Uncovering the genetic and molecular features of huntington’s disease in northern Colombia
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.contributor.author | Ahmad, Mostapha | |
dc.contributor.author | Ríos Anillo, Margarita Rosa | |
dc.contributor.author | Acosta-Lopez, Johan E. | |
dc.contributor.author | Cervantes-Henríquez, Martha L. | |
dc.contributor.author | Martinez-Banfi, Martha Luz | |
dc.contributor.author | Pineda-Alhucema, Wilmar | |
dc.contributor.author | Puentes-Rozo, Pedro | |
dc.contributor.author | Sánchez Barros, Cristian Manuel | |
dc.contributor.author | Pinzón, Andrés | |
dc.contributor.author | Patel, Hardip | |
dc.contributor.author | Vélez, Jorge | |
dc.contributor.author | Villarreal-Camacho, Jose Luis | |
dc.contributor.author | Pineda, David A | |
dc.contributor.author | Arcos-Burgos, Mauricio | |
dc.contributor.author | Sánchez Rojas, Manuel | |
dc.date.accessioned | 2024-11-26T20:07:27Z | |
dc.date.available | 2024-11-26T20:07:27Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Huntington’s disease (HD) is a genetic disorder caused by a CAG trinucleotide expansion in the huntingtin (HTT) gene. Juan de Acosta, Atlántico, a city located on the Caribbean coast of Colombia, is home to the world’s second-largest HD pedigree. Here, we include 291 descendants of this pedigree with at least one family member with HD. Blood samples were collected, and genomic DNA was extracted. We quantified the HTT CAG expansion using an amplicon sequencing protocol. The genetic heterogeneity was measured as the ratio of the mosaicism allele’s read peak and the slippage ratio of the allele’s read peak from our sequence data. The statistical and bioinformatic analyses were performed with a significance threshold of p < 0.05. We found that the average HTT CAG repeat length in all participants was 21.91 (SD = 8.92). Of the 291 participants, 33 (11.3%, 18 females) had a positive molecular diagnosis for HD. Most affected individuals were adults, and the most common primary and secondary alleles were 17/7 (CAG/CCG) and 17/10 (CAG/CCG), respectively. The mosaicism increased with age in the participants with HD, while the slippage analyses revealed differences by the HD allele type only for the secondary allele. The slippage tended to increase with the HTT CAG repeat length in the participants with HD, but the increase was not statistically significant. This study analyzed the genetic and molecular features of 291 participants, including 33 with HD. We found that the mosaicism increased with age in the participants with HD, particularly for the secondary allele. The most common haplotype was 17/7_17/10. The slippage for the secondary allele varied by the HD allele type, but there was no significant difference in the slippage by sex. Our findings offer valuable insights into HD and could have implications for future research and clinical management. | eng |
dc.format.mimetype | ||
dc.identifier.citation | Ahmad, M.; Ríos-Anillo, M.R.; Acosta-López, J.E.; Cervantes-Henríquez, M.L.; Martínez-Banfi, M.; Pineda-Alhucema,W.; Puentes-Rozo, P.; Sánchez-Barros, C.; Pinzón, A.; Patel, H.R.; et al. Uncovering the Genetic and Molecular Features of Huntington’s Disease in Northern Colombia. Int. J. Mol. Sci. 2023, 24, 16154. https://doi.org/10.3390/ijms242216154 | |
dc.identifier.doi | https://doi.org/10.3390/ijms242216154 | |
dc.identifier.issn | 14220067 (Electrónico) | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/15984 | |
dc.identifier.url | https://www.mdpi.com/1422-0067/24/22/16154 | |
dc.language.iso | eng | |
dc.publisher | MDPI | spa |
dc.publisher | Facultad de Ciencias de la Salud | spa |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | |
dc.subject.keywords | Huntington’s disease | eng |
dc.subject.keywords | HTT | eng |
dc.subject.keywords | CAG repeats | eng |
dc.subject.keywords | Mosaicism | eng |
dc.subject.keywords | Slippage | eng |
dc.title | Uncovering the genetic and molecular features of huntington’s disease in northern Colombia | eng |
dc.type.driver | info:eu-repo/semantics/other | |
dc.type.spa | Otros | |
dcterms.references | MacDonald, M.E.; Ambrose, C.M.; Duyao, M.P.; Myers, R.H.; Lin, C.; Srinidhi, L.; Barnes, G.; Taylor, S.A.; James, M.; Groot, N.; et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993, 72, 971–983. [CrossRef] | eng |
dcterms.references | Marchina, E.; Misasi, S.; Bozzato, A.; Ferraboli, S.; Agosti, C.; Rozzini, L.; Borsani, G.; Barlati, S.; Padovani, A. Gene expression profile in fibroblasts of Huntington’s disease patients and controls. J. Neurol. Sci. 2014, 337, 42–46. [CrossRef] | eng |
dcterms.references | Potter, N.T.; Spector, E.B.; Prior, T.W. Technical Standards and Guidelines for Huntington Disease Testing. Genet. Med. 2004, 6, 61–65. [CrossRef] | eng |
dcterms.references | Gusella, J.F.; MacDonald, M.E. Huntington’s disease: Seeing the pathogenic process through a genetic lens. Trends Biochem. Sci. 2006, 31, 533–540. [CrossRef] | eng |
dcterms.references | Burton, A. Hope, humanity, and Huntington’s disease in Latin America. Lancet Neurol. 2013, 12, 133–134. [CrossRef] | eng |
dcterms.references | De Castro, M.; Restrepo, C.M. Genetics and genomic medicine in colombia. Mol. Genet. Genomic Med. 2015, 3, 84–91. [CrossRef] | eng |
dcterms.references | Daza, B.; Caiaffa, R.H.; Arteta, B.J.; Echeverría, R.V.; Ladrón de Guevara, Z.; Escamilla, M. Estudio neuroepidemiológico en Juande Acosta, Atlántico, Colombia. Acta Méd. Colomb. 1991, 17, 324. | spa |
dcterms.references | Sánchez-Castañeda, C.; Squitieri, F.; Di Paola, M.; Dayan, M.; Petrollini, M.; Sabatini, U. The role of iron in gray matter degeneration in huntington’s disease: A magnetic resonance imaging study. Hum. Brain Mapp. 2015, 36, 50–66. [CrossRef] | eng |
dcterms.references | Maxwell, A. ScaleHD Documentation. 2022. Available online: https://scalehd.readthedocs.io/_/downloads/en/latest/pdf/ (accessed on 20 March 2022). | eng |
dcterms.references | Pulkes, T.; Papsing, C.; Wattanapokayakit, S.; Mahasirimongkol, S. Cag-expansion haplotype analysis in a population with a low prevalence of huntington’s disease. J. Clin. Neurol. 2014, 10, 32–36. [CrossRef] | eng |
dcterms.references | Warby, S.C.; Visscher, H.; Collins, J.A.; Doty, C.N.; Carter, C.; Butland, S.L.; Hayden, A.R.; Kanazawa, I.; Ross, C.J.; Hayden, M.R. HTT haplotypes contribute to differences in Huntington disease prevalence between Europe and East Asia. Eur. J. Hum. Genet. 2011, 19, 561–566. [CrossRef] | eng |
dcterms.references | Stephens, M.; Smith, N.J.; Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 2001, 68, 978–989. [CrossRef] [PubMed] | eng |
dcterms.references | Kremer, B.; Goldberg, P.; Andrew, S.E.; Theilmann, J.; Telenius, H.; Zeisler, J.; Squitieri, F.; Lin, B.; Bassett, A.; Almqvist, E.; et al. A worldwide study of the Huntington’s disease mutation. The sensitivity and specificity of measuring CAG repeats. N. Engl. J. Med. 1994, 330, 1401–1406. [CrossRef] [PubMed] | eng |
dcterms.references | Pringsheim, T.; Wiltshire, K.; Day, L.; Dykeman, J.; Steeves, T.; Jette, N. The incidence and prevalence of Huntington’s disease: A systematic review and meta-analysis. Mov. Disord. 2012, 27, 1083–1091. [CrossRef] | eng |
dcterms.references | Hayden, M.R.; Berkowicz, A.L.; Beighton, P.H.; Yiptong, C. Huntington’s chorea on the island of Mauritius. S. Afr. Med. J. 1981, 60, 1001–1002. [PubMed] | eng |
dcterms.references | Apolinário, T.A.; Silva, I.d.S.d.; Agostinho, L.d.A.; Paiva, C.L.A. Investigation of intermediate CAG alleles of the HTT in the general population of Rio de Janeiro, Brazil, in comparison with a sample of Huntington disease-affected families. Mol. Genet. Genomic Med. 2020, 8, e1181. [CrossRef] [PubMed] | eng |
dcterms.references | Agostinho, L.D.A.; Rocha, C.F.; Medina-Acosta, E.; Barboza, H.N.; da Silva, A.F.A.; Pereira, S.P.; da Silva, I.D.S.; Paradela, E.R.; Figueiredo, A.L.D.S.; Nogueira, E.D.M.; et al. Haplotype analysis of the CAG and CCG repeats in 21 Brazilian families with Huntington’s disease. J. Hum. Genet. 2012, 57, 796–803. [CrossRef] | eng |
dcterms.references | Masuda, N.; Goto, J.; Murayama, N.; Watanabe, M.; Kondo, I. Kanazawa Analysis of triplet repeats in the huntingtin gene in Japanese families affected with Huntington’s disease. J. Med. Genet. 1995, 32, 701–705. [CrossRef] | eng |
dcterms.references | Ruiz de Sabando, A.; Urrutia Lafuente, E.; Galbete, A.; Ciosi, M.; García Amigot, F.; García Solaesa, V.; Spanish HD Collaborative Group; Monckton, D.G.; Ramos-Arroyo, M.A. Spanish HTT gene study reveals haplotype and allelic diversity with possible implications for germline expansion dynamics in Huntington disease. Hum. Mol. Genet. 2022, 32, 897–906. [CrossRef] | eng |
dcterms.references | Walker, R.H.; Gatto, E.M.; Bustamante, M.L.; Bernal-Pacheco, O.; Cardoso, F.; Castilhos, R.M.; Chana-Cuevas, P.; Cornejo-Olivas, M.; Estrada-Bellmann, I.; Jardim, L.B.; et al. Huntington’s disease-like disorders in Latin America and the Caribbean. Park. Relat. Disord. 2018, 53, 10–20. [CrossRef] | eng |
dcterms.references | Campbell, I.M.; Shaw, C.A.; Stankiewicz, P.; Lupski, J.R. Somatic mosaicism: Implications for disease and transmission genetics. Trends Genet. 2015, 31, 382–392. [CrossRef] | eng |
dcterms.references | Clever, F.; Cho, I.K.; Yang, J.; Chan, A.W.S. Progressive Polyglutamine Repeat Expansion in Peripheral Blood Cells and Sperm of Transgenic Huntington’s Disease Monkeys. J. Huntingt. Dis. 2019, 8, 443–448. [CrossRef] [PubMed] | eng |
dcterms.references | Semaka, A.; Kay, C.; Doty, C.N.; Collins, J.A.; Tam, N.; Hayden, M.R. High frequency of intermediate alleles on Huntington disease-associated haplotypes in British Columbia’s general population. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2013, 162B, 864–871. [CrossRef] [PubMed] | eng |
dcterms.references | Palareti, G.; Legnani, C.; Cosmi, B.; Antonucci, E.; Erba, N.; Poli, D.; Testa, S.; Tosetto, A.; DULCIS (D-dimer-ULtrasonography in Combination Italian Study) Investigators; De Micheli, V.; et al. Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study. Int. J. Lab. Hematol. 2016, 38, 42–49. [CrossRef] [PubMed] | eng |
dcterms.references | Kacher, R.; Lejeune, F.X.; Noel, S.; Cazeneuve, C.; Brice, A.; Humbert, S.; Durr, A. Propensity for somatic expansion increases over the course of life in huntington disease. Elife 2021, 10, e64674. [CrossRef] [PubMed] | eng |
dcterms.references | Viguera, E.; Canceill, D.; Ehrlich, S.D. Replication slippage involves DNA polymerase pausing and dissociation. EMBO J. 2001, 20, 2587–2595. [CrossRef] [PubMed] | eng |
dcterms.references | Sathe, S.;Ware, J.; Levey, J.; Neacy, E.; Blumenstein, R.; Noble, S.; Mühlbäck, A.; Rosser, A.; Landwehrmeyer, G.B.; Sampaio, C. Enroll-HD: An Integrated Clinical Research Platform and Worldwide Observational Study for Huntington’s Disease. Front. Neurol. 2021, 12, 667420. [CrossRef] | eng |
dcterms.references | Espinoza, F.A.; Turner, J.A.; Vergara, V.M.; Miller, R.L.; Mennigen, E.; Liu, J.; Misiura, M.B.; Ciarochi, J.; Johnson, H.J.; Long, J.D.; et al. Whole-Brain Connectivity in a Large Study of Huntington’s Disease Gene Mutation Carriers and Healthy Controls. Brain Connect. 2018, 8, 166–178. [CrossRef] | eng |
dcterms.references | Vélez, J.I. Machine Learning based Psychology: Advocating for A Data-Driven Approach. Int. J. Psychol. Res. 2021, 14, 6–11. [CrossRef] | eng |
dcterms.references | Mohan, A.; Sun, Z.; Ghosh, S.; Li, Y.; Sathe, S.; Hu, J.; Sampaio, C. A Machine-Learning Derived Huntington’s Disease Progression Model: Insights for Clinical Trial Design. Mov. Disord. 2022, 37, 553–562. [CrossRef] | eng |
dcterms.references | Riad, R.; Lunven, M.; Titeux, H.; Cao, X.N.; Hamet Bagnou, J.; Lemoine, L.; Montillot, J.; Sliwinski, A.; Youssov, K.; Cleret de Langavant, L.; et al. Predicting clinical scores in Huntington’s disease: A lightweight speech test. J. Neurol. 2022, 269, 5008–5021. [CrossRef] | eng |
dcterms.references | Odish, O.F.F.; Johnsen, K.; van Someren, P.; Roos, R.A.C.; van Dijk, J.G. EEG may serve as a biomarker in Huntington’s disease using machine learning automatic classification. Sci. Rep. 2018, 8, 16090. [CrossRef] [PubMed] | eng |
dcterms.references | Bradley, M.; Pinto, A.J.; Guest, J.S. Gene-Specific Primers for Improved Characterization of Mixed Phototrophic Communities. Appl. Environ. Microbiol. 2016, 82, 5878–5891. [CrossRef] [PubMed] | eng |
dcterms.references | Ciosi, M.; Cumming, S.A.; Alshammari, A.M.; Symeonidi, E.; Herzyk, P.; McGuinness, D.; Galbraith, J.; Hamilton, G.; Monckton, D.G. Library Preparation and MiSeq Sequencing for the Genotyping-by-Sequencing of the Huntington Disease HTT Exon One Trinucleotide Repeat and the Quantification of Somatic Mosaicism; Springer: Berlin/Heidelberg, Germany, 2018. [CrossRef] | eng |
dcterms.references | Fadrosh, D.W.; Ma, B.; Gajer, P.; Sengamalay, N.; Ott, S.; Brotman, R.M.; Ravel, J.; Fadrosh, D.W.; Ma, B.; Gajer, P.; et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2014, 2, 6. [CrossRef] [PubMed] | eng |
dcterms.references | Ihaka, R.; Gentleman, R. R: A Language for Data Analysis and Graphics. J. Comput. Graph. Stat. 1996, 5, 299–314. [CrossRef] | eng |
oaire.version | info:eu-repo/semantics/publishedVersion | |
sb.programa | Especialización en Neurología | spa |
sb.sede | Sede Barranquilla | spa |