Avances investigativos en nefritis lúpica

datacite.rightshttp://purl.org/coar/access_right/c_abf2eng
dc.contributor.authorAroca Martínez, Gustavo
dc.contributor.authorVélez-Verbel, María D.
dc.contributor.authorGonzález-Torres, Henry J.
dc.contributor.authorDe La Cruz, Fernando
dc.contributor.authorNavarro Quiroz, Roberto
dc.contributor.authorNavarro Quiroz, Elkin
dc.contributor.authorPacheco Lugo, Lisandro
dc.contributor.authorArrieta Bravo, Valentina
dc.contributor.authorDíaz Olmos, Yirys
dc.contributor.authorGómez Escorcia, Lorena
dc.contributor.authorAcosta-Hoyos, Antonio J.
dc.date.accessioned2022-04-29T19:58:34Z
dc.date.available2022-04-29T19:58:34Z
dc.date.issued2020
dc.description.abstractEl lupus eritematoso sistémico (LES) es una enfermedad autoinmune recurrente-remitente caracterizada por la pérdida de tolerancia a los ácidos nucleicos y manifestaciones clínicas muy diversas. la heterogeneidad clínica, junto con la posible gravedad de estas manifestaciones, hacen que el tratamiento del LES sea un desafío distinto. A pesar de los avances recientes en los protocolos de tratamiento, varios estudios han señalado que los pacientes con LES todavía tienen un riesgo general de muertes de 2 a 3 veces mayor. Adicionalmente, existe grandes desafíos a nivel diagnóstico y la búsqueda de biomarcadores que permitan una rápida detención de afecciones como la real. El libro Avances Investigativos en Nefritis Lúpica compila conocimientos recientes sobre la base genética, molecular de la nefritis lúpica, nuevos biomarcadores diagnóstico, su potencial uso y el rol de las infecciones en esta enfermedad.spa
dc.format.mimetypepdfspa
dc.identifier.citationAroca Martínez, G. y Navarro Quiroz, E. (Edit.) (2020). Avance investigativos en nefritis lúpica. Barranquilla: Ediciones Universidad Simón Bolívar.spa
dc.identifier.isbn9789585318410
dc.identifier.urihttps://hdl.handle.net/20.500.12442/9611
dc.language.isospaspa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectNefrologíaspa
dc.subjectRiñonesspa
dc.subjectLupus Eritematosospa
dc.subjectInsuficiencia renal crónicaspa
dc.titleAvances investigativos en nefritis lúpicaspa
dc.type.driverinfo:eu-repo/semantics/bookeng
dc.type.spaLibrospa
dcterms.referencesSilvariño DR, Ottati G, Noboa Ó. Nefropatía lúpica. Rev medica del Uruguay. 2015;31(1):64-78.spa
dcterms.referencesKoutsokeras T, Healy T. Systemic lupus erythematosus and lupus nephritis. Natures Rev Drug Discov. 2014;13(3):173-4.eng
dcterms.referencesGurevitz SL, Snyder JA, Wessel EK, Frey J, Williamson BA. Systemic lupus erythematosus: A review of the disease and treatment options. Consult Pharm. 2013;28(2):110-21.eng
dcterms.referencesZubair A, Frieri M. Lupus nephritis: Review of the LITERATURE. Curr Allergy Asthma Rep. 2013;13(6):580-6.eng
dcterms.referencesYap DYH, Yung S, Chan TAKMAO. Lupus nephritis: An update on treatments and pathogenesis. Nephrology. 2018;23:80-3.eng
dcterms.referencesYu F, Haas M, Glassock R, Zhao MH. Redefining lupus nephritis: Clinical implications of pathophysiologic subtypes. Nat Rev Nephrol. 2017;13(8):483–95.eng
dcterms.referencesMohan C, Putterman C. Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis. Nat Rev Nephrol [Internet]. 2015;11(6):329–41. Available from: http://dx.doi. org/10.1038/nrneph.2015.33eng
dcterms.referencesRees F, Doherty M, Grainge M, Davenport G, Lanyon P, Zhang W. The incidence and prevalence of systemic lupus erythematosus in the UK, 1999-2012. Ann Rheum Dis. 2016;75(1):136– 41.eng
dcterms.referencesPons-Estel GJ, Ugarte-Gil MF, Alarcón GS. Epidemiology of systemic lupus erythematosus. Expert Rev Clin Immunol. 2017 Aug;13(8):799–814.eng
dcterms.referencesPinto P L, Velásquez F C, Márquez H J. Subgrupos de Lupus Eritematoso Sistémico: influencia de la edad de inicio, la raza, el sexo y el perfil de anticuerpos en las manifestaciones clínicas de la enfermedad. Rev Colomb Reumatol. 2008;15(4):291–8.spa
dcterms.referencesHahn BH, McMahon MA, Wilkinson A, Wallace WD, Daikh DI, Fitzgerald JD, et al. American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res. 2012;64(6):797–808.eng
dcterms.referencesHM B, JM R, Jr MG, GS A, AW F, BJ F, et al. Systemic lupus erythematosus in three ethnic groups. XII. Risk factors for lupus nephritis after diagnosis. Lupus. 2002;11(3):152–60.eng
dcterms.referencesAnaya JM, Cañas C, Mantilla RD, Pineda-Tamayo R, Tobón GJ, Herrera-Diaz C, et al. Lupus nephritis in colombians: Contrasts and comparisons with other populations. Clin Rev Allergy Immunol. 2011;40(3):199–207.eng
dcterms.referencesAroca-Martínez G. Propuesta de un modelo de gestion de salud de la nefritis lupica. Universida. 2017. 43 p.spa
dcterms.referencesCervera R, Khamashta M a, Font J, Sebastiani GD, Gil A, Lavilla P, et al. Morbidity and mortality in systemic lupus erythematosus during a 10-year period: a comparison of early and late manifestations in a cohort of 1,000 patients. Medicine (Baltimore). 2003;82(5):299–308.eng
dcterms.referencesDavidson A. What is damaging the kidney in lupus nephritis? Nat Rev Rheumatol. 2016;12(3):143–53.eng
dcterms.referencesLech M, Anders H-J. The Pathogenesis of Lupus Nephritis. J Am Soc Nephrol [Internet]. 2013;24(9):1357–66. Available from: http://www.jasn.org/lookup/doi/10.1681/ ASN.2013010026eng
dcterms.referencesPetri M, Orbai A-M, Alarcón GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012 Aug;64(8):2677–86.eng
dcterms.referencesPeñaranda LFP. Nefropatía lúpica. Rev Colomb Nefrol. 2014;2(1):104–17.eng
dcterms.referencesArroyo A, García R, Aroca G, Cadena A, Acosta J. Correlación clínica e inmunohistopatológica de la nefropatía lúpica en un centro de referencia del Caribe colombiano durante los años 2012 a 2013. Rev Colomb Nefrol. 2014;spa
dcterms.referencesRuiz-Irastorza G, Espinosa G, Frutos MA, Jiménez-Alonso J, Praga M, Pallarés L, et al. Diagnosis and treatment of Lupus nephritis: Consensus document from the systemic auto-immune disease group (GEAS) of the Spanish society of internal medicine (SEMI) and the Spanish society of nephrology (S.E.N.). Nefrologia. 2012;32(SUPPL. 1):1–45.eng
dcterms.referencesSeshan S V., Jennette JC. Renal disease in systemic lupus erythematosus with emphasis on classification of lupus glomerulonephritis advances and implications. Arch Pathol Lab Med. 2009;133(2):233–48.eng
dcterms.referencesMittal B, Rennke H, Singh AK. The role of kidney biopsy in the management of lupus nephritis. Curr Opin Nephrol Hypertens. 2005;14(1):1–8.eng
dcterms.referencesGreloni G, Scolnik M, Marin J, Lancioni E, Quiroz C, Zacariaz J, et al. Value of repeat biopsy in lupus nephritis flares. Lupus Sci Med. 2014;1(1):1–6.eng
dcterms.referencesNaranjo LAG, Duque GMV, Uribe OU, Gómez LAR. Nefropatía lúpica. Presentación clínica, clasificación y tratamiento. Rev Colomb Reumatol. 2006;13(4):307–33.spa
dcterms.referencesBajema IM, Wilhelmus S, Alpers CE, Bruijn JA, Colvin RB, Cook HT, et al. Revision of the International Society of Nephrology/Renal Pathology Society classification for lupus nephritis: clarification of definitions, and modified National Institutes of Health activity and chronicity indices. Kidney Int. 2018;93(4):789–96.eng
dcterms.referencesAlba P. Factores pronósticos en nefritis lúpica. Rev Arg Reum. 2014;25(3):6–7.spa
dcterms.referencesWakasugi D, Gono T, Kawaguchi Y, Hara M, Koseki Y, Katsumata Y, et al. Frequency of class III and IV nephritis in systemic lupus erythematosus without clinical renal involvement: An analysis of predictive measures. J Rheumatol. 2012;39(1):79–85.eng
dcterms.referencesAppel GB, Mahmood N, Mahmood F, Shumi SI, Siddiqui MMR. Mycophenolate Mofetil versus Cyclophosphamide for Induction Treatment of Lupus Nephritis. Anwer Khan Mod Med Coll J. 2018 Mar 1;9(1):63–7.eng
dcterms.referencesLiang MH, Schur PH, Fortin P, St.Clair EW, Balow JE, Costenbader K, et al. The American College of Rheumatology response criteria for proliferative and membranous renal disease in systemic lupus erythematosus clinical trials. Arthritis Rheum. 2006;54(2):421–32.eng
dcterms.referencesGonzalez LA, Molina JF, Vasquez GM. Actualidad en el tratamiento de la nefritis lúpica proliferativa Update on the treatment of proliferative lupus nephritis. RevColombReumatol. 2009;16(1):76–96.eng
dcterms.referencesRoverano S, Schmid M, Paira S. Recaída en nefritis lúpica: factores de riesgo e impacto en el pronóstico en una población de Santa Fe - Argentina. Rev Argent Reumatol. 2014;25(2):30–4.spa
dcterms.referencesBeier UH, Green C, Meyers KE. Caring for adolescent renal patients. Kidney Int [Internet]. 2010;77(4):285–91. Available from: http://dx.doi.org/10.1038/ki.2009.462eng
dcterms.referencesRivera F, Romera A, Anaya S, Lm G, Vozmediano C. Nefropatía Lúpica. Nefrol al día [Internet]. 2018; Available from: http:// www.revistanefrologia.com/es-monografias-nefrologia-dia-articulo- nefropatia-lupica-164eng
dcterms.referencesMok CC, Cheung TT, Lo WH. Minimal mesangial lupus nephritis: A systematic review. Scand J Rheumatol. 2010;39(3):181–9.eng
dcterms.referencesHoussiau FA, Vasconcelos C, D’Cruz D, Sebastiani GD, De Ramon Garrido E, Danieli MG, et al. Immunosuppressive therapy in lupus nephritis: The Euro-Lupus Nephritis Trial, a randomized trial of low-dose versus high-dose intravenous cyclophosphamide. Arthritis Rheum. 2002;46(8):2121–31.eng
dcterms.referencesRivera F. Micofenolato en nefritis lupica. NefroPlus. 2009;2(3):1–60.spa
dcterms.referencesBaltar JM, Marín R, Ortega F. Ciclofosfamida en glomerulonefritis primarias y secundarias. NefroPlus [Internet]. 2010;3:9–15. Available from: http://www.elsevier.es/es-revista- nefroplus-48 5-pdf-X1888970010000603-S300spa
dcterms.referencesMak A, Cheak AAC, Tan JYS, Su HC, Ho RCM, Lau CS. Mycophenolate mofetil is as efficacious as, but safer than, cyclophosphamide in the treatment of proliferative lupus nephritis: A meta-analysis and meta-regression. Rheumatology. 2009;48(8):944–52.eng
dcterms.referencesAustin HA, Illei GG, Braun MJ, Balow JE. Randomized, controlled trial of prednisone, cyclophosphamide, and cyclosporine in lupus membranous nephropathy. J Am Soc Nephrol. 2009;20(4):901–11.eng
dcterms.referencesLee SJ, Silverman E, Bargman JM. The role of antimalarial agents in the treatment of SLE and lupus nephritis. Nat Rev Nephrol [Internet]. 2011;7(12):718–29. Available from: http:// dx.doi.org/10.1038/nrneph.2011.150eng
dcterms.referencesRuiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, Khamashta MA. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: A systematic review. Ann Rheum Dis. 2010;69(1):20–8.eng
dcterms.referencesSundström J, Arima H, Woodward M, Jackson R, Karmali K, Lloyd-Jones D, et al. Blood pressure-lowering treatment based on cardiovascular risk: A meta-analysis of individual patient data. Lancet [Internet]. 2014;384(9943):591–8. Available from: http://dx.doi.org/10.1016/S0140-6736(14)61212-5eng
dcterms.referencesMasood S, Jayne D, Karim Y. Beyond immunosuppression - challenges in the clinical management of lupus nephritis. Lupus. 2009;18(2):106–15.eng
dcterms.referencesCatapano F, Chiodini P, De Nicola L, Minutolo R, Zamboli P, Gallo C, et al. Antiproteinuric Response to Dual Blockade of the Renin-Angiotensin System in Primary Glomerulonephritis: Meta-analysis and Metaregression. Am J Kidney Dis. 2008;52(3):475–85.eng
dcterms.referencesTse KC, Li FK, Tang S, Tang CSO, Lai KN, Chan TM. Angiotensin inhibition or blockade for the treatment of patients with quiescent lupus nephritis and persistent proteinuria. Lupus. 2005;14(12):947–52.eng
dcterms.referencesGomez Mendez LM, Cascino MD, Katsumoto TR, Brakeman P, Brunetta P, Jayne D, et al. Outcome of participants with nephrotic syndrome in combined clinical trials of lupus nephritis. Lupus Sci Med. 2019;6(1):1–9.eng
dcterms.referencesHaarhaus ML, Svenungsson E, Gunnarsson I. Ofatumumab treatment in lupus nephritis patients. Clin Kidney J. 2016;9(4):552–5.eng
dcterms.referencesNarain S, Furie R. Update on clinical trials in systemic lupus erythematosus. Curr Opin Rheumatol. 2016;28(5):477–87.eng
dcterms.referencesMurphy G, Isenberg DA. New therapies for systemic lupus erythematosus — past imperfect, future tense. Nat Rev Rheumatol [Internet]. 2019;15(7):403–12. Available from: http://dx.doi.org/10.1038/s41584-019-0235-5eng
dcterms.referencesFurie R, Aroca G, Alvarez A, Fragoso-Loyo H, Santillán EZ, Rovin B, et al. A Phase II Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Obinutuzumab or Placebo in Combination with Mycophenolate Mofetil in Patients with Active Class III or IV Lupus Nephritis. Arthritis Rheumatol. 2018;71(10):i636–7.eng
dcterms.referencesFurie R, Nicholls K, Cheng TT, Houssiau F, Burgos-Vargas R, Chen S Le, et al. Efficacy and safety of abatacept in lupus nephritis: A twelve-month, randomized, double-blind study. Arthritis Rheumatol. 2014;66(2):379–89.eng
dcterms.referencesNavarra S V., Guzmán RM, Gallacher AE, Hall S, Levy RA, Jimenez RE, et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: A randomised, placebo-controlled, phase 3 trial. Lancet [Internet]. 2011;377(9767):721–31. Available from: http://dx.doi. org/10.1016/S0140-6736(10)61354-2eng
dcterms.referencesFurie R, Petri M, Zamani O, Cervera R, Wallace DJ, Tegzová D, et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 2011;63(12):3918–30.eng
dcterms.referencesSciascia S, Radin M, Yazdany J, Levy RA, Roccatello D, Dall’Era M, et al. Efficacy of belimumab on renal outcomes in patients with systemic lupus erythematosus: A systematic review. Autoimmun Rev [Internet]. 2017;16(3):287–93. Available from: http://dx.doi.org/10.1016/j.autrev.2017.01.010eng
dcterms.referencesZhang X, Ji L, Yang L, Tang X, Qin W. The effect of calcineurin inhibitors in the induction and maintenance treatment of lupus nephritis: a systematic review and meta-analysis. Int Urol Nephrol. 2016;48(5):731–43.eng
dcterms.referencesRestrepo Valencia CA, Vélez Álvarez C. Experiencia en la utilización de inhibidores de calcineurin a bajas dosis en el tratamiento de nefritis lúpica refractaria. Rev Colomb Nefrol. 2014;1(2):80–91.spa
dcterms.referencesDall’Era M. Treatment of lupus nephritis. Curr Opin Rheumatol. 2017;29(3):241–7.eng
dcterms.referencesZhang H, Liu Z, Huang L, Hou J, Zhou M, Huang X, et al. The short-term efficacy of bortezomib combined with glucocorticoids for the treatment of refractory lupus nephritis. Lupus. 2017;26(9):952–8.eng
dcterms.referencesScalzulli E, Grammatico S, Vozella F, Petrucci MT. Proteasome inhibitors for the treatment of multiple myeloma. Expert Opin Pharmacother [Internet]. 2018;19(4):375–86. Available from: https://doi.org/10.1080/14656566.2018.1441287eng
dcterms.referencesSciascia S, Radin M, Yazdany J, Tektonidou M, Cecchi I, Roccatello D, et al. Expanding the therapeutic options for renal involvement in lupus: eculizumab, available evidence. Rheumatol Int. 2017;37(8):1249–55.eng
dcterms.referencesAlmaani S, Rovin BH. B-cell therapy in lupus nephritis: an overview. Nephrol Dial Transplant. 2019;34(1):22–9.eng
dcterms.referencesAlarcon, G. S., McGwin, G., Petri, M., Ramsey-Goldman, R., Fessler, B. J., Vil??, L. M., … Kimberly, R. P. (2006). Time to renal disease and end-stage renal disease in PROFILE: A multiethnic lupus cohort. PLoS Medicine, 3(10), 1949–1956. https://doi.org/10.1371/journal.pmed.0030396eng
dcterms.referencesAlarcón-Segovia, D., Alarcón-Riquelme, M. E., Cardiel, M. H., Caeiro, F., Massardo, L., Villa, A. R., & Pons-Estel, B. a. (2005). Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis and Rheumatism, 52(4), 1138–1147. https://doi.org/10.1002/ art.20999eng
dcterms.referencesAlarcón, G., Bastian, H., Beasley, T., Roseman, J., Tan, F., Fessler, B., … Reveille, J. (2006). Systemic lupus erythematosus in a multi-ethnic cohort (LUMINA): contributions of admixture and socioeconomic status to renal involvement. Lupus, 15(1), 26–31. https://doi.org/10.1191/0961203306lu2260oaeng
dcterms.referencesAlonso, M. D., Llorca, J., Martinez-Vazquez, F., Miranda- Filloy, J. A., Diaz de Teran, T., Dierssen, T., … Gonzalez-Gay, M. A. (2011). Systemic lupus erythematosus in northwestern Spain: a 20-year epidemiologic study. Medicine, 90(5), 350–358. https://doi.org/10.1097/MD.0b013e31822edf7feng
dcterms.referencesAnaya, J. M., Kim-Howard, X., Prahalad, S., Cherñavsky, A., Cañas, C., Rojas-Villarraga, A., … Nath, S. K. (2012). Evaluation of genetic association between an ITGAM non-synonymous SNP (rs1143679) and multiple autoimmune diseases. Autoimmunity Reviews, 11(4), 276–280. https://doi. org/10.1016/j.autrev.2011.07.007eng
dcterms.referencesAndrade, R. M., Alarcón, G. S., Fernández, M., Apte, M., Vilá, L. M., & Reveille, J. D. (2007). Accelerated damage accrual among men with systemic lupus erythematosus XLIV. Results from a multiethnic US cohort. Arthritis and Rheumatism, 56(2), 622–630. https://doi.org/10.1002/art.22375eng
dcterms.referencesBaranowska-Daca, E., Choi, Y. J., Barrios, R., Nassar, G., Suki, W. N., & Truong, L. D. (2001). Nonlupus nephritides in patients with systemic lupus erythematosus: a comprehensive clinicopathologic study and review of the literature. Human Pathology, 32, 1125–1135. https://doi.org/10.1053/ hupa.2001.28227eng
dcterms.referencesBarron, K. S., Silverman, E. D., Gonzales, J., & Reveille, J. D. (1993). Clinical, serologic, and immunogenetic studies in childhood‐onset systemic lupus erythematosus. Arthritis & Rheumatism, 36(3), 348–354. https://doi.org/10.1002/ art.1780360310eng
dcterms.referencesBastian, H. M., Alarc??n, G. S., Roseman, J. M., McGwin, G., Vil??, L. M., Fessler, B. J., … Pinilla-Diaz, C. (2007). Systemic lupus erythematosus in a multiethnic US cohort (LUMINA) XL II: Factors predictive of new or worsening proteinuria. Rheumatology, 46(4), 683–689. https://doi.org/10.1093/ rheumatology/kel347eng
dcterms.referencesBoddaert, J., Huong, D. L. T., Amoura, Z., Wechsler, B., Godeau, P., & Piette, J.-C. (2004). Late-Onset Systemic Lupus Erythematosus. Medicine, 83(6), 348–359. https://doi. org/10.1097/01.md.0000147737.57861.7ceng
dcterms.referencesBolin, K., Sandling, J. K., Zickert, A., Jönsen, A., Sjöwall, C., Svenungsson, E., … Nordmark, G. (2013). Association of STAT4 polymorphism with severe renal insufficiency in lupus nephritis. PLoS ONE, 8(12). https://doi.org/10.1371/journal. pone.0084450eng
dcterms.referencesBoor, P., Ostendorf, T., & Floege, J. (2014). PDGF and the progression of renal disease. Nephrology Dialysis Transplantation, 29(SUPPL. 1), 45–54. https://doi. org/10.1093/ndt/gft273eng
dcterms.referencesBorchers, A. T., Leibushor, N., Naguwa, S. M., Cheema, G. S., Shoenfeld, Y., & Gershwin, M. E. (2012). Lupus nephritis: A critical review. Autoimmunity Reviews, 12(2), 174–194. https://doi.org/10.1016/j.autrev.2012.08.018eng
dcterms.referencesBorchers, A. T., Naguwa, S. M., Shoenfeld, Y., & Gershwin, M. E. (2010). The geoepidemiology of systemic lupus erythematosus. Autoimmunity Reviews, 9(5), A277–A287. https://doi. org/10.1016/j.autrev.2009.12.008eng
dcterms.referencesBouillon, R., Carmeliet, G., Verlinden, L., Van Etten, E., Verstuyf, A., Luderer, H. F., … Demay, M. (2008). Vitamin D and human health: Lessons from vitamin D receptor null mice. Endocrine Reviews, 29(6), 726–776. https://doi.org/10.1210/ er.2008-0004eng
dcterms.referencesBrugos, B., Kiss, E., Szodoray, P., Szegedi, G., & Zeher, M. (2006). Retrospective analysis of patients with lupus nephritis: Data from a large clinical immunological center in Hungary. Scandinavian Journal of Immunology, 64(4), 433–437. https:// doi.org/10.1111/j.1365-3083.2006.01833.xeng
dcterms.referencesBurgos, P. I., McGwin, G., Pons-Estel, G. J., Reveille, J. D., Alarcon, G. S., & Vila, L. M. (2011). US patients of Hispanic and African ancestry develop lupus nephritis early in the disease course: data from LUMINA, a multiethnic US cohort (LUMINA LXXIV). Annals of the Rheumatic Diseases, 70(2), 393–394. https://doi.org/10.1136/ard.2010.131482eng
dcterms.referencesCampbell, H., & Rudan, I. (2002). Interpretation of genetic association studies in complex disease. The Pharmacogenomics Journal, 6(2), 349–360. https://doi.org/10.1038/sj.tpj.6500132eng
dcterms.referencesCaster, D. J., Korte, E. A., Nanda, S. K., McLeish, K. R., Oliver, R. K., G’Sell, R. T., … Powell, D. W. (2013). ABIN1 Dysfunction as a Genetic Basis for Lupus Nephritis. Journal of the American Society of Nephrology, 24(11), 1743–1754. https://doi.org/10.1681/ASN.2013020148eng
dcterms.referencesCherian, T. S., Kariuki, S. N., Franek, B. S., Buyon, J. P., Clancy, R. M., & Niewold, T. B. (2012). IRF5 systemic lupus erythematosus risk haplotype is associated with asymptomatic serologic autoimmunity and progression to clinical autoimmunity in mothers of children with neonatal lupus. Arthritis and Rheumatism, 64(10), 3383–3387. https://doi.org/10.1002/ art.34571eng
dcterms.referencesChung, S. A., Brown, E. E., Williams, A. H., Ramos, P. S., Berthier, C. C., Bhangale, T., … Langefeld, C. D. (2014). Lupus Nephritis Susceptibility Loci in Women with Systemic Lupus Erythematosus. Journal of the American Society of Nephrology, 25(12), 2859–2870. https://doi.org/10.1681/ ASN.2013050446eng
dcterms.referencesChung, Sharon A, Taylor, K. E., Graham, R. R., Nititham, J., Lee, A. T., Ortmann, W. A., … Criswell, L. A. (2011). Differential Genetic Associations for Systemic Lupus Erythematosus Based on Anti–dsDNA Autoantibody Production. PLOS Genetics, 7(3), e1001323.eng
dcterms.referencesCohen, S., Dadi, H., Shaoul, E., Sharfe, N., & Roifman, C. M. (1999). Cloning and Characterization of a Lymphoid-Specific, Inducible Human Protein Tyrosine Phosphatase, Lyp. Blood, 93(6), 2013 LP – 2024.eng
dcterms.referencesCollins, F. S., Brooks, L. D., & Chakravarti, A. (1998). A DNA polymorphism discovery resource for research on human genetic variation. Genome Research, 8(12), 1229–1231.eng
dcterms.referencesContreras-Fariñas, R., Ibañez-Clemente, P., Roldán- Valenzuela, A., & Torres-de Castro, O. G. (2014). Guía de Práctica Clínica. Consenso Sobre Úlceras Vasculares y Pie Diabético.eng
dcterms.referencesCrispín, C., Oukka, M., Bayliss, G., Cohen, R. A., Beek, C. A. Van, Stillman, I. E., … Tsokos, G. C. (2008). Expanded Double Negative T Cells in Patients with Systemic Lupus Erythematosus Produce IL-17 and Infiltrate the. 20, 1–6. https://doi.org/10.4049/jimmunol.181.12.8761eng
dcterms.referencesEdberg, J. C., Langefeld, C. D., Wu, J., Moser, K. L., Kaufman, K. M., Kelly, J., … Kimberly, R. P. (2002). Genetic linkage and association of Fcγ receptor IIIA (CD16A) on chromosome 1q23 with human systemic lupus erythematosus. Arthritis and Rheumatism, 46(8), 2132–2140. https://doi.org/10.1002/ art.10438eng
dcterms.referencesEgea Bermejo, G., Malagon Gutierrez, C., Fang, L. C., Olmos, C., Gonzalez, L. E., Guarnizo Zuccardi, P., … Garavito de Egea, G. (2016). Maternal Genetics Variants in PTPN22, TNF and VDR Genes Increase the Risk of Pediatric Lupus Nephritis. A Pilot Study. Frontiers in Immunology, 2015–2016. https://doi. org/10.3389/conf.fimmu.2015.05.00296eng
dcterms.referencesFloege, J., Eitner, F., & Alpers, C. E. (2008). A New Look at Platelet-Derived Growth Factor in Renal Disease. Journal of the American Society of Nephrology, 19(1), 12–23. https://doi. org/10.1681/ASN.2007050532eng
dcterms.referencesFont, J Cervera, R Espinosa, G Pallarés, L Ramos-Casals, M., & Jiménez, S. (1998). Systemic lupus erythematosus (SLE) in childhood: analysis of clinical and immunological findings in 34 patients and comparison with SLE characteristics in adults. Annals of the Rheumatic Diseases, 57(8), 456–459. https://doi. org/10.1136/ard.57.8.456eng
dcterms.referencesFreedman, B. I., Langefeld, C. D., Andringa, K. K., Croker, J. A., Williams, A. H., Garner, N. E., … Kimberly, R. P. (2014). End-Stage Renal Disease in African Americans With Lupus Nephritis Is Associated With APOL1. Arthritis & Rheumatology, 66(2), 390–396. https://doi.org/10.1002/ art.38220eng
dcterms.referencesGaipl, U. S., Voll, R. E., Sheriff, A., Franz, S., Kalden, J. R., & Herrmann, M. (2005). Impaired clearance of dying cells in systemic lupus erythematosus. Autoimmunity Reviews, 4(4), 189–194. https://doi.org/10.1016/j.autrev.2004.10.007eng
dcterms.referencesGaravito de Egea, G., Egea Bermejo, E. A., Malagón, C., Fang Mercado, L., Olmos, C., González, L., … Iglesias, A. (2016). Estudio de Variantes Moleculares de los Genes PTPN22, TNF Y VDR en Madres de Niños con Nefritis Lúpica y su Asociación como Factores de Riesgo. Revista Medicina, 38(1), 113.spa
dcterms.referencesGaravito, G., Egea, E., Fang, L., Malagón, C., Olmos, C., González, L., … Iglesias, A. (2017). Association of polymorphic variants of PTPN22, TNF and VDR systems in children with lupus nephritis: a study in trios of Colombian families. Biomédica, 37(2), 260–266. https://doi.org/10.7705/biomedica. v37i3.3247eng
dcterms.referencesGarcia, M., Marcos, J., Marcos, A., Pons-Estel, B., Wojdyla, D., Arturi, A., … Alarcon-Segovia, D. (2005). Male systemic lupus erythematosus in a Latin-American inception cohort of 1214 patients. Lupus, 14, 938–946. https://doi. org/10.1191/0961203305lu2245oaeng
dcterms.referencesGelmetti, A. P., Freitas, A. C., Woronik, V., Barros, R. T., Bonfá, E., & Monteiro, R. C. (2006). Polymorphism of the FcγRIIa IgG receptor in patients with lupus nephritis and glomerulopathy. Journal of Rheumatology, 33(3), 523–530.eng
dcterms.referencesGeneCards - Human Genes | Gene Database | Gene Search. (n.d.).eng
dcterms.referencesGenovese, G., Friedman, D. J., Ross, M. D., Lecordier, L., Uzureau, P., Freedman, B. I., … Pollak, M. R. (2010). Association of Trypanolytic ApoL1 Variants with Kidney Disease in African Americans. Science, 329(5993), 841–845. https://doi.org/10.1126/science.1193032eng
dcterms.referencesGhodke-Puranik, Y., & Niewolld, T. (2015). Immunogenetics of Systemic Lupus Erythematosus: A Comprehensive Review. J Autoimmun, 64, 125–136. https://doi.org/10.1016/j. jaut.2015.08.004.Immunogeneticseng
dcterms.referencesGraham, R. R., Kozyrev, S. V, Baechler, E. C., Reddy, M. V. P. L., Plenge, R. M., Bauer, J. W., … Alarcón-Riquelme, M. E. (2006). A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nature Genetics, 38(5), 550–555. https://doi.org/10.1038/ng1782eng
dcterms.referencesInvestigativos en Nefritis Lúpicas 83 cohort of 1214 patients. Lupus, 14, 938–946. https://doi. org/10.1191/0961203305lu2245oa 36. Gelmetti, A. P., Freitas, A. C., Woronik, V., Barros, R. T., Bonfá, E., & Monteiro, R. C. (2006). Polymorphism of the FcγRIIa IgG receptor in patients with lupus nephritis and glomerulopathy. Journal of Rheumatology, 33(3), 523–530. 37. GeneCards - Human Genes | Gene Database | Gene Search. (n.d.). 38. Genovese, G., Friedman, D. J., Ross, M. D., Lecordier, L., Uzureau, P., Freedman, B. I., … Pollak, M. R. (2010). Association of Trypanolytic ApoL1 Variants with Kidney Disease in African Americans. Science, 329(5993), 841–845. https://doi.org/10.1126/science.1193032 39. Ghodke-Puranik, Y., & Niewolld, T. (2015). Immunogenetics of Systemic Lupus Erythematosus: A Comprehensive Review. J Autoimmun, 64, 125–136. https://doi.org/10.1016/j. jaut.2015.08.004.Immunogenetics 40. Graham, R. R., Kozyrev, S. V, Baechler, E. C., Reddy, M. V. P. L., Plenge, R. M., Bauer, J. W., … Alarcón-Riquelme, M. E. (2006). A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nature Genetics, 38(5), 550–555. https://doi.org/10.1038/ng1782eng
dcterms.referencesHabib, T., Funk, A., Rieck, M., Brahmandam, A., Dai, X., Panigrahi, A. K., … Buckner, J. H. (2012). Altered B cell homeostasis is associated with Type I diabetes and carriers of the PTPN22 allelic variant. Journal of Immunology (Baltimore, Md. : 1950), 188(1), 487–496. https://doi. org/10.4049/jimmunol.1102176eng
dcterms.referencesHan, J.-W., Zheng, H.-F., Cui, Y., Sun, L.-D., Ye, D.-Q., Hu, Z., … Zhang, X.-J. (2009). Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nature Genetics, 41(11), 1234–1237. https://doi.org/10.1038/ng.472eng
dcterms.referencesHarley, J. B., Alarcón-Riquelme, M. E., Criswell, L. A., Jacob, C. O., Kimberly, R. P., Moser, K. L., … Kelly, J. A. (2008). Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nature Genetics, 40(2), 204–210.eng
dcterms.referencesHeyninck, K., Valck, D. De, Berghe, W. Vanden, Criekinge, W. Van, Contreras, R., Fiers, W., … Beyaert, R. (1999). Gene Expression by Interfering with an RIP- or TRAF2- mediated Protein ABIN. Cell, 145(7), 1471–1482. https://doi. org/10.1083/jcb.145.7.1471eng
dcterms.referencesHiraki, L. T., Feldman, C. H., Liu, J., Alarcõn, G. S., Fischer, M. A., Winkelmayer, W. C., & Costenbader, K. H. (2012). Prevalence, incidence, and demographics of systemic lupus erythematosus and lupus nephritis from 2000 to 2004 among children in the US medicaid beneficiary population. Arthritis and Rheumatism, 64(8), 2669–2676. https://doi.org/10.1002/ art.34472eng
dcterms.referencesHom, G., Ph, D., Graham, R. R., Modrek, B., Taylor, K. E., Ortmann, W., … Kao, A. H. (2008). Association of Systemic Lupus Erythematosus with. Genetics.eng
dcterms.referencesIwamoto, T., & Niewold, T. B. (2016). Genetics of human lupus nephritis. Clinical Immunology. https://doi.org/https:// doi.org/10.1016/j.clim.2016.09.012eng
dcterms.referencesJames, J. A. (2014). Clinical perspectives on lupus genetics: Advances and opportunities. Rheumatic Disease Clinics of North America, Vol. 40, pp. 413–432. W.B. Saunders.eng
dcterms.referencesJönsen, A., Gunnarsson, I., Gullstrand, B., Svenungsson, E., Bengtsson, A. A., Nived, O., … Sturfelt, G. (2007). Association between SLE nephritis and polymorphic variants of the CRP and FcγRIIIa genes. Rheumatology, 46(9), 1417–1421. https:// doi.org/10.1093/rheumatology/kem167eng
dcterms.referencesJr, G. M. (2016). Systemic Lupus Erythematosus in Three Ethnic Groups.pdf. (September 2001), 152–160.eng
dcterms.referencesKarassa, F. B., Trikalinos, T. A., Ioannidis, J. P. A., De Haas, M., Edberg, J. C., Kimberly, R., … Yoo, D. H. (2003). The FcγRIIIA-F158 allele is a risk factor for the development of lupus nephritis: A meta-analysis. Kidney International, 63(4), 1475–1482. https://doi.org/10.1046/j.1523-1755.2003.00873.xeng
dcterms.referencesKariuki, S. N., Crow, M. K., & Niewold, T. B. (2008). PTPN22 C1858T Polymorphism is Associated with Skewing of Cytokine Profiles Toward High IFN-α Activity and Low TNF-α in Lupus Patients. Arthritis and Rheumatism, 58(9), 2818–2823. https://doi.org/10.1002/art.23728eng
dcterms.referencesKawasaki, A., Ito, I., Hikami, K., Ohashi, J., Hayashi, T., Goto, D., … Tsuchiya, N. (2008). Role of STAT4 polymorphisms in systemic lupus erythematosus in a Japanese population: a case-control association study of the STAT1-STAT4 region. Arthritis Research & Therapy, 10(5), R113. https://doi. org/10.1186/ar2516eng
dcterms.referencesKawasaki, A., Ito, S., Furukawa, H., Hayashi, T., Goto, D., Matsumoto, I., … Tsuchiya, N. (2010). Association of TNFAIP3 interacting protein 1, TNIP1 with systemic lupus erythematosus in a Japanese population: a case-control association study. Arthritis Research & Therapy, 12(5), R174. https://doi.org/10.1186/ar3134eng
dcterms.referencesKim-Howard, X., Maiti, A. K., Anaya, J.-M., Bruner, G. R., Brown, E., Merrill, J. T., … Nath, S. K. (2010). ITGAM coding variant (rs1143679) influences the risk of renal disease, discoid rash and immunological manifestations in patients with systemic lupus erythematosus with European ancestry. Annals of the Rheumatic Diseases, 69(7), 1329–1332. https:// doi.org/10.1136/ard.2009.120543eng
dcterms.referencesKopp, J. B., Nelson, G. W., Sampath, K., Johnson, R. C., Genovese, G., An, P., … Winkler, C. A. (2011). APOL1 Genetic Variants in Focal Segmental Glomerulosclerosis and HIV-Associated Nephropathy. Journal of the American Society of Nephrology, 22(11), 2129–2137. https://doi. org/10.1681/ASN.2011040388eng
dcterms.referencesKruzel-Davila, E., Wasser, W. G., Aviram, S., & Skorecki, K. (2016). APOL1 nephropathy: From gene to mechanisms of kidney injury. Nephrology Dialysis Transplantation, 31(3), 349–358. https://doi.org/10.1093/ndt/gfu391eng
dcterms.referencesLee, Y. H., Rho, Y. H., Choi, S. J., Ji, J. D., Song, G. G., Nath, S. K., & Harley, J. B. (2007). The PTPN22 C1858T functional polymorphism and autoimmune diseases—a meta-analysis. Rheumatology, 46(1), 49–56.eng
dcterms.referencesLevy-Sakin, M., & Ebenstein, Y. (2013). Beyond sequencing: Optical mapping of DNA in the age of nanotechnology and nanoscopy. Current Opinion in Biotechnology, 24(4), 690–698. https://doi.org/10.1016/j.copbio.2013.01.009eng
dcterms.referencesLewis, C. M. (2002). Genetic association studies: design, analysis and interpretation. Brief Bioinform, 3(2), 146–153. https://doi.org/10.1093/bib/3.2.146eng
dcterms.referencesLi, X., Ptacek, T. S., Brown, E. E., & Edberg, J. C. (2009). Fcγ Receptors: Structure, Function and Role as Genetic Risk Factors in SLE. Genes Immun, 10(5), 380–389. https://doi. org/10.1038/gene.2009.35.Fceng
dcterms.referencesLin, C. P., Adrianto, I., Lessard, C. J., Kelly, J. A., Kaufman, K. M., Guthridge, J. M., … Montgomery, C. G. (2012). Role of MYH9 and APOL1 in African and non-African populations with lupus nephritis. Genes and Immunity, 13(3), 232–238. https://doi.org/10.1038/gene.2011.82eng
dcterms.referencesLópez de Padilla, C. M., & Niewold, T. B. (2016). The type I interferons: Basic concepts and clinical relevance in immune-mediated inflammatory diseases. Gene, 576(1), 14–21. https://doi.org/10.1016/j.gene.2015.09.058eng
dcterms.referencesLupus, S., Disease, E., Index, A., & Collaborative, I. (2008). Pediatric Systemic Lupus Erythematosus : A Longitudinal Study. 550–556.eng
dcterms.referencesMaidhof, W., & Hilas, O. (2012). Lupus: an overview of the disease and management options. P & T : A Peer-Reviewed Journal for Formulary Management, 37(4), 240–249.eng
dcterms.referencesManuscript, A. (2012). NIH Public Access. Changes, 29(6), 997–1003. https://doi.org/10.1016/j.biotechadv.2011.08.021. Secretedeng
dcterms.referencesMartha Ramírez de Olano, Gerardo Quintana, A. I. G. (2012). Asociación entre manifestaciones clínicas de enfermedades autoinmunes con los polimorfismos de PTPN22, STAT4, CTLA-4 en población colombiana. Iatreia Revista Médica Universidad de Antioquia, Vol. 23(Núm. 4-S).spa
dcterms.referencesMichael, D. R., Phillips, A. O., Krupa, A., Martin, J., Redman, J. E., Altaher, A., … Bowen, T. (2011). The human hyaluronan synthase 2 (HAS2) gene and its natural antisense RNA exhibit coordinated expression in the renal proximal tubular epithelial cell. Journal of Biological Chemistry, 286(22), 19523–19532. https://doi.org/10.1074/jbc.M111.233916eng
dcterms.referencesNath, S. K., Han, S., Kim-Howard, X., Kelly, J. A., Viswanathan, P., Gilkeson, G. S., … Harley, J. B. (2008). A nonsynonymous functional variant in integrin-αM (encoded by ITGAM) is associated with systemic lupus erythematosus. Nature Genetics, 40(2), 152–154. https://doi.org/10.1038/ng.71eng
dcterms.referencesNguyen, K. B. (2002). Critical Role for STAT4 Activation by Type 1 Interferons in the Interferon-gamma Response to Viral Infection. Science, 297(5589), 2063–2066. https://doi. org/10.1126/science.1074900eng
dcterms.referencesNiewold, T. B., Kelly, J. A., Flesch, M. H., Espinoza, L. R., Harley, J. B., & Crow, M. K. (2008). Association of the IRF5 risk haplotype with high serum interferon-α activity in systemic lupus erythematosus patients. Arthritis and Rheumatism, 58(8), 2481–2487. https://doi.org/10.1002/art.23613eng
dcterms.referencesNiewold, T. B., Kelly, J. A., Kariuki, S. N., Franek, B. S., Akaash, A., Kaufman, K. M., … Jeffrey, C. (2013). NIH Public Access. 71(3), 463–468. https://doi.org/10.1136/ annrheumdis-2011-200463.IRF5eng
dcterms.referencesOrrú, V., Tsai, S. J., Rueda, B., Fiorillo, E., Stanford, S. M., Dasgupta, J., … Bottini, N. (2009). A loss-of-function variant of PTPN22 is associated with reduced risk of systemic lupus erythematosus . Human Molecular Genetics, 18(3), 569–579.eng
dcterms.referencesPalomino-Morales, R. J., Rojas-Villarraga, A., Gonzalez, C. I., Ramirez, G., Anaya, J.-M., & Martin, J. (2008). STAT4 but not TRAF1/C5 variants influence the risk of developing rheumatoid arthritis and systemic lupus erythematosus in Colombians. Genes Immun, 9(4), 379–382.eng
dcterms.referencesPatschan, S., Dolff, S., Kribben, A., Dürig, J., Patschan, D., Wilde, B., … Witzke, O. (2006). CD134 expression on CD4+ T cells is associated with nephritis and disease activity in patients with systemic lupus erythematosus. Clinical and Experimental Immunology, 145(2), 235–242. https://doi.org/10.1111/j.1365- 2249.2006.03141.xeng
dcterms.referencesPons-Estel, G. J., Serrano, R., Plasín, M. A., Espinosa, G., & Cervera, R. (2011). Epidemiology and management of refractory lupus nephritis. Autoimmunity Reviews, 10(11), 655–663. https://doi.org/10.1016/j.autrev.2011.04.032eng
dcterms.referencesRemmers, E. F., Plenge, R. M., Lee, A. T., Graham, R. R., Hom, G., Behrens, T. W., … Gregersen, P. K. (2007). STAT4 and the Risk of Rheumatoid Arthritis and Systemic Lupus Erythematosus. New England Journal of Medicine, 357(10), 977–986. https://doi.org/10.1056/NEJMoa073003eng
dcterms.referencesRen, Y., Tang, J., Mok, M. Y., Chan, A. W. K., Wu, A., & Lau, C. S. (2003). Increased Apoptotic Neutrophils and Macrophages and Impaired Macrophage Phagocytic Clearance of Apoptotic Neutrophils in Systemic Lupus Erythematosus. Arthritis and Rheumatism, 48(10), 2888–2897. https://doi.org/10.1002/ art.11237eng
dcterms.referencesRhodes, B., Fürnrohr, B. G., Roberts, A. L., Tzircotis, G., Schett, G., Spector, T. D., & Vyse, T. J. (2012). The rs1143679 (R77H) lupus associated variant of ITGAM (CD11b) impairs complement receptor 3 mediated functions in human monocytes. Annals of the Rheumatic Diseases, 71(12), 2028–2034. https://doi.org/10.1136/annrheumdis-2012-201390eng
dcterms.referencesSanchez, E., Nadig, A., Richardson, B. C., Freedman, B. I., Kaufman, K. M., Kelly, J. A., … Sawalha, A. H. (2011). Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus. Annals of the Rheumatic Diseases, 70(10), 1752–1757. https://doi.org/10.1136/ ard.2011.154104eng
dcterms.referencesSánchez, E., Rasmussen, A., Riba, L., Acevedo-Vasquez, E., Kelly, J. A., Langefeld, C. D., … Alarcón-Riquelme, M. E. (2012). Impact of genetic ancestry and sociodemographic status on the clinical expression of systemic lupus erythematosus in American Indian-European populations. Arthritis and Rheumatism, 64(11), 3687–3694. https://doi.org/10.1002/ art.34650eng
dcterms.referencesSawalha, A. H., Wang, L., Nadig, A., Somers, E. C., McCune, W. J., Hughes, T., … Richardson, B. (2012). Sex-specific differences in the relationship between genetic susceptibility, T cell DNA demethylation and lupus flare severity. Journal of Autoimmunity, 38(2–3), 216–222. https://doi.org/10.1016/j. jaut.2011.11.008eng
dcterms.referencesScheinecker, C., Bonelli, M., & Smolen, J. S. (2010). Pathogenetic aspects of systemic lupus erythematosus with an emphasis on regulatory T cells. Journal of Autoimmunity, 35(3), 269–275. https://doi.org/10.1016/j.jaut.2010.06.018eng
dcterms.referencesSeligman, V. A., Suarez, C., Lum, R., Inda, S. E., Lin, D., Li, H., … Criswell, L. A. (2001). The Fc?? receptor IIIA-158F allele is a major risk factor for the development of lupus nephritis among Caucasians but not non-Caucasians. Arthritis and Rheumatism, 44(3), 618–625. https://doi.org/10.1002/152 9-0131(200103)44:3<618::AID-ANR110>3.0.CO;2-Reng
dcterms.referencesSeng, K. C., & Seng, C. K. (2008). The success of the genome-wide association approach: a brief story of a long struggle. European Journal of Human Genetics : EJHG, 16(5), 554–564.eng
dcterms.referencesSigurdsson, S., Göring, H. H. H., Kristjansdottir, G., Milani, L., Nordmark, G., Sandling, J. K., … Syvänen, A. C. (2008). Comprehensive evaluation of the genetic variants of interferon regulatory factor 5 (IRF5) reveals a novel 5 bp length polymorphism as strong risk factor for systemic lupus erythematosus. Human Molecular Genetics, 17(6), 872–881. https:// doi.org/10.1093/hmg/ddm359eng
dcterms.referencesSigurdsson, S., Nordmark, G., Göring, H. H. H., Lindroos, K., Wiman, A.-C., Sturfelt, G., … Syvänen, A.-C. (2005). Polymorphisms in the Tyrosine Kinase 2 and Interferon Regulatory Factor 5 Genes Are Associated with Systemic Lupus Erythematosus. The American Journal of Human Genetics, 76(3), 528–537. https://doi.org/10.1086/428480eng
dcterms.referencesSzabo, F. K., & Hoffman, G. E. (2012). NIH Public Access. 37(1), 62–70. https://doi.org/10.1007/s12020-009-9266-z.Aeng
dcterms.referencesTakai, T. (2002). Roles of Fc receptors in autoimmunity. Nature Reviews. Immunology, 2(8), 580–592. https://doi. org/10.1038/nri856eng
dcterms.referencesTaylor, K. E., Remmers, E. F., Lee, A. T., Ortmann, W. A., Plenge, R. M., Tian, C., … Criswell, L. A. (2008). Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus. PLoS Genetics, 4(5), 1–9. https://doi.org/10.1371/journal.pgen.1000084eng
dcterms.referencesTeruel, M., & Alarcón-Riquelme, M. E. (2016). The genetic basis of systemic lupus erythematosus: What are the risk factors and what have we learned. Journal of Autoimmunity, 74. https://doi.org/10.1016/j.jaut.2016.08.001eng
dcterms.referencesThorisson, G. A., Smith, A. V., Krishnan, L., & Stein, L. D. (2005). The International HapMap Project Web site. Genome Research, 15(11), 1592–1593.eng
dcterms.referencesVelázquez-Cruz, R., Jiménez-Morales, S., Ramírez-Bello, J., Aguilar-Delfín, I., Salas-Martínez, G., Baca Ruíz, V., & Orozco Orozco, L. (2012). [Systemic lupus erythematosus: genomics of the disease]. Gaceta Médica de México, 148(4), 371–380.eng
dcterms.referencesVerstrepen, L., Carpentier, I., Verhelst, K., & Beyaert, R. (2009). ABINs: A20 binding inhibitors of NF-??B and apoptosis signaling. Biochemical Pharmacology, 78(2), 105–114. https:// doi.org/10.1016/j.bcp.2009.02.009eng
dcterms.referencesVoulgari, P. V, Katsimbri, P., Alamanos, Y., & Drosos, a a. (2002). Gender and age differences in systemic lupus erythematosus. A study of 489 Greek patients with a review of the literature. Lupus, 11(11), 722–729. https://doi. org/10.1191/0961203302lu253oaeng
dcterms.referencesWang, C., Ahlford, A., Järvinen, T. M., Nordmark, G., Eloranta, M.-L., Gunnarsson, I., … Sandling, J. K. (2013). Genes identified in Asian SLE GWASs are also associated with SLE in Caucasian populations. European Journal of Human Genetics, 21(9), 994–999. https://doi.org/10.1038/ ejhg.2012.277eng
dcterms.referencesWeening, J. J. (2004). The Classification of Glomerulonephritis in Systemic Lupus Erythematosus Revisited. Journal of the American Society of Nephrology, 15(2), 241–250. https://doi. org/10.1097/01.ASN.0000108969.21691.5Deng
dcterms.referencesXi, J., Zhang, G. P., Qiao, S. L., Guo, J. Q., Wang, X. N., Yang, Y. Y., … Deng, R. G. (2012). Increased survival and reduced renal injury in MRL/lpr mice treated with a human Fcγ receptor II (CD32) peptide. Immunology, 136(1), 46–53. https://doi.org/10.1111/j.1365-2567.2012.03553.xeng
dcterms.referencesYung, S., Tsang, R. C. W., Leung, J. K. H., & Chan, T. M. (n.d.). Increased mesangial cell hyaluronan expression in lupus nephritis is mediated by anti-DNA antibody-induced IL-1beta. Kidney International, 69(2), 272–280. https://doi. org/10.1038/sj.ki.5000042eng
dcterms.referencesZhou, X. J., Cheng, F. J., Qi, Y. Y., Zhao, M. H., & Zhang, H. (2013). A replication study from Chinese supports association between lupus-risk allele in TNFSF4 and renal disorder. BioMed Research International, 2013, 1–7. https://doi. org/10.1155/2013/597921eng
dcterms.referencesZuniga, R., Markowitz, G. S., Arkachaisri, T., Imperatore, E. A., D’Agati, V. D., & Salmon, J. E. (2003). Identification of IgG subclasses and C-reactive protein in lupus nephritis: The relationship between the composition of immune deposits and Fcγ receptor type IIA alleles. Arthritis and Rheumatism, 48(2), 460–470. https://doi.org/10.1002/art.10930eng
dcterms.referencesA. T. Borchers, S. M. Naguwa, Y. Shoenfeld, y M. E. Gershwin, «The geoepidemiology of systemic lupus erythematosus», Autoimmun. Rev., vol. 9, n.o 5, pp. A277-A287, mar. 2010, doi: 10.1016/j.autrev.2009.12.008.eng
dcterms.referencesR. C. Lawrence et al., «Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States», Arthritis Rheum., vol. 41, n.o 5, pp. 778-799, may 1998, doi: 10.1002/1529-0131(199805)41:5<778::AID-ART4>3.0.CO;2-V.eng
dcterms.referencesL. T. Hiraki et al., «End-stage renal disease due to lupus nephritis among children in the US, 1995-2006», Arthritis Rheum., vol. 63, n.o 7, pp. 1988-1997, jul. 2011, doi: 10.1002/art.30350.eng
dcterms.referencesM. Klein-Gitelman, A. Reiff, y E. D. Silverman, «Systemic lupus erythematosus in childhood», Rheum. Dis. Clin. North Am., vol. 28, n.o 3, pp. 561-577, vi-vii, ago. 2002.eng
dcterms.referencesG. D’Amico y C. Bazzi, «Pathophysiology of proteinuria», Kidney Int., vol. 63, n.o 3, pp. 809-825, mar. 2003, doi: 10.1046/j.1523-1755.2003.00840.x.eng
dcterms.referencesC. Landolt-Marticorena et al., «A discrete cluster of urinary biomarkers discriminates between active systemic lupus erythematosus patients with and without glomerulonephritis», Arthritis Res. Ther., vol. 18, n.o 1, p. 218, 04 2016, doi: 10.1186/ s13075-016-1120-0.eng
dcterms.referencesB. H. Rovin et al., «Plasma, urine, and renal expression of adiponectin in human systemi c lupus erythematosus», Kidney Int., vol. 68, n.o 4, pp. 1825-1833, oct. 2005, doi: 10.1111/j.1523- 1755.2005.00601.x.eng
dcterms.referencesM. Suzuki et al., «Initial Validation of a Novel Protein Biomarker Panel for Active Pediatric Lupus Nephritis», Pediatr. Res., vol. 65, n.o 5, pp. 530-536, may 2009, doi: 10.1203/ PDR.0b013e31819e4305.eng
dcterms.referencesH. I. Brunner et al., «Urine Biomarkers to Predict Response to Lupus Nephritis Therapy in Children and Young Adults», J. Rheumatol., vol. 44, n.o 8, pp. 1239-1248, 2017, doi: 10.3899/ jrheum.161128.eng
dcterms.referencesS. A. Varghese et al., «Urine Biomarkers Predict the Cause of Glomerular Disease», J. Am. Soc. Nephrol., vol. 18, n.o 3, pp. 913-922, mar. 2007, doi: 10.1681/ASN.2006070767.eng
dcterms.referencesK. Kopetschke et al., «The cellular signature of urinary immune cells in Lupus nephritis: new insights into potential biomarkers», Arthritis Res. Ther., vol. 17, p. 94, abr. 2015, doi: 10.1186/s13075-015-0600-y.eng
dcterms.referencesP. Enghard et al., «Urinary CD4 T cells identify SLE patients with proliferative lupus nephritis and can be used to monitor treatment response», Ann. Rheum. Dis., vol. 73, n.o 1, pp. 277-283, ene. 2014, doi: 10.1136/annrheumdis-2012-202784.eng
dcterms.referencesP. Enghard et al., «CXCR3+CD4+ T cells are enriched in inflamed kidneys and urine and provide a new biomarker for acute nephritis flares in systemic lupus erythematosus patients», Arthritis Rheum., vol. 60, n.o 1, pp. 199-206, ene. 2009, doi: 10.1002/art.24136.eng
dcterms.referencesT. Wu et al., «Elevated urinary VCAM-1, P-selectin, soluble TNF receptor-1, and CXC chemokine ligand 16 in multiple murine lupus strains and human lupus nephritis», J. Immunol. Baltim. Md 1950, vol. 179, n.o 10, pp. 7166-7175, nov. 2007, doi: 10.4049/jimmunol.179.10.7166.eng
dcterms.referencesM. Hanaoka et al., «Urinary free light chain is a potential biomarker for ISN/RPS class III/IV lupus nephritis», Rheumatol. Oxf. Engl., vol. 52, n.o 12, pp. 2149-2157, dic. 2013, doi: 10.1093/rheumatology/ket108.eng
dcterms.referencesS. Soliman y C. Mohan, «Lupus nephritis biomarkers», Clin. Immunol. Orlando Fla, vol. 185, pp. 10-20, 2017, doi: 10.1016/j. clim.2016.08.001.eng
dcterms.referencesX. Zhang et al., «Biomarkers of lupus nephritis determined by serial urine proteomics», Kidney Int., vol. 74, n.o 6, pp. 799-807, sep. 2008, doi: 10.1038/ki.2008.316.eng
dcterms.referencesP. Somparn, N. Hirankarn, A. Leelahavanichkul, W. Khovidhunkit, V. Thongboonkerd, y Y. Avihingsanon, «Urinary proteomics revealed prostaglandin H2D-isomerase, not Zn-α2- glycoprotein, as a biomarker for active lupus nephritis», J. Proteomics, vol. 75, n.o 11, pp. 3240-3247, jun. 2012, doi: 10.1016/j.jprot.2012.03.034.eng
dcterms.referencesR. Misra y R. Gupta, «Biomarkers in lupus nephritis», Int. J. Rheum. Dis., vol. 18, n.o 2, pp. 219-232, feb. 2015, doi: 10.1111/1756-185X.12602.eng
dcterms.referencesH. Wu, J. Zeng, J. Yin, Q. Peng, M. Zhao, y Q. Lu, «Organspecific biomarkers in lupus», Autoimmun. Rev., vol. 16, n.o 4, pp. 391-397, abr. 2017, doi: 10.1016/j.autrev.2017.02.011.eng
dcterms.referencesH. Susianti et al., «Analysis of urinary TGF-β1, MCP-1, NGAL, and IL-17 as biomarkers for lupus nephritis», Pathophysiol. Off. J. Int. Soc. Pathophysiol., vol. 22, n.o 1, pp. 65-71, mar. 2015, doi: 10.1016/j.pathophys.2014.12.003.eng
dcterms.referencesM. Herrmann, T. Winkler, U. Gaipl, H. Lorenz, T. Geiler, y J. R. Kalden, «Etiopathogenesis of systemic lupus erythematosus», Int. Arch. Allergy Immunol., vol. 123, n.o 1, pp. 28-35, sep. 2000, doi: 10.1159/000024421.eng
dcterms.referencesD.-Y. Chen, Y.-M. Chen, M.-C. Wen, T.-Y. Hsieh, W.-T. Hung, y J.-L. Lan, «The potential role of Th17 cells and Th17-related cytokines in the pathogenesis of lupus nephritis», Lupus, vol. 21, n.o 13, pp. 1385-1396, nov. 2012, doi: 10.1177/0961203312457718.eng
dcterms.referencesN. Z. Saber, S. H. Maroof, D. A. Soliman, y M. S. Fathi, «Expression of T helper 17 cells and interleukin 17 in lupus nephritis patients», Egypt. Rheumatol., vol. 39, n.o 3, pp. 151-157, jul. 2017, doi: 10.1016/j.ejr.2017.01.005.eng
dcterms.referencesF. Nordin et al., «Serum and urine interleukin‐17A levels as biomarkers of disease activity in systemic lupus erythematosus », Int. J. Rheum. Dis., pp. 1756-185X.13615, jun. 2019, doi: 10.1111/1756-185X.13615.eng
dcterms.referencesE. Singer et al., «Neutrophil gelatinase-associated lipocalin: pathophysiology and clinical applications», Acta Physiol., vol. 207, n.o 4, pp. 663-672, abr. 2013, doi: 10.1111/apha.12054.eng
dcterms.referencesM. Suzuki et al., «Neutrophil gelatinase-associated lipocalin as a biomarker of disease activity in pediatric lupus nephritis», Pediatr. Nephrol., vol. 23, n.o 3, pp. 403-412, mar. 2008, doi: 10.1007/s00467-007-0685-x.eng
dcterms.referencesT. Rubinstein et al., «Urinary neutrophil gelatinase-associated lipocalin as a novel biomarker for disease activity in lupus nephritis», Rheumatology, vol. 49, n.o 5, pp. 960-971, may 2010, doi: 10.1093/rheumatology/kep468.eng
dcterms.referencesB. Satirapoj, C. Kitiyakara, A. Leelahavanichkul, Y. Avihingsanon, y O. Supasyndh, «Urine neutrophil gelatinase- associated lipocalin to predict renal response after induction therapy in active lupus nephritis», BMC Nephrol., vol. 18, n.o 1, p. 263, dic. 2017, doi: 10.1186/s12882-017-0678-3.eng
dcterms.referencesJ. A. Winkles, «The TWEAK–Fn14 cytokine–receptor axis: discovery, biology and therapeutic targeting», Nat. Rev. Drug Discov., vol. 7, n.o 5, pp. 411-425, may 2008, doi: 10.1038/ nrd2488eng
dcterms.referencesA. B. Sanz et al., «TWEAK and the progression of renal disease: clinical translation», Nephrol. Dial. Transplant., vol. 29, n.o suppl 1, pp. i54-i62, feb. 2014, doi: 10.1093/ndt/gft342.eng
dcterms.referencesS. Campbell, «The role of TWEAK/Fn14 IN the pathogenesis of inflammation and systemic autoimmunity», Front. Biosci., vol. 9, n.o 1-3, p. 2273, 2004, doi: 10.2741/1395.eng
dcterms.referencesS. Campbell et al., «Proinflammatory Effects of Tweak/Fn14 Interactions in Glomerular Mesangial Cells», J. Immunol., vol. 176, n.o 3, pp. 1889-1898, feb. 2006, doi: 10.4049/ jimmunol.176.3.1889.eng
dcterms.referencesH.-X. Gao et al., «TNF-like weak inducer of apoptosis (TWEAK) induces inflammatory and proliferative effects in human kidney cells», Cytokine, vol. 46, n.o 1, pp. 24-35, abr. 2009, doi: 10.1016/j.cyto.2008.12.001.eng
dcterms.referencesW.-D. Xu, Y. Zhao, y Y. Liu, «Role of the TWEAK/Fn14 pathway in autoimmune diseases», Immunol. Res., vol. 64, n.o 1, pp. 44-50, feb. 2016, doi: 10.1007/s12026-015-8761-y.eng
dcterms.referencesN. Schwartz et al., «Urinary TWEAK and the activity of lupus nephritis», J. Autoimmun., vol. 27, n.o 4, pp. 242-250, dic. 2006, doi: 10.1016/j.jaut.2006.12.003.eng
dcterms.referencesZ. Xuejing, T. Jiazhen, L. Jun, X. Xiangqing, Y. Shuguang, y L. Fuyou, «Urinary TWEAK Level as a Marker of Lupus Nephritis Activity in 46 Cases», J. Biomed. Biotechnol., vol. 2012, pp. 1-7, 2012, doi: 10.1155/2012/359647.eng
dcterms.referencesM. N. Salem, H. A. Taha, M. Abd El-Fattah El-Feqi, N. N. Eesa, y R. A. Mohamed, «Urinary TNF-like weak inducer of apoptosis (TWEAK) as a biomarker of lupus nephritis», Z. Für Rheumatol., vol. 77, n.o 1, pp. 71-77, feb. 2018, doi: 10.1007/ s00393-016-0184-1.eng
dcterms.referencesF. Reyes-Martínez et al., «Assessment of urinary TWEAK levels in Mexican patients with untreated lupus nephritis: An exploratory study», Nefrol. Engl. Ed., vol. 38, n.o 2, pp. 152-160, mar. 2018, doi: 10.1016/j.nefroe.2018.02.006.eng
dcterms.referencesX. Liao, T. Pirapakaran, y X. M. Luo, «Chemokines and Chemokine Receptors in the Development of Lupus Nephritis», Mediators Inflamm., vol. 2016, pp. 1-15, 2016, doi: 10.1155/2016/6012715.eng
dcterms.referencesK. A. Nikolova, N. M. Mihaylova, E. N. Voynova, A. I. Tchorbanov, R. E. Voll, y T. L. Vassilev, «Selective silencing of autoreactive B lymphocytes-Following the Nature’s way», Autoimmun. Rev., vol. 9, n.o 11, pp. 775-779, sep. 2010, doi: 10.1016/j.autrev.2010.06.010.eng
dcterms.referencesG. Badr et al., «Infection of Female BWF1 Lupus Mice with Malaria Parasite Attenuates B Cell Autoreactivity by Modulating the CXCL12/CXCR4 Axis and Its Downstream Signals PI3K/AKT, NFκB and ERK», PloS One, vol. 10, n.o 4, p. e0125340, 2015, doi: 10.1371/journal.pone.0125340.eng
dcterms.referencesP. J. Gough, K. J. Garton, P. T. Wille, M. Rychlewski, P. J. Dempsey, y E. W. Raines, «A disintegrin and metalloproteinase 10-mediated cleavage and shedding regulates the cell surface expression of CXC chemokine ligand 16», J. Immunol. Baltim. Md 1950, vol. 172, n.o 6, pp. 3678-3685, mar. 2004, doi: 10.4049/ jimmunol.172.6.3678.eng
dcterms.referencesM. A. El-Gamasy y W. El-Naghy, «Urinary Neutrophil Gelatinase-Associated Lipocalin and Urinary Soluble CXCL16 as Biomarkers of Activity in Pediatric Lupus Nephritis», Indian J. Nephrol., vol. 28, n.o 6, pp. 427-432, dic. 2018, doi: 10.4103/ ijn.IJN_265_17.eng
dcterms.referencesS. Wen, F. He, X. Zhu, S. Yuan, H. Liu, y L. Sun, «IFN-γ, CXCL16, uPAR: potential biomarkers for systemic lupus erythematosus», Clin. Exp. Rheumatol., vol. 36, n.o 1, pp. 36-43, feb. 2018.eng
dcterms.referencesA. D. Luster, «Chemokines--chemotactic cytokines that mediate inflammation», N. Engl. J. Med., vol. 338, n.o 7, pp. 436-445, feb. 1998, doi: 10.1056/NEJM199802123380706.eng
dcterms.referencesY. Avihingsanon et al., «Measurement of urinary chemokine and growth factor messenger RNAs: a noninvasive monitoring in lupus nephritis», Kidney Int., vol. 69, n.o 4, pp. 747-753, feb. 2006, doi: 10.1038/sj.ki.5000132.eng
dcterms.referencesJ. W. Bauer et al., «Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity: a validation study», Arthritis Rheum., vol. 60, n.o 10, pp. 3098-3107, oct. 2009, doi: 10.1002/art.24803.eng
dcterms.referencesK. O. Kong et al., «Enhanced expression of interferon-inducible protein-10 correlates with disease activity and clinical manifestations in systemic lupus erythematosus», Clin. Exp. Immunol., vol. 156, n.o 1, pp. 134-140, abr. 2009, doi: 10.1111/j.1365- 2249.2009.03880.x.eng
dcterms.referencesP. Puapatanakul et al., «Interferon-Inducible Protein 10 and Disease Activity in Systemic Lupus Erythematosus and Lupus Nephritis: A Systematic Review and Meta-Analysis», Int. J. Mol. Sci., vol. 20, n.o 19, p. 4954, oct. 2019, doi: 10.3390/ ijms20194954.eng
dcterms.referencesW. Lv, G. W. Booz, Y. Wang, F. Fan, y R. J. Roman, «Inflammation and renal fibrosis: Recent developments on key signaling molecules as potential therapeutic targets», Eur. J. Pharmacol., vol. 820, pp. 65-76, feb. 2018, doi: 10.1016/j.ejphar.2017.12.016.eng
dcterms.referencesR. Gupta, A. Yadav, y A. Aggarwal, «Longitudinal assessment of monocyte chemoattractant protein-1 in lupus nephritis as a biomarker of disease activity», Clin. Rheumatol., vol. 35, n.o 11, pp. 2707-2714, nov. 2016, doi: 10.1007/s10067-016-3404-9.eng
dcterms.referencesB. H. Rovin, H. Song, D. J. Birmingham, L. A. Hebert, C. Y. Yu, y H. N. Nagaraja, «Urine chemokines as biomarkers of human systemic lupus erythematosus activity», J. Am. Soc. Nephrol. JASN, vol. 16, n.o 2, pp. 467-473, feb. 2005, doi: 10.1681/ASN.2004080658.eng
dcterms.referencesO. Kulkarni et al., «Spiegelmer Inhibition of CCL2/MCP-1 Ameliorates Lupus Nephritis in MRL-(Fas)lpr Mice», J. Am. Soc. Nephrol., vol. 18, n.o 8, pp. 2350-2358, ago. 2007, doi: 10.1681/ASN.2006121348.eng
dcterms.referencesR. Singh, Usha, S. Rathore, S. Behura, y N. Singh, «Urinary MCP-1 as diagnostic and prognostic marker in patients with lupus nephritis flare», Lupus, vol. 21, n.o 11, pp. 1214-1218, oct. 2012, doi: 10.1177/0961203312452622.eng
dcterms.referencesY. H. Lee y G. G. Song, «Urinary MCP-1 as a biomarker for lupus nephritis: a meta-analysis», Z. Rheumatol., vol. 76, n.o 4, pp. 357-363, may 2017, doi: 10.1007/s00393-016-0109-z.eng
dcterms.referencesSeshan SV, Jennette JC. Renal disease in systemic lupus erythematosus with emphasis on classification of lupus glomerulonephritis: advances and implications. Arch. Pathol. Lab. Med., 2009;133 (2) :233-48.eng
dcterms.referencesBihl GR, Petri M, Fine DM. Kidney biopsy in lupus nephritis: look before you leap. Nephrol Dial Transplant. 2006; 21:1749- 1752.eng
dcterms.referencesBolton WK, Vaughan ED. A comparative study of open surgical and percutaneous renal biopsies. J Urol 1977; 117:696-8.eng
dcterms.referencesRadford MG, Donadio JV, et al. Renal biopsy in clinical practice. Mayo Clin Proc 1994; 69:983-4.eng
dcterms.referencesWieckre CG, Golper TA. Complications of percutaneous needle biopsy of the kidney. Am J Nephrol 1982; 2:173-8.eng
dcterms.referencesBrissler JJ. Hemothorax as a complication of percutaneous renal biopsy. Am J Kidney Dis 1991; 18:122.eng
dcterms.referencesAgadjanyan, A. Peterson, J. Noteboom, K.C.O’ Briant,A. Allen, D.W. Lin, N. Urban, C. W. Drescher, B. S. Knudsen, D. L. Stirewalt, R. Gentleman, R. L.Vessella, P. S. Nelson, D. B. Martin, M. Tewari, CirculatingmicroRNAs asstable bloodbased markers for cancer detection, Proc. Natl. Acad.Sci. U.S.A. 105(2008) 10513–10518.eng
dcterms.referencesH.Zhao, J. Shen, L. Medico, D. Wang, C.B. Ambrosone, S. Liu, A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer,PLoS One 5(2010)e13735.eng
dcterms.referencesC. Roth, B. Rack, V. Muller, W. Janni, K. Pantel, H. Schwarzenbach, Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer,Breast- CancerRes.12(2010)R90.eng
dcterms.referencesH.M. Heneghan, N. Miller, A.J. Lowery, K.J. Sweeney, J. Newell, M.J. Kerin, Circulating microRNAs as novel minimally invasive biomarkers for breastcancer, Ann. Surg.251(2010)499–505.eng
dcterms.referencesD.D. Taylor, C. Gercel-Taylor, MicroRNA signatures of tumor -derive dexosomes as diagnostic biomarkers of ovarian cancer,- Gynecol.Oncol.110(2008)13–21.eng
dcterms.referencesTe JL, Dozmorov IM, Guthridge JM, Nguyen KL, Cavett JW, et al. 2010 Identification of Unique MicroRNA Signature Associated with Lupus Nephritis. PLoS ONE 5(5): e10344.eng
dcterms.referencesRuiz-Irastorza G, Khamashta MA, Castellino G, Hughes GR. Systemic lupus erythematosus. Lancet. 2001;357:1027-32.eng
dcterms.referencesAustin HA. Clinical evaluation and monitoring of lupus kidney disease. Lupus 1998;7(9):618-621.eng
dcterms.referencesDomoto DT. The significance of electron dense deposits in mild lupus nephritis. Yale J Biol Med 1980;53:317-324.eng
dcterms.referencesCameron. Lupus nephritis. J Am Soc Nephrol 1999; 10(2):413-424eng
dcterms.referencesHricik, Chung-Park. Glomerulonephritis. New Engl J Med 1998;339(13):888-898.eng
dcterms.referencesGolbus J, McCune WJ. Lupus nephritis. Clasification, prognosis, immunopathogenesis and treatment. Rheum Clin North Am 1994;20:213-224.eng
dcterms.referencesBoumpas DT, Balow JE. Outcome criteria for lupus nephritis trials. A critical overview. Lupus 1998; 7(9):622-629.eng
dcterms.referencesAppel GB, Silva FG, Pirani CL, Melzer JI, Estes D. Renal involvement in systemic lupus erythematosus (SLE): a study of 56 patients emphasizing histologic classification. Medicine. 1978;57:371–408.eng
dcterms.referencesWhittier WL, Korbet SM. Renal biopsy: update. Curr Opin Nephrol Hypertens 2004;13(6):661—5.eng
dcterms.referencesMattix H, Singh AK. Is the bleeding time predictive of bleeding prior to a percutaneous renal biopsy? Curr Opin Nephrol Hypertens 1999;8(6):715—8.eng
dcterms.referencesHergesell O, Felten H, Andrassy K, Kühn K, Ritz E. Safety of ultrasound-guided percutaneous renal biopsy-retrospective analysis of 1090 consecutive cases. Nephrol Dial Transplant 1998;13(4):975—7.eng
dcterms.referencesSchwarz A, Gwinner W, Hiss M, Radermacher J, Mengel M,Haller H. Safety and adequacy of renal transplant protocol biopsies. Am J Transplant 2005;5(8):1992—6.eng
dcterms.referencesManno C, Strippoli GF, Arnesano L, Bonifati C, Campobasso N, Gesualdo L, et al. Predictors of bleeding complications in percutaneous ultrasound-guided renal biopsy. Kidney Int 2004;66(4):1570—7.eng
dcterms.referencesEiro M, Katoh T, Watanabe T. Risk factors for bleeding complications in percutaneous renal biopsy. Clin Exp Nephrol 2005;9(1):40—5.eng
dcterms.referencesStiles KP, Hill C, LeBrun CJ, Reinmuth B, Yuan CM, Abbott KC. The impact of bleeding times on major complication rates after percutaneous real-time ultrasound-guided renal biopsies. J Nephrol 2001;14(4):275—9.eng
dcterms.referencesFurness PN, Philpott CM, Chorbadjian MT, Nicholson ML, Bosmans JL, Corthouts BL, et al. Protocol biopsy of the stable renal transplant: a multicenter study of methods and complication rates. Transplantation 2003;76(6):969—73.eng
dcterms.referencesSohal AS, Gangji AS, Crowther MA, Treleaven D. Uremic bleeding: Pathophysiology and clinical risk factors. Thromb Res 2006;118(3):417—22.eng
dcterms.referencesJohn P. Cogswell, et al. Identification of miRNA Changes in Alzheimer’s Disease Brain and CSF Yields Putative Biomarkers and Insights into Disease Pathways. Journal of Alzheimer’s Disease. 2008; 14(1): 27-41eng
dcterms.referencesJessica A. Weber, et al. The MicroRNA Spectrum in 12 Body Fluids. Clinical Chemistry 56: 1733-1741, 2010.eng
dcterms.referencesKohda Y, Murakami H, Moe OW, Star RA. Analysis of segmental renal gene expression by laser capture microdissection. Kidney Int. 57(1), 321–331 (2000).eng
dcterms.referencesWhite NM, Fatoohi E, Metias M, Jung K, Stephan C, Yousef GM. Metastamirs: a stepping stone towards improved cancer management. Nat. Rev. Clin. Oncol. 8(2), 75–84 (2010).eng
dcterms.referencesAkkina S, Becker BN. MicroRNAs in kidney function and disease. Transl. Res. 157(4), 236–240 (2011).eng
dcterms.referencesLi JY, Yong TY, Michael MZ, Gleadle JM. Review: the role of microRNAs in kidney disease. Nephrology (Carlton)15(6), 599–608 (2010).eng
dcterms.referencesLiang M, Liu Y, Mladinov D et al. MicroRNA: a new frontier in kidney and blood pressure research. Am. J. Physiol. Renal Physiol. 297(3), F553–F558 (2009).eng
dcterms.referencesTian Z, Greene AS, Pietrusz JL, Matus IR, Liang M. MicroRNAtarget pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res. 18(3), 404–411 (2008).eng
dcterms.referencesSun Y, Koo S, White N et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res. 32(22), e188 (2004).eng
dcterms.referencesZhou H, Cheruvanky A, Hu X et al. Urinary exosomal transcription factors, a new class of biomarkers for renal disease. Kidney Int. 74(5), 613–621 (2008).eng
dcterms.referencesBorchers AT, Naguwa SM, Shoenfeld Y, Gershwin ME (2010) The geoepidemiology of systemic lupus erythematosus. Autoimmun Rev 9:A277–A287eng
dcterms.referencesLawrence RC, Helmick CG, Arnett FC, Deyo RA, Felson DT, Giannini EH et al (1998) Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum 41:778–799eng
dcterms.referencesLang B, Silverman E. A clinical overview of systemic lupus erithematosus in childhood. Pediatrics Review.1993;14:194-20eng
dcterms.referencesCervera R, Khamashta MA, Font J, Sebastiani GD, Gil A, Lavilla P et al (2003) Morbidity and mortality in systemic lupus erythematosus during a 10-year period: a comparison of early and late manifestations in a cohort of 1, 000 patients. Med (Baltimore) 82:299–308eng
dcterms.referencesSanchez-Vegazo I, et al. Nefritis lúpica. REV ESP PATOL 2002; Vol 35, n.º 3: 269-27eng
dcterms.referencesAnaya JM, Uribe M, Pinto LF, Matute G, Molina JF, Calle I. Nefritis Lúpica. Definición clínica, patológica y terapéutica. Rev Colomb Reumatol 2001; 8: 61-74spa
dcterms.referencesTan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, Schaller JG, Talal N, Winchester RJ. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1982; 25:1271-1277eng
dcterms.referencesWeening JJ, D’Agati VD, Schwartz MM, Seshan SV, Alpers CE, Appel GB, Balow JE, Bruijn JA, Cook T, Ferrario F, Fogo AB, Ginzler EM, Hebert L, Hill G, Hill P, Jennette JC, Kong NC, Lesavre P, Lockshin M, Looi LM, Makino H, Moura LA, Nagata M. The classification of glomerulonephritis in systemic lupus erithematous revisited. J Am Soc Nephrol 15:241-250, 2004.eng
dcterms.referencesChurg J, Bernstein J, Glassock RJ. Lupus nephritis. En: Classification and Atlas of Glomerular Disease, 2nd ed. New York, Igaku-Shoin, 1995, p51.eng
dcterms.referencesMitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008;105:10513eng
dcterms.referencesGilad S, Meiri E, Yogev Y, et al. Serum microRNAs are promising novel biomarkers. PLoS One 2008;3:e3148.eng
dcterms.referencesHanke M, Hoefig K, Merz H, et al. A robust methodology to study urine microRNAas tumor marker: microRNA-126 and microRNA182 are related to urinary bladder cancer. Urol Oncol 2010;28:655–61eng
dcterms.referencesBoeri M. et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc. Natl Acad. Sci. USA 108, 3713–3718 (2011).eng
dcterms.referencesRice P, Longden I, Bleasby A. Emboss: the European Molecular Biology Open Software Suite. Trends Genet. 2000; 16(6):276-7eng
dcterms.referencesAltschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool. J. Mol. Biol. 1990; 215:403-410.eng
dcterms.referencesGriffiths-Jones S, Saini Hk, Van Dongen S, Enright Aj. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008; 36 D154-D158 (www.mirbase.org).eng
dcterms.referencesLi W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006; 22:1658-9eng
dcterms.referencesK. Zen, C.Y. Zhang, Circulating MicroRNAs: a novel class of biomarkers to diagnose and monitor human cancers, Med. Res. Rev (2010).eng
dcterms.referencesJ.L. Weickmann, D.G. Glitz, Human ribonucleases. Quantitation of pancreaticlike enzymes in serum, urine, and organ preparations, J. Biol. Chem. 257 (1982) 8705–8710.eng
dcterms.referencesD.J. Gibbings, C. Ciaudo, M. Erhardt, O. Voinnet, Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity, Nat. Cell Biol. 11 (2009) 1143–1149.eng
dcterms.referencesH. Valadi, K. Ekstrom, A. Bossios, M. Sjostrand, J.J. Lee, J.O. Lotvall, Exosome mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat. Cell Biol. 9 (2007) 654–659.eng
dcterms.referencesH. Iguchi, N. Kosaka, T. Ochiya, Secretory microRNAs as a versatile communication tool, Commun. Integr. Biol. 3 (2010) 478–481.eng
dcterms.referencesG. Camussi, M.C. Deregibus, S. Bruno, V. Cantaluppi, L. Biancone, Exosomes/microvesicles as a mechanism of cell-to-cell communication, Kidney Int. 78 (2010) 838–848.eng
dcterms.referencesV. Muralidharan-Chari, J.W. Clancy, A. Sedgwick, C. D’Souza- Schorey, Microvesicles: mediators of extracellular communication during cancer progression, J. Cell Sci. 123 (2010) 1603–1611.eng
dcterms.referencesK. Wang, S. Zhang, J. Weber, D. Baxter, D.J. Galas, Export of microRNAs and microRNA-protective protein by mammalian cells, Nucleic Acids Res. 38 (2010) 7248–7259.eng
dcterms.referencesN. Kosaka, H. Iguchi, Y. Yoshioka, F. Takeshita, Y. Matsuki, T. Ochiya, Secretory mechanisms and intercellular transfer of microRNAs in living cells, J. Biol. Chem. 285 (2010) 17442– 17452.eng
dcterms.referencesH. Valadi, K. Ekstrom, A. Bossios, M. Sjostrand, J.J. Lee, J.O. Lotvall, Exosomemediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat. Cell Biol. 9 (2007) 654–659.eng
dcterms.referencesM.P. Hunter, N. Ismail, X. Zhang, B.D. Aguda, E.J. Lee, L. Yu, T. Xiao, J. Schafer, M.L. Lee, T.D. Schmittgen, S.P. Nana-Sinkam, D. Jarjoura, C.B. Marsh, Detection of microRNA expression in human peripheral blood microvesicles, PLoS One 3 (2008) e3694.eng
dcterms.referencesA. Michael, S.D. Bajracharya, P.S. Yuen, H. Zhou, R.A. Star, G.G. Illei, I. Alevizos, Exosomes from human saliva as a source of microRNA biomarkers, Oral Dis. 16 (2010) 34–38.eng
dcterms.referencesI. Dimov, L. Jankovic Velickovic, V. Stefanovic, Urinary exosom es, ScientificWorldJournal 9 (2009) 1107–1118.eng
dcterms.referencesD.M. Pegtel, K. Cosmopoulos, D.A. Thorley-Lawson, M.A. van Eijndhoven, E.S. Hopmans, J.L. Lindenberg, T.D. de Gruijl, T. Wurdinger, J.M. Middeldorp, Functional delivery of viral miRNAs via exosomes, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 6328–6333.eng
dcterms.referencesRivas-Larrauri F, Yamazaki-Nakashimada MA. Lupus eritematoso sistémico: ¿es una sola enfermedad? Reumatol Clin. 2016;12(5):274–81.spa
dcterms.referencesPons-Estel GJ, Ugarte-Gil MF, Alarcon GS. Epidemiology of systemic lupus erythematosus. Expert Rev Clin Immunol. 2017 Aug;13(8):799–814.spa
dcterms.referencesRees F, Doherty M, Grainge MJ, Lanyon P, Zhang W. The worldwide incidence and prevalence of systemic lupus erythematosus: a systematic review of epidemiological studies. Rheumatology (Oxford). 2017 Nov;56(11):1945–61.eng
dcterms.referencesKaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, Van Vollenhoven R, et al. Systemic lupus erythematosus. Nat Rev Dis Prim [Internet]. 2016;2(June):1–22. Available from: http:// dx.doi.org/10.1038/nrdp.2016.39eng
dcterms.referencesLanata CM, Paranjpe I, Nititham J, Taylor KE, Gianfrancesco M, Paranjpe M, et al. A phenotypic and genomics approach in a multi-ethnic cohort to subtype systemic lupus erythematosus. Nat Commun. 2019 Aug;10(1):3902.eng
dcterms.referencesSullivan KE. Genetics of systemic lupus erythematosus: Clinical Implications. Rheum Dis Clin North Am [Internet]. 2000;26(2):229–56. Available from: http://www.sciencedirect. com/science/article/pii/S0889857X0570137Xeng
dcterms.referencesGoulielmos GN, Zervou MI, Vazgiourakis VM, Ghodke-Puranik Y, Garyfallos A, Niewold TB. The genetics and molecular pathogenesis of systemic lupus erythematosus (SLE) in populations of different ancestry. Gene [Internet]. 2018;668:59–72. Available from: http://www.sciencedirect.com/science/article/ pii/S0378111918305304eng
dcterms.referencesDeng Y, Tsao BP. Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat Rev Rheumatol. 2010 Dec;6(12):683–92.eng
dcterms.referencesMo X, Guo Y, Qian Q, Fu M, Lei S, Zhang Y, et al. Mendelian randomization analysis revealed potential causal factors for systemic lupus erythematosus. Immunology. 2019 Oct;eng
dcterms.referencesNavarro-Quiroz E, Pacheco-Lugo L, Lorenzi H, Diaz-Olmos Y, Almendrales L, Rico E, et al. High-Throughput Sequencing Reveals Circulating miRNAs as Potential Biomarkers of Kidney Damage in Patients with Systemic Lupus Erythematosus. PLoS One. 2016;11(11):e0166202.eng
dcterms.referencesJames JA, Neas BR, Moser KL, Hall T, Bruner GR, Sestak AL, et al. Systemic lupus erythematosus in adults is associated with previous Epstein-Barr virus exposure. Arthritis Rheum [Internet]. 2001 May 1;44(5):1122–6. Available from: https:// doi.org/10.1002/1529-0131(200105)44:5%3C1122::AID-ANR193% 3E3.0.COeng
dcterms.referencesNelson P, Rylance P, Roden D, Trela M, Tugnet N. Viruses as potential pathogenic agents in systemic lupus erythematosus. Lupus [Internet]. 2014 Apr 24;23(6):596–605. Available from: https://doi.org/10.1177/0961203314531637eng
dcterms.referencesSmatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO, Yassine HM. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses. 2019 Aug;11(8).eng
dcterms.referencesPan Q, Liu Z, Liao S, Ye L, Lu X, Chen X, et al. Current mechanistic insights into the role of infection in systemic lupus erythematosus. Biomed Pharmacother. 2019;117:109122.eng
dcterms.referencesMohamed AE, Hasen AM, Mohammed GFA, Elmaraghy NN. Real-Time PCR of cytomegalovirus and Epstein-Barr virus in adult Egyptian patients with systemic lupus erythematosus. Int J Rheum Dis. 2015 May;18(4):452–8.eng
dcterms.referencesPavlovic M, Kats A, Cavallo M, Shoenfeld Y. Clinical and molecular evidence for association of SLE with parvovirus B19. Lupus. 2010 Jun;19(7):783–92.eng
dcterms.referencesBroccolo F, Drago F, Cassina G, Fava A, Fusetti L, Matteoli B, et al. Selective reactivation of human herpesvirus 6 in patients with autoimmune connective tissue diseases. J Med Virol. 2013 Nov;85(11):1925–34.eng
dcterms.referencesTung Y-C, Ke L-Y, Tsai S-M, Lu P-L, Tsai W-C. High seroprevalence of human herpesvirus 8 infection in patients with systemic lupus erythematosus. Int J Rheum Dis. 2013 Dec;16(6):709–14.eng
dcterms.referencesAbud-Mendoza C, Cuevas-Orta E, Santillan-Guerrero EN, Martinez-Martinez MU, Hernandez-Castro B, Estrada- Capetillo L, et al. Decreased blood levels of B lymphocytes and NK cells in patients with systemic lupus erythematosus (SLE) infected with papillomavirus (HPV). Arch Dermatol Res. 2013 Mar;305(2):117–23.eng
dcterms.referencesTalib S, Bhattu S, Bhattu R, Deshpande S, Dahiphale D. Dengue fever triggering systemic lupus erythematosus and lupus nephritis: a case report. Vol. 6, International medical case reports journal. New Zealand; 2013. p. 71–5.eng
dcterms.referencesde Abreu MM, Maiorano AC, Tedeschi SK, Yoshida K, Lin T-C, Solomon DH. Outcomes of lupus and rheumatoid arthritis patients with primary dengue infection: A seven-year report from Brazil. Semin Arthritis Rheum. 2018 Apr;47(5):749–55.eng
dcterms.referencesShirdel A, Hashemzadeh K, Sahebari M, Rafatpanah H, Hatef M, Rezaieyazdi Z, et al. Is there any Association Between Human Lymphotropic Virus Type I (HTLV-I) Infection and Systemic Lupus Erythematosus? An Original Research and Literature Review. Iran J Basic Med Sci. 2013 Mar;16(3):252–7.eng
dcterms.referencesMody GM, Patel N, Budhoo A, Dubula T. Concomitant systemic lupus erythematosus and HIV: case series and literature review. Semin Arthritis Rheum. 2014 Oct;44(2):186–94.eng
dcterms.referencesLaserna A, Barahona-Correa J, Baquero L, Castañeda-Cardona C, Rosselli D. Economic impact of dengue fever in Latin America and the Caribbean: a systematic review. Rev Panam Salud Publica [Internet]. 2018 Sep 7;42:e111–e111. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31093139eng
dcterms.referencesGaviria-garcia G, Zarza M De, Aroca-martinez G. Artículo Original / Original Article Características sociodemográficas y clínicas de pacientes Sociodemographic and clinical characteristics of patients with lupus nephritis . Barranquilla , Colombia. 2018;16(2):32–7.spa
dcterms.referencesTugnet N, Rylance P, Roden D, Trela M, Nelson P, Wolverhampton R, et al. Human Endogenous Retroviruses ( HERVs ) and Autoimmune Rheumatic Disease : Is There a Link ? 2013;13–21.eng
dcterms.referencesLander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb;409(6822):860–921.eng
dcterms.referencesBannert N, Kurth R. The evolutionary dynamics of human endogenous retroviral families. Annu Rev Genomics Hum Genet. 2006;7:149–73.eng
dcterms.referencesGrandi N, Tramontano E. Human Endogenous Retroviruses Are Ancient Acquired Elements Still Shaping Innate Immune Responses. Front Immunol [Internet]. 2018 Sep 10;9:2039. Available from: https://www.ncbi.nlm.nih.gov/ pubmed/30250470eng
dcterms.referencesWinter EE, Goodstadt L, Ponting CP. Elevated rates of protein secretion, evolution, and disease among tissue-specific genes. Genome Res. 2004 Jan;14(1):54–61.eng
dcterms.referencesWang X, Zhao C, Zhang C, Mei X, Song J, Sun Y, et al. Increased HERV-E clone 4-1 expression contributes to DNA hypomethylation and IL-17 release from CD4(+) T cells via miR-302d/ MBD2 in systemic lupus erythematosus. Cell Commun Signal. 2019 Aug;17(1):94.eng
dcterms.referencesChen J, Foroozesh M, Qin Z. Transactivation of human endogenous retroviruses by tumor viruses and their functions in virus-associated malignancies. Oncogenesis. 2019;8(1).eng
dcterms.referencesMartin JC, Baeten DL, Josien R. Emerging role of IL-17 and Th17 cells in systemic lupus erythematosus. Clin Immunol. 2014 Sep;154(1):1–12.eng
dcterms.referencesQiu CC, Caricchio R, Gallucci S. Triggers of Autoimmunity : The Role of Bacterial Infections in the Extracellular Exposure of Lupus Nuclear Autoantigens. 2019;10(November):1–15.eng
dcterms.referencesZhang P, Lu Q. Genetic and epigenetic influences on the loss of tolerance in autoimmunity. Cell Mol Immunol [Internet]. 2018;15(6):575–85. Available from: https://doi.org/10.1038/ cmi.2017.137eng
dcterms.referencesMackay IR. Tolerance and autoimmunity. West J Med [Internet]. 2001 Feb;174(2):118–23. Available from: https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC1071274/eng
dcterms.referencesTu J, Wang X, Geng G, Xue X, Lin X, Zhu X, et al. The Possible Effect of B-Cell Epitopes of Epstein–Barr Virus Early Antigen, Membrane Antigen, Latent Membrane Protein-1, and -2A on Systemic Lupus Erythematosus . Vol. 9, Frontiers in Immunology . 2018. p. 187.eng
dcterms.referencesMak Tak , Saunders Mary JB. Primer to the Immune Response. 2nd Editio. Academic Cell; 2014. 702 p.eng
dcterms.referencesRigante D, Mazzoni MB, Esposito S. The cryptic interplay between systemic lupus erythematosus and infections. Autoimmun Rev. 2014;13(2):96–102.eng
dcterms.referencesFujinami RS, von Herrath MG, Christen U, Whitton JL. Molecular Mimicry, Bystander Activation, or Viral Persistence: Infections and Autoimmune Disease. Clin Microbiol Rev. 2006 Jan;19(1):80 LP – 94.eng
dcterms.referencesSmyth MJ, Sedgwick JD. Delayed kinetics of tumor necrosis factor-mediated bystander lysis by peptide-specific CD8+ cytotoxic T lymphocytes. Eur J Immunol. 1998 Dec;28(12):4162–9.eng
dcterms.referencesMonneaux F, Muller S. Epitope spreading in systemic lupus erythematosus: identification of triggering peptide sequences. Arthritis Rheum. 2002 Jun;46(6):1430–8.eng
dcterms.referencesCampisi L, Barbet G, Ding Y, Esplugues E, Flavell RA, Blander JM. Apoptosis in response to microbial infection induces autoreactive TH17 cells. Nat Immunol. 2016;17(9):1084–92.eng
oaire.versioninfo:eu-repo/semantics/publishedVersioneng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
2.67 MB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.93 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones