacteria using AuNPs was evaluated, which started from the synthesis of nanoparticles from sodium borohydride and chloroauric acid, determining their concentration through the spectrophotometry method. Subsequently, 100uL of Escherichia coli and Staphylococcus aureus were inoculated, both on plates alone and with the addition of AuNPs. This process facilitated the analysis of laser light scattering, which revealed a decrease in the intensity of the light scattered by bacteria, indicating the presence of particles in suspension. Furthermore, a variation in the intensity of scattered light was observed between both bacteria, allowing their differentiated classification. The detection of bacteria using gold nanoparticles is considered a promising strategy in the field of public health. This study shows the feasibility of laser light scattering to detect and classify bacteria using AuNPs. However, to refine this approach, further research is required with the aim of optimizing the properties of the AuNPs. This involves exploring additional detection techniques that can complement the current method and clinically validate the biosensors. These additional efforts have the potential to lead to the development of detection tools that are rapid, accurate and cost-effective, and that can be of great use in the field. of public health. The importance of this research lies in its ability to revolutionize the detection of bacteria, which could play a vital role in the control and prevention of infectious diseases. Furthermore, the improvement of these techniques could have applications in diverse areas, from the food industry to medicine, thus improving quality and safety in different aspects of daily life. Therefore, continuation of these investigations is essential to fully realize the potential of gold nanoparticles in bacterial detection.eng
dc.format.mimetypepdfspa
dc.identifier.urihttps://hdl.handle.net/20.500.12442/13461
dc.language.isospaspa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ciencias Básicas y Biomédicasspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectBiosensoresspa
dc.subjectDispersión de Luzspa
dc.subjectDetecciónspa
dc.subjectEscherichia colispa
dc.subjectNanopartículasspa
dc.subjectStaphylococcus aureusspa
dc.subjectSíntesisspa
dc.subjectSalud publicaspa
dc.subjectBiosensorseng
dc.subjectLight Scatteringeng
dc.subjectDetectioneng
dc.subjectEscherichia colieng
dc.subjectNanoparticleseng
dc.subjectStaphylococcus aureuseng
dc.subjectSynthesiseng
dc.titleEstudio sobre la interacción entre nanopartículas de oro y las bacterias Escherichia coli y Staphylococcus aureus mediante dispersión luz laser como método de detección y clasificaciónspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.spaTrabajo de grado - pregradospa
dcterms.referencesBrame, J. E., Liddicoat, C., Abbott, C. A., & Breed, M. F. (2021). The potential of outdoor environments to supply beneficial butyrate-producing bacteria to humans. Science of the Total Environment, 777. https://doi.org/10.1016/j.scitotenv.2021.146063eng
dcterms.referencesBritto Hurtado, R., Cortez-Valadez, M., Flores-Acosta, M., Britto Hurtado, R., Cortez-Valadez, M., & Flores-Acosta, M. (2022). Aplicaciones tecnológicas de las nanopartículas en la medicina e industria. Epistemus (Sonora), 16(33), 46–54. https://doi.org/10.36790/EPISTEMUS.V16I33.223spa
dcterms.referencesCarpenter, B. P., Talosig, A. R., Rose, B., Di Palma, G., & Patterson, J. P. (2023). Understanding and controlling the nucleation and growth of metal–organic frameworks. Chemical Society Reviews. https://doi.org/10.1039/D3CS00312Deng
dcterms.referencesDe Investigación En, C., & Aplicada¨aplicación, B. (n.d.). INSTITUTO POLITÉCNICO NACIONALspa
dcterms.referencesEvaluación de la propiedad antimicrobial de las nanopartículas de oro sintetizadas con extractos de tamarindus indica L y mangifera indica L. (n.d.). Retrieved October 31, 2023, from https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-77432017000400389spa
dcterms.referencesHajipour, M. J., Ata Saei, A., Walker, E. D., Conley, B., Omidi, Y., Lee, K.-B., Mahmoudi, M., Hajipour, M. J., Mahmoudi, M., Saei, A. A., Walker, E. D., Conley, B., Lee, K., & Omidi, Y. (2021). Nanotechnology for Targeted Detection and Removal of Bacteria: Opportunities and Challenges. https://doi.org/10.1002/advs.202100556eng
dcterms.referencesLinklater, D. P., Baulin, V. A., Le Guével, X., Fleury, J. B., Hanssen, E., Nguyen, T. H. P., Juodkazis, S., Bryant, G., Crawford, R. J., Stoodley, P., & Ivanova, E. P. (2020). Antibacterial Action of Nanoparticles by Lethal Stretching of Bacterial Cell Membranes. Advanced Materials, 32(52). https://doi.org/10.1002/ADMA.202005679eng
dcterms.referencesNanopartículas de oro podrían evitar la resistencia a los antibióticos. (n.d.). Retrieved October 31, 2023, from https://businessinsider.mx/nanoparticulas-oro-evitar-resistencia-antibioticos_ciencia/spa
dcterms.referencesOro, G., Por, A., Láser, Y., Moléculas, F. ", Irving, B., Marquez, A., & Para, C. (2015). Estudio de la transferencia de energía entre nanopartículas de oro generadas por ablación láser y moléculas fluoróforas. http://saber.ucv.ve/handle/10872/8874spa
dcterms.referencesParametrización integrada de la curva de crecimiento bacteriano. Comprobación experimental para E. coli C600. (1984). Junta de Energia Nuclear.spa
dcterms.referencesPeng, H., & Chen, I. A. (2019). Rapid Colorimetric Detection of Bacterial Species through the Capture of Gold Nanoparticles by Chimeric Phages. ACS Nano, 13(2), 1244–1252. https://doi.org/10.1021/ACSNANO.8B06395/SUPPL_FILE/NN8B06395_SI_001.PDFeng
dcterms.referencesQuímico, P. I., Beatriz, E., Duarte, D., De, D., María, D., & Velasco, A. L. (n.d.). “Reactividad de Nanopartículas Metálicas con Biomoléculas y Microorganismos de Importancia Ambiental”.spa
dcterms.referencesRajapaksha, P., Elbourne, A., Gangadoo, S., Brown, R., Cozzolino, D., & Chapman, J. (2019). A review of methods for the detection of pathogenic microorganisms. Analyst, 144(2), 396–411. https://doi.org/10.1039/C8AN01488Deng
dcterms.referencesSoenen, S. J., Rivera-Gil, P., Montenegro, J. M., Parak, W. J., De Smedt, S. C., & Braeckmans, K. (2011). Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today, 6(5), 446–465. https://doi.org/10.1016/j.nantod.2011.08.001eng
dcterms.referencesWang, H., Wei, C.-X., Min, L., & Zhu, L.-Y. (2018). Biotechnology & Biotechnological Equipment Good or bad: gut bacteria in human health and diseases. https://doi.org/10.1080/13102818.2018.1481350eng
oaire.versioninfo:eu-repo/semantics/acceptedVersionspa
sb.programaMicrobiologíaspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
PDF_Resumen.pdf
Tamaño:
204.84 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
515.9 KB
Formato:
Adobe Portable Document Format

Colecciones