Avances investigativos en nefritis lúpica
datacite.rights | http://purl.org/coar/access_right/c_abf2 | eng |
dc.contributor.author | Aroca Martínez, Gustavo | |
dc.contributor.author | Vélez-Verbel, María D. | |
dc.contributor.author | González-Torres, Henry J. | |
dc.contributor.author | De La Cruz, Fernando | |
dc.contributor.author | Navarro Quiroz, Roberto | |
dc.contributor.author | Navarro Quiroz, Elkin | |
dc.contributor.author | Pacheco Lugo, Lisandro | |
dc.contributor.author | Arrieta Bravo, Valentina | |
dc.contributor.author | Díaz Olmos, Yirys | |
dc.contributor.author | Gómez Escorcia, Lorena | |
dc.contributor.author | Acosta-Hoyos, Antonio J. | |
dc.date.accessioned | 2022-04-29T19:58:34Z | |
dc.date.available | 2022-04-29T19:58:34Z | |
dc.date.issued | 2020 | |
dc.description.abstract | El lupus eritematoso sistémico (LES) es una enfermedad autoinmune recurrente-remitente caracterizada por la pérdida de tolerancia a los ácidos nucleicos y manifestaciones clínicas muy diversas. la heterogeneidad clínica, junto con la posible gravedad de estas manifestaciones, hacen que el tratamiento del LES sea un desafío distinto. A pesar de los avances recientes en los protocolos de tratamiento, varios estudios han señalado que los pacientes con LES todavía tienen un riesgo general de muertes de 2 a 3 veces mayor. Adicionalmente, existe grandes desafíos a nivel diagnóstico y la búsqueda de biomarcadores que permitan una rápida detención de afecciones como la real. El libro Avances Investigativos en Nefritis Lúpica compila conocimientos recientes sobre la base genética, molecular de la nefritis lúpica, nuevos biomarcadores diagnóstico, su potencial uso y el rol de las infecciones en esta enfermedad. | spa |
dc.format.mimetype | spa | |
dc.identifier.citation | Aroca Martínez, G. y Navarro Quiroz, E. (Edit.) (2020). Avance investigativos en nefritis lúpica. Barranquilla: Ediciones Universidad Simón Bolívar. | spa |
dc.identifier.isbn | 9789585318410 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/9611 | |
dc.language.iso | spa | spa |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | eng |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Nefrología | spa |
dc.subject | Riñones | spa |
dc.subject | Lupus Eritematoso | spa |
dc.subject | Insuficiencia renal crónica | spa |
dc.title | Avances investigativos en nefritis lúpica | spa |
dc.type.driver | info:eu-repo/semantics/book | eng |
dc.type.spa | Libro | spa |
dcterms.references | Silvariño DR, Ottati G, Noboa Ó. Nefropatía lúpica. Rev medica del Uruguay. 2015;31(1):64-78. | spa |
dcterms.references | Koutsokeras T, Healy T. Systemic lupus erythematosus and lupus nephritis. Natures Rev Drug Discov. 2014;13(3):173-4. | eng |
dcterms.references | Gurevitz SL, Snyder JA, Wessel EK, Frey J, Williamson BA. Systemic lupus erythematosus: A review of the disease and treatment options. Consult Pharm. 2013;28(2):110-21. | eng |
dcterms.references | Zubair A, Frieri M. Lupus nephritis: Review of the LITERATURE. Curr Allergy Asthma Rep. 2013;13(6):580-6. | eng |
dcterms.references | Yap DYH, Yung S, Chan TAKMAO. Lupus nephritis: An update on treatments and pathogenesis. Nephrology. 2018;23:80-3. | eng |
dcterms.references | Yu F, Haas M, Glassock R, Zhao MH. Redefining lupus nephritis: Clinical implications of pathophysiologic subtypes. Nat Rev Nephrol. 2017;13(8):483–95. | eng |
dcterms.references | Mohan C, Putterman C. Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis. Nat Rev Nephrol [Internet]. 2015;11(6):329–41. Available from: http://dx.doi. org/10.1038/nrneph.2015.33 | eng |
dcterms.references | Rees F, Doherty M, Grainge M, Davenport G, Lanyon P, Zhang W. The incidence and prevalence of systemic lupus erythematosus in the UK, 1999-2012. Ann Rheum Dis. 2016;75(1):136– 41. | eng |
dcterms.references | Pons-Estel GJ, Ugarte-Gil MF, Alarcón GS. Epidemiology of systemic lupus erythematosus. Expert Rev Clin Immunol. 2017 Aug;13(8):799–814. | eng |
dcterms.references | Pinto P L, Velásquez F C, Márquez H J. Subgrupos de Lupus Eritematoso Sistémico: influencia de la edad de inicio, la raza, el sexo y el perfil de anticuerpos en las manifestaciones clínicas de la enfermedad. Rev Colomb Reumatol. 2008;15(4):291–8. | spa |
dcterms.references | Hahn BH, McMahon MA, Wilkinson A, Wallace WD, Daikh DI, Fitzgerald JD, et al. American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res. 2012;64(6):797–808. | eng |
dcterms.references | HM B, JM R, Jr MG, GS A, AW F, BJ F, et al. Systemic lupus erythematosus in three ethnic groups. XII. Risk factors for lupus nephritis after diagnosis. Lupus. 2002;11(3):152–60. | eng |
dcterms.references | Anaya JM, Cañas C, Mantilla RD, Pineda-Tamayo R, Tobón GJ, Herrera-Diaz C, et al. Lupus nephritis in colombians: Contrasts and comparisons with other populations. Clin Rev Allergy Immunol. 2011;40(3):199–207. | eng |
dcterms.references | Aroca-Martínez G. Propuesta de un modelo de gestion de salud de la nefritis lupica. Universida. 2017. 43 p. | spa |
dcterms.references | Cervera R, Khamashta M a, Font J, Sebastiani GD, Gil A, Lavilla P, et al. Morbidity and mortality in systemic lupus erythematosus during a 10-year period: a comparison of early and late manifestations in a cohort of 1,000 patients. Medicine (Baltimore). 2003;82(5):299–308. | eng |
dcterms.references | Davidson A. What is damaging the kidney in lupus nephritis? Nat Rev Rheumatol. 2016;12(3):143–53. | eng |
dcterms.references | Lech M, Anders H-J. The Pathogenesis of Lupus Nephritis. J Am Soc Nephrol [Internet]. 2013;24(9):1357–66. Available from: http://www.jasn.org/lookup/doi/10.1681/ ASN.2013010026 | eng |
dcterms.references | Petri M, Orbai A-M, Alarcón GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012 Aug;64(8):2677–86. | eng |
dcterms.references | Peñaranda LFP. Nefropatía lúpica. Rev Colomb Nefrol. 2014;2(1):104–17. | eng |
dcterms.references | Arroyo A, García R, Aroca G, Cadena A, Acosta J. Correlación clínica e inmunohistopatológica de la nefropatía lúpica en un centro de referencia del Caribe colombiano durante los años 2012 a 2013. Rev Colomb Nefrol. 2014; | spa |
dcterms.references | Ruiz-Irastorza G, Espinosa G, Frutos MA, Jiménez-Alonso J, Praga M, Pallarés L, et al. Diagnosis and treatment of Lupus nephritis: Consensus document from the systemic auto-immune disease group (GEAS) of the Spanish society of internal medicine (SEMI) and the Spanish society of nephrology (S.E.N.). Nefrologia. 2012;32(SUPPL. 1):1–45. | eng |
dcterms.references | Seshan S V., Jennette JC. Renal disease in systemic lupus erythematosus with emphasis on classification of lupus glomerulonephritis advances and implications. Arch Pathol Lab Med. 2009;133(2):233–48. | eng |
dcterms.references | Mittal B, Rennke H, Singh AK. The role of kidney biopsy in the management of lupus nephritis. Curr Opin Nephrol Hypertens. 2005;14(1):1–8. | eng |
dcterms.references | Greloni G, Scolnik M, Marin J, Lancioni E, Quiroz C, Zacariaz J, et al. Value of repeat biopsy in lupus nephritis flares. Lupus Sci Med. 2014;1(1):1–6. | eng |
dcterms.references | Naranjo LAG, Duque GMV, Uribe OU, Gómez LAR. Nefropatía lúpica. Presentación clínica, clasificación y tratamiento. Rev Colomb Reumatol. 2006;13(4):307–33. | spa |
dcterms.references | Bajema IM, Wilhelmus S, Alpers CE, Bruijn JA, Colvin RB, Cook HT, et al. Revision of the International Society of Nephrology/Renal Pathology Society classification for lupus nephritis: clarification of definitions, and modified National Institutes of Health activity and chronicity indices. Kidney Int. 2018;93(4):789–96. | eng |
dcterms.references | Alba P. Factores pronósticos en nefritis lúpica. Rev Arg Reum. 2014;25(3):6–7. | spa |
dcterms.references | Wakasugi D, Gono T, Kawaguchi Y, Hara M, Koseki Y, Katsumata Y, et al. Frequency of class III and IV nephritis in systemic lupus erythematosus without clinical renal involvement: An analysis of predictive measures. J Rheumatol. 2012;39(1):79–85. | eng |
dcterms.references | Appel GB, Mahmood N, Mahmood F, Shumi SI, Siddiqui MMR. Mycophenolate Mofetil versus Cyclophosphamide for Induction Treatment of Lupus Nephritis. Anwer Khan Mod Med Coll J. 2018 Mar 1;9(1):63–7. | eng |
dcterms.references | Liang MH, Schur PH, Fortin P, St.Clair EW, Balow JE, Costenbader K, et al. The American College of Rheumatology response criteria for proliferative and membranous renal disease in systemic lupus erythematosus clinical trials. Arthritis Rheum. 2006;54(2):421–32. | eng |
dcterms.references | Gonzalez LA, Molina JF, Vasquez GM. Actualidad en el tratamiento de la nefritis lúpica proliferativa Update on the treatment of proliferative lupus nephritis. RevColombReumatol. 2009;16(1):76–96. | eng |
dcterms.references | Roverano S, Schmid M, Paira S. Recaída en nefritis lúpica: factores de riesgo e impacto en el pronóstico en una población de Santa Fe - Argentina. Rev Argent Reumatol. 2014;25(2):30–4. | spa |
dcterms.references | Beier UH, Green C, Meyers KE. Caring for adolescent renal patients. Kidney Int [Internet]. 2010;77(4):285–91. Available from: http://dx.doi.org/10.1038/ki.2009.462 | eng |
dcterms.references | Rivera F, Romera A, Anaya S, Lm G, Vozmediano C. Nefropatía Lúpica. Nefrol al día [Internet]. 2018; Available from: http:// www.revistanefrologia.com/es-monografias-nefrologia-dia-articulo- nefropatia-lupica-164 | eng |
dcterms.references | Mok CC, Cheung TT, Lo WH. Minimal mesangial lupus nephritis: A systematic review. Scand J Rheumatol. 2010;39(3):181–9. | eng |
dcterms.references | Houssiau FA, Vasconcelos C, D’Cruz D, Sebastiani GD, De Ramon Garrido E, Danieli MG, et al. Immunosuppressive therapy in lupus nephritis: The Euro-Lupus Nephritis Trial, a randomized trial of low-dose versus high-dose intravenous cyclophosphamide. Arthritis Rheum. 2002;46(8):2121–31. | eng |
dcterms.references | Rivera F. Micofenolato en nefritis lupica. NefroPlus. 2009;2(3):1–60. | spa |
dcterms.references | Baltar JM, Marín R, Ortega F. Ciclofosfamida en glomerulonefritis primarias y secundarias. NefroPlus [Internet]. 2010;3:9–15. Available from: http://www.elsevier.es/es-revista- nefroplus-48 5-pdf-X1888970010000603-S300 | spa |
dcterms.references | Mak A, Cheak AAC, Tan JYS, Su HC, Ho RCM, Lau CS. Mycophenolate mofetil is as efficacious as, but safer than, cyclophosphamide in the treatment of proliferative lupus nephritis: A meta-analysis and meta-regression. Rheumatology. 2009;48(8):944–52. | eng |
dcterms.references | Austin HA, Illei GG, Braun MJ, Balow JE. Randomized, controlled trial of prednisone, cyclophosphamide, and cyclosporine in lupus membranous nephropathy. J Am Soc Nephrol. 2009;20(4):901–11. | eng |
dcterms.references | Lee SJ, Silverman E, Bargman JM. The role of antimalarial agents in the treatment of SLE and lupus nephritis. Nat Rev Nephrol [Internet]. 2011;7(12):718–29. Available from: http:// dx.doi.org/10.1038/nrneph.2011.150 | eng |
dcterms.references | Ruiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, Khamashta MA. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: A systematic review. Ann Rheum Dis. 2010;69(1):20–8. | eng |
dcterms.references | Sundström J, Arima H, Woodward M, Jackson R, Karmali K, Lloyd-Jones D, et al. Blood pressure-lowering treatment based on cardiovascular risk: A meta-analysis of individual patient data. Lancet [Internet]. 2014;384(9943):591–8. Available from: http://dx.doi.org/10.1016/S0140-6736(14)61212-5 | eng |
dcterms.references | Masood S, Jayne D, Karim Y. Beyond immunosuppression - challenges in the clinical management of lupus nephritis. Lupus. 2009;18(2):106–15. | eng |
dcterms.references | Catapano F, Chiodini P, De Nicola L, Minutolo R, Zamboli P, Gallo C, et al. Antiproteinuric Response to Dual Blockade of the Renin-Angiotensin System in Primary Glomerulonephritis: Meta-analysis and Metaregression. Am J Kidney Dis. 2008;52(3):475–85. | eng |
dcterms.references | Tse KC, Li FK, Tang S, Tang CSO, Lai KN, Chan TM. Angiotensin inhibition or blockade for the treatment of patients with quiescent lupus nephritis and persistent proteinuria. Lupus. 2005;14(12):947–52. | eng |
dcterms.references | Gomez Mendez LM, Cascino MD, Katsumoto TR, Brakeman P, Brunetta P, Jayne D, et al. Outcome of participants with nephrotic syndrome in combined clinical trials of lupus nephritis. Lupus Sci Med. 2019;6(1):1–9. | eng |
dcterms.references | Haarhaus ML, Svenungsson E, Gunnarsson I. Ofatumumab treatment in lupus nephritis patients. Clin Kidney J. 2016;9(4):552–5. | eng |
dcterms.references | Narain S, Furie R. Update on clinical trials in systemic lupus erythematosus. Curr Opin Rheumatol. 2016;28(5):477–87. | eng |
dcterms.references | Murphy G, Isenberg DA. New therapies for systemic lupus erythematosus — past imperfect, future tense. Nat Rev Rheumatol [Internet]. 2019;15(7):403–12. Available from: http://dx.doi.org/10.1038/s41584-019-0235-5 | eng |
dcterms.references | Furie R, Aroca G, Alvarez A, Fragoso-Loyo H, Santillán EZ, Rovin B, et al. A Phase II Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Obinutuzumab or Placebo in Combination with Mycophenolate Mofetil in Patients with Active Class III or IV Lupus Nephritis. Arthritis Rheumatol. 2018;71(10):i636–7. | eng |
dcterms.references | Furie R, Nicholls K, Cheng TT, Houssiau F, Burgos-Vargas R, Chen S Le, et al. Efficacy and safety of abatacept in lupus nephritis: A twelve-month, randomized, double-blind study. Arthritis Rheumatol. 2014;66(2):379–89. | eng |
dcterms.references | Navarra S V., Guzmán RM, Gallacher AE, Hall S, Levy RA, Jimenez RE, et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: A randomised, placebo-controlled, phase 3 trial. Lancet [Internet]. 2011;377(9767):721–31. Available from: http://dx.doi. org/10.1016/S0140-6736(10)61354-2 | eng |
dcterms.references | Furie R, Petri M, Zamani O, Cervera R, Wallace DJ, Tegzová D, et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 2011;63(12):3918–30. | eng |
dcterms.references | Sciascia S, Radin M, Yazdany J, Levy RA, Roccatello D, Dall’Era M, et al. Efficacy of belimumab on renal outcomes in patients with systemic lupus erythematosus: A systematic review. Autoimmun Rev [Internet]. 2017;16(3):287–93. Available from: http://dx.doi.org/10.1016/j.autrev.2017.01.010 | eng |
dcterms.references | Zhang X, Ji L, Yang L, Tang X, Qin W. The effect of calcineurin inhibitors in the induction and maintenance treatment of lupus nephritis: a systematic review and meta-analysis. Int Urol Nephrol. 2016;48(5):731–43. | eng |
dcterms.references | Restrepo Valencia CA, Vélez Álvarez C. Experiencia en la utilización de inhibidores de calcineurin a bajas dosis en el tratamiento de nefritis lúpica refractaria. Rev Colomb Nefrol. 2014;1(2):80–91. | spa |
dcterms.references | Dall’Era M. Treatment of lupus nephritis. Curr Opin Rheumatol. 2017;29(3):241–7. | eng |
dcterms.references | Zhang H, Liu Z, Huang L, Hou J, Zhou M, Huang X, et al. The short-term efficacy of bortezomib combined with glucocorticoids for the treatment of refractory lupus nephritis. Lupus. 2017;26(9):952–8. | eng |
dcterms.references | Scalzulli E, Grammatico S, Vozella F, Petrucci MT. Proteasome inhibitors for the treatment of multiple myeloma. Expert Opin Pharmacother [Internet]. 2018;19(4):375–86. Available from: https://doi.org/10.1080/14656566.2018.1441287 | eng |
dcterms.references | Sciascia S, Radin M, Yazdany J, Tektonidou M, Cecchi I, Roccatello D, et al. Expanding the therapeutic options for renal involvement in lupus: eculizumab, available evidence. Rheumatol Int. 2017;37(8):1249–55. | eng |
dcterms.references | Almaani S, Rovin BH. B-cell therapy in lupus nephritis: an overview. Nephrol Dial Transplant. 2019;34(1):22–9. | eng |
dcterms.references | Alarcon, G. S., McGwin, G., Petri, M., Ramsey-Goldman, R., Fessler, B. J., Vil??, L. M., … Kimberly, R. P. (2006). Time to renal disease and end-stage renal disease in PROFILE: A multiethnic lupus cohort. PLoS Medicine, 3(10), 1949–1956. https://doi.org/10.1371/journal.pmed.0030396 | eng |
dcterms.references | Alarcón-Segovia, D., Alarcón-Riquelme, M. E., Cardiel, M. H., Caeiro, F., Massardo, L., Villa, A. R., & Pons-Estel, B. a. (2005). Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis and Rheumatism, 52(4), 1138–1147. https://doi.org/10.1002/ art.20999 | eng |
dcterms.references | Alarcón, G., Bastian, H., Beasley, T., Roseman, J., Tan, F., Fessler, B., … Reveille, J. (2006). Systemic lupus erythematosus in a multi-ethnic cohort (LUMINA): contributions of admixture and socioeconomic status to renal involvement. Lupus, 15(1), 26–31. https://doi.org/10.1191/0961203306lu2260oa | eng |
dcterms.references | Alonso, M. D., Llorca, J., Martinez-Vazquez, F., Miranda- Filloy, J. A., Diaz de Teran, T., Dierssen, T., … Gonzalez-Gay, M. A. (2011). Systemic lupus erythematosus in northwestern Spain: a 20-year epidemiologic study. Medicine, 90(5), 350–358. https://doi.org/10.1097/MD.0b013e31822edf7f | eng |
dcterms.references | Anaya, J. M., Kim-Howard, X., Prahalad, S., Cherñavsky, A., Cañas, C., Rojas-Villarraga, A., … Nath, S. K. (2012). Evaluation of genetic association between an ITGAM non-synonymous SNP (rs1143679) and multiple autoimmune diseases. Autoimmunity Reviews, 11(4), 276–280. https://doi. org/10.1016/j.autrev.2011.07.007 | eng |
dcterms.references | Andrade, R. M., Alarcón, G. S., Fernández, M., Apte, M., Vilá, L. M., & Reveille, J. D. (2007). Accelerated damage accrual among men with systemic lupus erythematosus XLIV. Results from a multiethnic US cohort. Arthritis and Rheumatism, 56(2), 622–630. https://doi.org/10.1002/art.22375 | eng |
dcterms.references | Baranowska-Daca, E., Choi, Y. J., Barrios, R., Nassar, G., Suki, W. N., & Truong, L. D. (2001). Nonlupus nephritides in patients with systemic lupus erythematosus: a comprehensive clinicopathologic study and review of the literature. Human Pathology, 32, 1125–1135. https://doi.org/10.1053/ hupa.2001.28227 | eng |
dcterms.references | Barron, K. S., Silverman, E. D., Gonzales, J., & Reveille, J. D. (1993). Clinical, serologic, and immunogenetic studies in childhood‐onset systemic lupus erythematosus. Arthritis & Rheumatism, 36(3), 348–354. https://doi.org/10.1002/ art.1780360310 | eng |
dcterms.references | Bastian, H. M., Alarc??n, G. S., Roseman, J. M., McGwin, G., Vil??, L. M., Fessler, B. J., … Pinilla-Diaz, C. (2007). Systemic lupus erythematosus in a multiethnic US cohort (LUMINA) XL II: Factors predictive of new or worsening proteinuria. Rheumatology, 46(4), 683–689. https://doi.org/10.1093/ rheumatology/kel347 | eng |
dcterms.references | Boddaert, J., Huong, D. L. T., Amoura, Z., Wechsler, B., Godeau, P., & Piette, J.-C. (2004). Late-Onset Systemic Lupus Erythematosus. Medicine, 83(6), 348–359. https://doi. org/10.1097/01.md.0000147737.57861.7c | eng |
dcterms.references | Bolin, K., Sandling, J. K., Zickert, A., Jönsen, A., Sjöwall, C., Svenungsson, E., … Nordmark, G. (2013). Association of STAT4 polymorphism with severe renal insufficiency in lupus nephritis. PLoS ONE, 8(12). https://doi.org/10.1371/journal. pone.0084450 | eng |
dcterms.references | Boor, P., Ostendorf, T., & Floege, J. (2014). PDGF and the progression of renal disease. Nephrology Dialysis Transplantation, 29(SUPPL. 1), 45–54. https://doi. org/10.1093/ndt/gft273 | eng |
dcterms.references | Borchers, A. T., Leibushor, N., Naguwa, S. M., Cheema, G. S., Shoenfeld, Y., & Gershwin, M. E. (2012). Lupus nephritis: A critical review. Autoimmunity Reviews, 12(2), 174–194. https://doi.org/10.1016/j.autrev.2012.08.018 | eng |
dcterms.references | Borchers, A. T., Naguwa, S. M., Shoenfeld, Y., & Gershwin, M. E. (2010). The geoepidemiology of systemic lupus erythematosus. Autoimmunity Reviews, 9(5), A277–A287. https://doi. org/10.1016/j.autrev.2009.12.008 | eng |
dcterms.references | Bouillon, R., Carmeliet, G., Verlinden, L., Van Etten, E., Verstuyf, A., Luderer, H. F., … Demay, M. (2008). Vitamin D and human health: Lessons from vitamin D receptor null mice. Endocrine Reviews, 29(6), 726–776. https://doi.org/10.1210/ er.2008-0004 | eng |
dcterms.references | Brugos, B., Kiss, E., Szodoray, P., Szegedi, G., & Zeher, M. (2006). Retrospective analysis of patients with lupus nephritis: Data from a large clinical immunological center in Hungary. Scandinavian Journal of Immunology, 64(4), 433–437. https:// doi.org/10.1111/j.1365-3083.2006.01833.x | eng |
dcterms.references | Burgos, P. I., McGwin, G., Pons-Estel, G. J., Reveille, J. D., Alarcon, G. S., & Vila, L. M. (2011). US patients of Hispanic and African ancestry develop lupus nephritis early in the disease course: data from LUMINA, a multiethnic US cohort (LUMINA LXXIV). Annals of the Rheumatic Diseases, 70(2), 393–394. https://doi.org/10.1136/ard.2010.131482 | eng |
dcterms.references | Campbell, H., & Rudan, I. (2002). Interpretation of genetic association studies in complex disease. The Pharmacogenomics Journal, 6(2), 349–360. https://doi.org/10.1038/sj.tpj.6500132 | eng |
dcterms.references | Caster, D. J., Korte, E. A., Nanda, S. K., McLeish, K. R., Oliver, R. K., G’Sell, R. T., … Powell, D. W. (2013). ABIN1 Dysfunction as a Genetic Basis for Lupus Nephritis. Journal of the American Society of Nephrology, 24(11), 1743–1754. https://doi.org/10.1681/ASN.2013020148 | eng |
dcterms.references | Cherian, T. S., Kariuki, S. N., Franek, B. S., Buyon, J. P., Clancy, R. M., & Niewold, T. B. (2012). IRF5 systemic lupus erythematosus risk haplotype is associated with asymptomatic serologic autoimmunity and progression to clinical autoimmunity in mothers of children with neonatal lupus. Arthritis and Rheumatism, 64(10), 3383–3387. https://doi.org/10.1002/ art.34571 | eng |
dcterms.references | Chung, S. A., Brown, E. E., Williams, A. H., Ramos, P. S., Berthier, C. C., Bhangale, T., … Langefeld, C. D. (2014). Lupus Nephritis Susceptibility Loci in Women with Systemic Lupus Erythematosus. Journal of the American Society of Nephrology, 25(12), 2859–2870. https://doi.org/10.1681/ ASN.2013050446 | eng |
dcterms.references | Chung, Sharon A, Taylor, K. E., Graham, R. R., Nititham, J., Lee, A. T., Ortmann, W. A., … Criswell, L. A. (2011). Differential Genetic Associations for Systemic Lupus Erythematosus Based on Anti–dsDNA Autoantibody Production. PLOS Genetics, 7(3), e1001323. | eng |
dcterms.references | Cohen, S., Dadi, H., Shaoul, E., Sharfe, N., & Roifman, C. M. (1999). Cloning and Characterization of a Lymphoid-Specific, Inducible Human Protein Tyrosine Phosphatase, Lyp. Blood, 93(6), 2013 LP – 2024. | eng |
dcterms.references | Collins, F. S., Brooks, L. D., & Chakravarti, A. (1998). A DNA polymorphism discovery resource for research on human genetic variation. Genome Research, 8(12), 1229–1231. | eng |
dcterms.references | Contreras-Fariñas, R., Ibañez-Clemente, P., Roldán- Valenzuela, A., & Torres-de Castro, O. G. (2014). Guía de Práctica Clínica. Consenso Sobre Úlceras Vasculares y Pie Diabético. | eng |
dcterms.references | Crispín, C., Oukka, M., Bayliss, G., Cohen, R. A., Beek, C. A. Van, Stillman, I. E., … Tsokos, G. C. (2008). Expanded Double Negative T Cells in Patients with Systemic Lupus Erythematosus Produce IL-17 and Infiltrate the. 20, 1–6. https://doi.org/10.4049/jimmunol.181.12.8761 | eng |
dcterms.references | Edberg, J. C., Langefeld, C. D., Wu, J., Moser, K. L., Kaufman, K. M., Kelly, J., … Kimberly, R. P. (2002). Genetic linkage and association of Fcγ receptor IIIA (CD16A) on chromosome 1q23 with human systemic lupus erythematosus. Arthritis and Rheumatism, 46(8), 2132–2140. https://doi.org/10.1002/ art.10438 | eng |
dcterms.references | Egea Bermejo, G., Malagon Gutierrez, C., Fang, L. C., Olmos, C., Gonzalez, L. E., Guarnizo Zuccardi, P., … Garavito de Egea, G. (2016). Maternal Genetics Variants in PTPN22, TNF and VDR Genes Increase the Risk of Pediatric Lupus Nephritis. A Pilot Study. Frontiers in Immunology, 2015–2016. https://doi. org/10.3389/conf.fimmu.2015.05.00296 | eng |
dcterms.references | Floege, J., Eitner, F., & Alpers, C. E. (2008). A New Look at Platelet-Derived Growth Factor in Renal Disease. Journal of the American Society of Nephrology, 19(1), 12–23. https://doi. org/10.1681/ASN.2007050532 | eng |
dcterms.references | Font, J Cervera, R Espinosa, G Pallarés, L Ramos-Casals, M., & Jiménez, S. (1998). Systemic lupus erythematosus (SLE) in childhood: analysis of clinical and immunological findings in 34 patients and comparison with SLE characteristics in adults. Annals of the Rheumatic Diseases, 57(8), 456–459. https://doi. org/10.1136/ard.57.8.456 | eng |
dcterms.references | Freedman, B. I., Langefeld, C. D., Andringa, K. K., Croker, J. A., Williams, A. H., Garner, N. E., … Kimberly, R. P. (2014). End-Stage Renal Disease in African Americans With Lupus Nephritis Is Associated With APOL1. Arthritis & Rheumatology, 66(2), 390–396. https://doi.org/10.1002/ art.38220 | eng |
dcterms.references | Gaipl, U. S., Voll, R. E., Sheriff, A., Franz, S., Kalden, J. R., & Herrmann, M. (2005). Impaired clearance of dying cells in systemic lupus erythematosus. Autoimmunity Reviews, 4(4), 189–194. https://doi.org/10.1016/j.autrev.2004.10.007 | eng |
dcterms.references | Garavito de Egea, G., Egea Bermejo, E. A., Malagón, C., Fang Mercado, L., Olmos, C., González, L., … Iglesias, A. (2016). Estudio de Variantes Moleculares de los Genes PTPN22, TNF Y VDR en Madres de Niños con Nefritis Lúpica y su Asociación como Factores de Riesgo. Revista Medicina, 38(1), 113. | spa |
dcterms.references | Garavito, G., Egea, E., Fang, L., Malagón, C., Olmos, C., González, L., … Iglesias, A. (2017). Association of polymorphic variants of PTPN22, TNF and VDR systems in children with lupus nephritis: a study in trios of Colombian families. Biomédica, 37(2), 260–266. https://doi.org/10.7705/biomedica. v37i3.3247 | eng |
dcterms.references | Garcia, M., Marcos, J., Marcos, A., Pons-Estel, B., Wojdyla, D., Arturi, A., … Alarcon-Segovia, D. (2005). Male systemic lupus erythematosus in a Latin-American inception cohort of 1214 patients. Lupus, 14, 938–946. https://doi. org/10.1191/0961203305lu2245oa | eng |
dcterms.references | Gelmetti, A. P., Freitas, A. C., Woronik, V., Barros, R. T., Bonfá, E., & Monteiro, R. C. (2006). Polymorphism of the FcγRIIa IgG receptor in patients with lupus nephritis and glomerulopathy. Journal of Rheumatology, 33(3), 523–530. | eng |
dcterms.references | GeneCards - Human Genes | Gene Database | Gene Search. (n.d.). | eng |
dcterms.references | Genovese, G., Friedman, D. J., Ross, M. D., Lecordier, L., Uzureau, P., Freedman, B. I., … Pollak, M. R. (2010). Association of Trypanolytic ApoL1 Variants with Kidney Disease in African Americans. Science, 329(5993), 841–845. https://doi.org/10.1126/science.1193032 | eng |
dcterms.references | Ghodke-Puranik, Y., & Niewolld, T. (2015). Immunogenetics of Systemic Lupus Erythematosus: A Comprehensive Review. J Autoimmun, 64, 125–136. https://doi.org/10.1016/j. jaut.2015.08.004.Immunogenetics | eng |
dcterms.references | Graham, R. R., Kozyrev, S. V, Baechler, E. C., Reddy, M. V. P. L., Plenge, R. M., Bauer, J. W., … Alarcón-Riquelme, M. E. (2006). A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nature Genetics, 38(5), 550–555. https://doi.org/10.1038/ng1782 | eng |
dcterms.references | Investigativos en Nefritis Lúpicas 83 cohort of 1214 patients. Lupus, 14, 938–946. https://doi. org/10.1191/0961203305lu2245oa 36. Gelmetti, A. P., Freitas, A. C., Woronik, V., Barros, R. T., Bonfá, E., & Monteiro, R. C. (2006). Polymorphism of the FcγRIIa IgG receptor in patients with lupus nephritis and glomerulopathy. Journal of Rheumatology, 33(3), 523–530. 37. GeneCards - Human Genes | Gene Database | Gene Search. (n.d.). 38. Genovese, G., Friedman, D. J., Ross, M. D., Lecordier, L., Uzureau, P., Freedman, B. I., … Pollak, M. R. (2010). Association of Trypanolytic ApoL1 Variants with Kidney Disease in African Americans. Science, 329(5993), 841–845. https://doi.org/10.1126/science.1193032 39. Ghodke-Puranik, Y., & Niewolld, T. (2015). Immunogenetics of Systemic Lupus Erythematosus: A Comprehensive Review. J Autoimmun, 64, 125–136. https://doi.org/10.1016/j. jaut.2015.08.004.Immunogenetics 40. Graham, R. R., Kozyrev, S. V, Baechler, E. C., Reddy, M. V. P. L., Plenge, R. M., Bauer, J. W., … Alarcón-Riquelme, M. E. (2006). A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nature Genetics, 38(5), 550–555. https://doi.org/10.1038/ng1782 | eng |
dcterms.references | Habib, T., Funk, A., Rieck, M., Brahmandam, A., Dai, X., Panigrahi, A. K., … Buckner, J. H. (2012). Altered B cell homeostasis is associated with Type I diabetes and carriers of the PTPN22 allelic variant. Journal of Immunology (Baltimore, Md. : 1950), 188(1), 487–496. https://doi. org/10.4049/jimmunol.1102176 | eng |
dcterms.references | Han, J.-W., Zheng, H.-F., Cui, Y., Sun, L.-D., Ye, D.-Q., Hu, Z., … Zhang, X.-J. (2009). Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nature Genetics, 41(11), 1234–1237. https://doi.org/10.1038/ng.472 | eng |
dcterms.references | Harley, J. B., Alarcón-Riquelme, M. E., Criswell, L. A., Jacob, C. O., Kimberly, R. P., Moser, K. L., … Kelly, J. A. (2008). Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nature Genetics, 40(2), 204–210. | eng |
dcterms.references | Heyninck, K., Valck, D. De, Berghe, W. Vanden, Criekinge, W. Van, Contreras, R., Fiers, W., … Beyaert, R. (1999). Gene Expression by Interfering with an RIP- or TRAF2- mediated Protein ABIN. Cell, 145(7), 1471–1482. https://doi. org/10.1083/jcb.145.7.1471 | eng |
dcterms.references | Hiraki, L. T., Feldman, C. H., Liu, J., Alarcõn, G. S., Fischer, M. A., Winkelmayer, W. C., & Costenbader, K. H. (2012). Prevalence, incidence, and demographics of systemic lupus erythematosus and lupus nephritis from 2000 to 2004 among children in the US medicaid beneficiary population. Arthritis and Rheumatism, 64(8), 2669–2676. https://doi.org/10.1002/ art.34472 | eng |
dcterms.references | Hom, G., Ph, D., Graham, R. R., Modrek, B., Taylor, K. E., Ortmann, W., … Kao, A. H. (2008). Association of Systemic Lupus Erythematosus with. Genetics. | eng |
dcterms.references | Iwamoto, T., & Niewold, T. B. (2016). Genetics of human lupus nephritis. Clinical Immunology. https://doi.org/https:// doi.org/10.1016/j.clim.2016.09.012 | eng |
dcterms.references | James, J. A. (2014). Clinical perspectives on lupus genetics: Advances and opportunities. Rheumatic Disease Clinics of North America, Vol. 40, pp. 413–432. W.B. Saunders. | eng |
dcterms.references | Jönsen, A., Gunnarsson, I., Gullstrand, B., Svenungsson, E., Bengtsson, A. A., Nived, O., … Sturfelt, G. (2007). Association between SLE nephritis and polymorphic variants of the CRP and FcγRIIIa genes. Rheumatology, 46(9), 1417–1421. https:// doi.org/10.1093/rheumatology/kem167 | eng |
dcterms.references | Jr, G. M. (2016). Systemic Lupus Erythematosus in Three Ethnic Groups.pdf. (September 2001), 152–160. | eng |
dcterms.references | Karassa, F. B., Trikalinos, T. A., Ioannidis, J. P. A., De Haas, M., Edberg, J. C., Kimberly, R., … Yoo, D. H. (2003). The FcγRIIIA-F158 allele is a risk factor for the development of lupus nephritis: A meta-analysis. Kidney International, 63(4), 1475–1482. https://doi.org/10.1046/j.1523-1755.2003.00873.x | eng |
dcterms.references | Kariuki, S. N., Crow, M. K., & Niewold, T. B. (2008). PTPN22 C1858T Polymorphism is Associated with Skewing of Cytokine Profiles Toward High IFN-α Activity and Low TNF-α in Lupus Patients. Arthritis and Rheumatism, 58(9), 2818–2823. https://doi.org/10.1002/art.23728 | eng |
dcterms.references | Kawasaki, A., Ito, I., Hikami, K., Ohashi, J., Hayashi, T., Goto, D., … Tsuchiya, N. (2008). Role of STAT4 polymorphisms in systemic lupus erythematosus in a Japanese population: a case-control association study of the STAT1-STAT4 region. Arthritis Research & Therapy, 10(5), R113. https://doi. org/10.1186/ar2516 | eng |
dcterms.references | Kawasaki, A., Ito, S., Furukawa, H., Hayashi, T., Goto, D., Matsumoto, I., … Tsuchiya, N. (2010). Association of TNFAIP3 interacting protein 1, TNIP1 with systemic lupus erythematosus in a Japanese population: a case-control association study. Arthritis Research & Therapy, 12(5), R174. https://doi.org/10.1186/ar3134 | eng |
dcterms.references | Kim-Howard, X., Maiti, A. K., Anaya, J.-M., Bruner, G. R., Brown, E., Merrill, J. T., … Nath, S. K. (2010). ITGAM coding variant (rs1143679) influences the risk of renal disease, discoid rash and immunological manifestations in patients with systemic lupus erythematosus with European ancestry. Annals of the Rheumatic Diseases, 69(7), 1329–1332. https:// doi.org/10.1136/ard.2009.120543 | eng |
dcterms.references | Kopp, J. B., Nelson, G. W., Sampath, K., Johnson, R. C., Genovese, G., An, P., … Winkler, C. A. (2011). APOL1 Genetic Variants in Focal Segmental Glomerulosclerosis and HIV-Associated Nephropathy. Journal of the American Society of Nephrology, 22(11), 2129–2137. https://doi. org/10.1681/ASN.2011040388 | eng |
dcterms.references | Kruzel-Davila, E., Wasser, W. G., Aviram, S., & Skorecki, K. (2016). APOL1 nephropathy: From gene to mechanisms of kidney injury. Nephrology Dialysis Transplantation, 31(3), 349–358. https://doi.org/10.1093/ndt/gfu391 | eng |
dcterms.references | Lee, Y. H., Rho, Y. H., Choi, S. J., Ji, J. D., Song, G. G., Nath, S. K., & Harley, J. B. (2007). The PTPN22 C1858T functional polymorphism and autoimmune diseases—a meta-analysis. Rheumatology, 46(1), 49–56. | eng |
dcterms.references | Levy-Sakin, M., & Ebenstein, Y. (2013). Beyond sequencing: Optical mapping of DNA in the age of nanotechnology and nanoscopy. Current Opinion in Biotechnology, 24(4), 690–698. https://doi.org/10.1016/j.copbio.2013.01.009 | eng |
dcterms.references | Lewis, C. M. (2002). Genetic association studies: design, analysis and interpretation. Brief Bioinform, 3(2), 146–153. https://doi.org/10.1093/bib/3.2.146 | eng |
dcterms.references | Li, X., Ptacek, T. S., Brown, E. E., & Edberg, J. C. (2009). Fcγ Receptors: Structure, Function and Role as Genetic Risk Factors in SLE. Genes Immun, 10(5), 380–389. https://doi. org/10.1038/gene.2009.35.Fc | eng |
dcterms.references | Lin, C. P., Adrianto, I., Lessard, C. J., Kelly, J. A., Kaufman, K. M., Guthridge, J. M., … Montgomery, C. G. (2012). Role of MYH9 and APOL1 in African and non-African populations with lupus nephritis. Genes and Immunity, 13(3), 232–238. https://doi.org/10.1038/gene.2011.82 | eng |
dcterms.references | López de Padilla, C. M., & Niewold, T. B. (2016). The type I interferons: Basic concepts and clinical relevance in immune-mediated inflammatory diseases. Gene, 576(1), 14–21. https://doi.org/10.1016/j.gene.2015.09.058 | eng |
dcterms.references | Lupus, S., Disease, E., Index, A., & Collaborative, I. (2008). Pediatric Systemic Lupus Erythematosus : A Longitudinal Study. 550–556. | eng |
dcterms.references | Maidhof, W., & Hilas, O. (2012). Lupus: an overview of the disease and management options. P & T : A Peer-Reviewed Journal for Formulary Management, 37(4), 240–249. | eng |
dcterms.references | Manuscript, A. (2012). NIH Public Access. Changes, 29(6), 997–1003. https://doi.org/10.1016/j.biotechadv.2011.08.021. Secreted | eng |
dcterms.references | Martha Ramírez de Olano, Gerardo Quintana, A. I. G. (2012). Asociación entre manifestaciones clínicas de enfermedades autoinmunes con los polimorfismos de PTPN22, STAT4, CTLA-4 en población colombiana. Iatreia Revista Médica Universidad de Antioquia, Vol. 23(Núm. 4-S). | spa |
dcterms.references | Michael, D. R., Phillips, A. O., Krupa, A., Martin, J., Redman, J. E., Altaher, A., … Bowen, T. (2011). The human hyaluronan synthase 2 (HAS2) gene and its natural antisense RNA exhibit coordinated expression in the renal proximal tubular epithelial cell. Journal of Biological Chemistry, 286(22), 19523–19532. https://doi.org/10.1074/jbc.M111.233916 | eng |
dcterms.references | Nath, S. K., Han, S., Kim-Howard, X., Kelly, J. A., Viswanathan, P., Gilkeson, G. S., … Harley, J. B. (2008). A nonsynonymous functional variant in integrin-αM (encoded by ITGAM) is associated with systemic lupus erythematosus. Nature Genetics, 40(2), 152–154. https://doi.org/10.1038/ng.71 | eng |
dcterms.references | Nguyen, K. B. (2002). Critical Role for STAT4 Activation by Type 1 Interferons in the Interferon-gamma Response to Viral Infection. Science, 297(5589), 2063–2066. https://doi. org/10.1126/science.1074900 | eng |
dcterms.references | Niewold, T. B., Kelly, J. A., Flesch, M. H., Espinoza, L. R., Harley, J. B., & Crow, M. K. (2008). Association of the IRF5 risk haplotype with high serum interferon-α activity in systemic lupus erythematosus patients. Arthritis and Rheumatism, 58(8), 2481–2487. https://doi.org/10.1002/art.23613 | eng |
dcterms.references | Niewold, T. B., Kelly, J. A., Kariuki, S. N., Franek, B. S., Akaash, A., Kaufman, K. M., … Jeffrey, C. (2013). NIH Public Access. 71(3), 463–468. https://doi.org/10.1136/ annrheumdis-2011-200463.IRF5 | eng |
dcterms.references | Orrú, V., Tsai, S. J., Rueda, B., Fiorillo, E., Stanford, S. M., Dasgupta, J., … Bottini, N. (2009). A loss-of-function variant of PTPN22 is associated with reduced risk of systemic lupus erythematosus . Human Molecular Genetics, 18(3), 569–579. | eng |
dcterms.references | Palomino-Morales, R. J., Rojas-Villarraga, A., Gonzalez, C. I., Ramirez, G., Anaya, J.-M., & Martin, J. (2008). STAT4 but not TRAF1/C5 variants influence the risk of developing rheumatoid arthritis and systemic lupus erythematosus in Colombians. Genes Immun, 9(4), 379–382. | eng |
dcterms.references | Patschan, S., Dolff, S., Kribben, A., Dürig, J., Patschan, D., Wilde, B., … Witzke, O. (2006). CD134 expression on CD4+ T cells is associated with nephritis and disease activity in patients with systemic lupus erythematosus. Clinical and Experimental Immunology, 145(2), 235–242. https://doi.org/10.1111/j.1365- 2249.2006.03141.x | eng |
dcterms.references | Pons-Estel, G. J., Serrano, R., Plasín, M. A., Espinosa, G., & Cervera, R. (2011). Epidemiology and management of refractory lupus nephritis. Autoimmunity Reviews, 10(11), 655–663. https://doi.org/10.1016/j.autrev.2011.04.032 | eng |
dcterms.references | Remmers, E. F., Plenge, R. M., Lee, A. T., Graham, R. R., Hom, G., Behrens, T. W., … Gregersen, P. K. (2007). STAT4 and the Risk of Rheumatoid Arthritis and Systemic Lupus Erythematosus. New England Journal of Medicine, 357(10), 977–986. https://doi.org/10.1056/NEJMoa073003 | eng |
dcterms.references | Ren, Y., Tang, J., Mok, M. Y., Chan, A. W. K., Wu, A., & Lau, C. S. (2003). Increased Apoptotic Neutrophils and Macrophages and Impaired Macrophage Phagocytic Clearance of Apoptotic Neutrophils in Systemic Lupus Erythematosus. Arthritis and Rheumatism, 48(10), 2888–2897. https://doi.org/10.1002/ art.11237 | eng |
dcterms.references | Rhodes, B., Fürnrohr, B. G., Roberts, A. L., Tzircotis, G., Schett, G., Spector, T. D., & Vyse, T. J. (2012). The rs1143679 (R77H) lupus associated variant of ITGAM (CD11b) impairs complement receptor 3 mediated functions in human monocytes. Annals of the Rheumatic Diseases, 71(12), 2028–2034. https://doi.org/10.1136/annrheumdis-2012-201390 | eng |
dcterms.references | Sanchez, E., Nadig, A., Richardson, B. C., Freedman, B. I., Kaufman, K. M., Kelly, J. A., … Sawalha, A. H. (2011). Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus. Annals of the Rheumatic Diseases, 70(10), 1752–1757. https://doi.org/10.1136/ ard.2011.154104 | eng |
dcterms.references | Sánchez, E., Rasmussen, A., Riba, L., Acevedo-Vasquez, E., Kelly, J. A., Langefeld, C. D., … Alarcón-Riquelme, M. E. (2012). Impact of genetic ancestry and sociodemographic status on the clinical expression of systemic lupus erythematosus in American Indian-European populations. Arthritis and Rheumatism, 64(11), 3687–3694. https://doi.org/10.1002/ art.34650 | eng |
dcterms.references | Sawalha, A. H., Wang, L., Nadig, A., Somers, E. C., McCune, W. J., Hughes, T., … Richardson, B. (2012). Sex-specific differences in the relationship between genetic susceptibility, T cell DNA demethylation and lupus flare severity. Journal of Autoimmunity, 38(2–3), 216–222. https://doi.org/10.1016/j. jaut.2011.11.008 | eng |
dcterms.references | Scheinecker, C., Bonelli, M., & Smolen, J. S. (2010). Pathogenetic aspects of systemic lupus erythematosus with an emphasis on regulatory T cells. Journal of Autoimmunity, 35(3), 269–275. https://doi.org/10.1016/j.jaut.2010.06.018 | eng |
dcterms.references | Seligman, V. A., Suarez, C., Lum, R., Inda, S. E., Lin, D., Li, H., … Criswell, L. A. (2001). The Fc?? receptor IIIA-158F allele is a major risk factor for the development of lupus nephritis among Caucasians but not non-Caucasians. Arthritis and Rheumatism, 44(3), 618–625. https://doi.org/10.1002/152 9-0131(200103)44:3<618::AID-ANR110>3.0.CO;2-R | eng |
dcterms.references | Seng, K. C., & Seng, C. K. (2008). The success of the genome-wide association approach: a brief story of a long struggle. European Journal of Human Genetics : EJHG, 16(5), 554–564. | eng |
dcterms.references | Sigurdsson, S., Göring, H. H. H., Kristjansdottir, G., Milani, L., Nordmark, G., Sandling, J. K., … Syvänen, A. C. (2008). Comprehensive evaluation of the genetic variants of interferon regulatory factor 5 (IRF5) reveals a novel 5 bp length polymorphism as strong risk factor for systemic lupus erythematosus. Human Molecular Genetics, 17(6), 872–881. https:// doi.org/10.1093/hmg/ddm359 | eng |
dcterms.references | Sigurdsson, S., Nordmark, G., Göring, H. H. H., Lindroos, K., Wiman, A.-C., Sturfelt, G., … Syvänen, A.-C. (2005). Polymorphisms in the Tyrosine Kinase 2 and Interferon Regulatory Factor 5 Genes Are Associated with Systemic Lupus Erythematosus. The American Journal of Human Genetics, 76(3), 528–537. https://doi.org/10.1086/428480 | eng |
dcterms.references | Szabo, F. K., & Hoffman, G. E. (2012). NIH Public Access. 37(1), 62–70. https://doi.org/10.1007/s12020-009-9266-z.A | eng |
dcterms.references | Takai, T. (2002). Roles of Fc receptors in autoimmunity. Nature Reviews. Immunology, 2(8), 580–592. https://doi. org/10.1038/nri856 | eng |
dcterms.references | Taylor, K. E., Remmers, E. F., Lee, A. T., Ortmann, W. A., Plenge, R. M., Tian, C., … Criswell, L. A. (2008). Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus. PLoS Genetics, 4(5), 1–9. https://doi.org/10.1371/journal.pgen.1000084 | eng |
dcterms.references | Teruel, M., & Alarcón-Riquelme, M. E. (2016). The genetic basis of systemic lupus erythematosus: What are the risk factors and what have we learned. Journal of Autoimmunity, 74. https://doi.org/10.1016/j.jaut.2016.08.001 | eng |
dcterms.references | Thorisson, G. A., Smith, A. V., Krishnan, L., & Stein, L. D. (2005). The International HapMap Project Web site. Genome Research, 15(11), 1592–1593. | eng |
dcterms.references | Velázquez-Cruz, R., Jiménez-Morales, S., Ramírez-Bello, J., Aguilar-Delfín, I., Salas-Martínez, G., Baca Ruíz, V., & Orozco Orozco, L. (2012). [Systemic lupus erythematosus: genomics of the disease]. Gaceta Médica de México, 148(4), 371–380. | eng |
dcterms.references | Verstrepen, L., Carpentier, I., Verhelst, K., & Beyaert, R. (2009). ABINs: A20 binding inhibitors of NF-??B and apoptosis signaling. Biochemical Pharmacology, 78(2), 105–114. https:// doi.org/10.1016/j.bcp.2009.02.009 | eng |
dcterms.references | Voulgari, P. V, Katsimbri, P., Alamanos, Y., & Drosos, a a. (2002). Gender and age differences in systemic lupus erythematosus. A study of 489 Greek patients with a review of the literature. Lupus, 11(11), 722–729. https://doi. org/10.1191/0961203302lu253oa | eng |
dcterms.references | Wang, C., Ahlford, A., Järvinen, T. M., Nordmark, G., Eloranta, M.-L., Gunnarsson, I., … Sandling, J. K. (2013). Genes identified in Asian SLE GWASs are also associated with SLE in Caucasian populations. European Journal of Human Genetics, 21(9), 994–999. https://doi.org/10.1038/ ejhg.2012.277 | eng |
dcterms.references | Weening, J. J. (2004). The Classification of Glomerulonephritis in Systemic Lupus Erythematosus Revisited. Journal of the American Society of Nephrology, 15(2), 241–250. https://doi. org/10.1097/01.ASN.0000108969.21691.5D | eng |
dcterms.references | Xi, J., Zhang, G. P., Qiao, S. L., Guo, J. Q., Wang, X. N., Yang, Y. Y., … Deng, R. G. (2012). Increased survival and reduced renal injury in MRL/lpr mice treated with a human Fcγ receptor II (CD32) peptide. Immunology, 136(1), 46–53. https://doi.org/10.1111/j.1365-2567.2012.03553.x | eng |
dcterms.references | Yung, S., Tsang, R. C. W., Leung, J. K. H., & Chan, T. M. (n.d.). Increased mesangial cell hyaluronan expression in lupus nephritis is mediated by anti-DNA antibody-induced IL-1beta. Kidney International, 69(2), 272–280. https://doi. org/10.1038/sj.ki.5000042 | eng |
dcterms.references | Zhou, X. J., Cheng, F. J., Qi, Y. Y., Zhao, M. H., & Zhang, H. (2013). A replication study from Chinese supports association between lupus-risk allele in TNFSF4 and renal disorder. BioMed Research International, 2013, 1–7. https://doi. org/10.1155/2013/597921 | eng |
dcterms.references | Zuniga, R., Markowitz, G. S., Arkachaisri, T., Imperatore, E. A., D’Agati, V. D., & Salmon, J. E. (2003). Identification of IgG subclasses and C-reactive protein in lupus nephritis: The relationship between the composition of immune deposits and Fcγ receptor type IIA alleles. Arthritis and Rheumatism, 48(2), 460–470. https://doi.org/10.1002/art.10930 | eng |
dcterms.references | A. T. Borchers, S. M. Naguwa, Y. Shoenfeld, y M. E. Gershwin, «The geoepidemiology of systemic lupus erythematosus», Autoimmun. Rev., vol. 9, n.o 5, pp. A277-A287, mar. 2010, doi: 10.1016/j.autrev.2009.12.008. | eng |
dcterms.references | R. C. Lawrence et al., «Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States», Arthritis Rheum., vol. 41, n.o 5, pp. 778-799, may 1998, doi: 10.1002/1529-0131(199805)41:5<778::AID-ART4>3.0.CO;2-V. | eng |
dcterms.references | L. T. Hiraki et al., «End-stage renal disease due to lupus nephritis among children in the US, 1995-2006», Arthritis Rheum., vol. 63, n.o 7, pp. 1988-1997, jul. 2011, doi: 10.1002/art.30350. | eng |
dcterms.references | M. Klein-Gitelman, A. Reiff, y E. D. Silverman, «Systemic lupus erythematosus in childhood», Rheum. Dis. Clin. North Am., vol. 28, n.o 3, pp. 561-577, vi-vii, ago. 2002. | eng |
dcterms.references | G. D’Amico y C. Bazzi, «Pathophysiology of proteinuria», Kidney Int., vol. 63, n.o 3, pp. 809-825, mar. 2003, doi: 10.1046/j.1523-1755.2003.00840.x. | eng |
dcterms.references | C. Landolt-Marticorena et al., «A discrete cluster of urinary biomarkers discriminates between active systemic lupus erythematosus patients with and without glomerulonephritis», Arthritis Res. Ther., vol. 18, n.o 1, p. 218, 04 2016, doi: 10.1186/ s13075-016-1120-0. | eng |
dcterms.references | B. H. Rovin et al., «Plasma, urine, and renal expression of adiponectin in human systemi c lupus erythematosus», Kidney Int., vol. 68, n.o 4, pp. 1825-1833, oct. 2005, doi: 10.1111/j.1523- 1755.2005.00601.x. | eng |
dcterms.references | M. Suzuki et al., «Initial Validation of a Novel Protein Biomarker Panel for Active Pediatric Lupus Nephritis», Pediatr. Res., vol. 65, n.o 5, pp. 530-536, may 2009, doi: 10.1203/ PDR.0b013e31819e4305. | eng |
dcterms.references | H. I. Brunner et al., «Urine Biomarkers to Predict Response to Lupus Nephritis Therapy in Children and Young Adults», J. Rheumatol., vol. 44, n.o 8, pp. 1239-1248, 2017, doi: 10.3899/ jrheum.161128. | eng |
dcterms.references | S. A. Varghese et al., «Urine Biomarkers Predict the Cause of Glomerular Disease», J. Am. Soc. Nephrol., vol. 18, n.o 3, pp. 913-922, mar. 2007, doi: 10.1681/ASN.2006070767. | eng |
dcterms.references | K. Kopetschke et al., «The cellular signature of urinary immune cells in Lupus nephritis: new insights into potential biomarkers», Arthritis Res. Ther., vol. 17, p. 94, abr. 2015, doi: 10.1186/s13075-015-0600-y. | eng |
dcterms.references | P. Enghard et al., «Urinary CD4 T cells identify SLE patients with proliferative lupus nephritis and can be used to monitor treatment response», Ann. Rheum. Dis., vol. 73, n.o 1, pp. 277-283, ene. 2014, doi: 10.1136/annrheumdis-2012-202784. | eng |
dcterms.references | P. Enghard et al., «CXCR3+CD4+ T cells are enriched in inflamed kidneys and urine and provide a new biomarker for acute nephritis flares in systemic lupus erythematosus patients», Arthritis Rheum., vol. 60, n.o 1, pp. 199-206, ene. 2009, doi: 10.1002/art.24136. | eng |
dcterms.references | T. Wu et al., «Elevated urinary VCAM-1, P-selectin, soluble TNF receptor-1, and CXC chemokine ligand 16 in multiple murine lupus strains and human lupus nephritis», J. Immunol. Baltim. Md 1950, vol. 179, n.o 10, pp. 7166-7175, nov. 2007, doi: 10.4049/jimmunol.179.10.7166. | eng |
dcterms.references | M. Hanaoka et al., «Urinary free light chain is a potential biomarker for ISN/RPS class III/IV lupus nephritis», Rheumatol. Oxf. Engl., vol. 52, n.o 12, pp. 2149-2157, dic. 2013, doi: 10.1093/rheumatology/ket108. | eng |
dcterms.references | S. Soliman y C. Mohan, «Lupus nephritis biomarkers», Clin. Immunol. Orlando Fla, vol. 185, pp. 10-20, 2017, doi: 10.1016/j. clim.2016.08.001. | eng |
dcterms.references | X. Zhang et al., «Biomarkers of lupus nephritis determined by serial urine proteomics», Kidney Int., vol. 74, n.o 6, pp. 799-807, sep. 2008, doi: 10.1038/ki.2008.316. | eng |
dcterms.references | P. Somparn, N. Hirankarn, A. Leelahavanichkul, W. Khovidhunkit, V. Thongboonkerd, y Y. Avihingsanon, «Urinary proteomics revealed prostaglandin H2D-isomerase, not Zn-α2- glycoprotein, as a biomarker for active lupus nephritis», J. Proteomics, vol. 75, n.o 11, pp. 3240-3247, jun. 2012, doi: 10.1016/j.jprot.2012.03.034. | eng |
dcterms.references | R. Misra y R. Gupta, «Biomarkers in lupus nephritis», Int. J. Rheum. Dis., vol. 18, n.o 2, pp. 219-232, feb. 2015, doi: 10.1111/1756-185X.12602. | eng |
dcterms.references | H. Wu, J. Zeng, J. Yin, Q. Peng, M. Zhao, y Q. Lu, «Organspecific biomarkers in lupus», Autoimmun. Rev., vol. 16, n.o 4, pp. 391-397, abr. 2017, doi: 10.1016/j.autrev.2017.02.011. | eng |
dcterms.references | H. Susianti et al., «Analysis of urinary TGF-β1, MCP-1, NGAL, and IL-17 as biomarkers for lupus nephritis», Pathophysiol. Off. J. Int. Soc. Pathophysiol., vol. 22, n.o 1, pp. 65-71, mar. 2015, doi: 10.1016/j.pathophys.2014.12.003. | eng |
dcterms.references | M. Herrmann, T. Winkler, U. Gaipl, H. Lorenz, T. Geiler, y J. R. Kalden, «Etiopathogenesis of systemic lupus erythematosus», Int. Arch. Allergy Immunol., vol. 123, n.o 1, pp. 28-35, sep. 2000, doi: 10.1159/000024421. | eng |
dcterms.references | D.-Y. Chen, Y.-M. Chen, M.-C. Wen, T.-Y. Hsieh, W.-T. Hung, y J.-L. Lan, «The potential role of Th17 cells and Th17-related cytokines in the pathogenesis of lupus nephritis», Lupus, vol. 21, n.o 13, pp. 1385-1396, nov. 2012, doi: 10.1177/0961203312457718. | eng |
dcterms.references | N. Z. Saber, S. H. Maroof, D. A. Soliman, y M. S. Fathi, «Expression of T helper 17 cells and interleukin 17 in lupus nephritis patients», Egypt. Rheumatol., vol. 39, n.o 3, pp. 151-157, jul. 2017, doi: 10.1016/j.ejr.2017.01.005. | eng |
dcterms.references | F. Nordin et al., «Serum and urine interleukin‐17A levels as biomarkers of disease activity in systemic lupus erythematosus », Int. J. Rheum. Dis., pp. 1756-185X.13615, jun. 2019, doi: 10.1111/1756-185X.13615. | eng |
dcterms.references | E. Singer et al., «Neutrophil gelatinase-associated lipocalin: pathophysiology and clinical applications», Acta Physiol., vol. 207, n.o 4, pp. 663-672, abr. 2013, doi: 10.1111/apha.12054. | eng |
dcterms.references | M. Suzuki et al., «Neutrophil gelatinase-associated lipocalin as a biomarker of disease activity in pediatric lupus nephritis», Pediatr. Nephrol., vol. 23, n.o 3, pp. 403-412, mar. 2008, doi: 10.1007/s00467-007-0685-x. | eng |
dcterms.references | T. Rubinstein et al., «Urinary neutrophil gelatinase-associated lipocalin as a novel biomarker for disease activity in lupus nephritis», Rheumatology, vol. 49, n.o 5, pp. 960-971, may 2010, doi: 10.1093/rheumatology/kep468. | eng |
dcterms.references | B. Satirapoj, C. Kitiyakara, A. Leelahavanichkul, Y. Avihingsanon, y O. Supasyndh, «Urine neutrophil gelatinase- associated lipocalin to predict renal response after induction therapy in active lupus nephritis», BMC Nephrol., vol. 18, n.o 1, p. 263, dic. 2017, doi: 10.1186/s12882-017-0678-3. | eng |
dcterms.references | J. A. Winkles, «The TWEAK–Fn14 cytokine–receptor axis: discovery, biology and therapeutic targeting», Nat. Rev. Drug Discov., vol. 7, n.o 5, pp. 411-425, may 2008, doi: 10.1038/ nrd2488 | eng |
dcterms.references | A. B. Sanz et al., «TWEAK and the progression of renal disease: clinical translation», Nephrol. Dial. Transplant., vol. 29, n.o suppl 1, pp. i54-i62, feb. 2014, doi: 10.1093/ndt/gft342. | eng |
dcterms.references | S. Campbell, «The role of TWEAK/Fn14 IN the pathogenesis of inflammation and systemic autoimmunity», Front. Biosci., vol. 9, n.o 1-3, p. 2273, 2004, doi: 10.2741/1395. | eng |
dcterms.references | S. Campbell et al., «Proinflammatory Effects of Tweak/Fn14 Interactions in Glomerular Mesangial Cells», J. Immunol., vol. 176, n.o 3, pp. 1889-1898, feb. 2006, doi: 10.4049/ jimmunol.176.3.1889. | eng |
dcterms.references | H.-X. Gao et al., «TNF-like weak inducer of apoptosis (TWEAK) induces inflammatory and proliferative effects in human kidney cells», Cytokine, vol. 46, n.o 1, pp. 24-35, abr. 2009, doi: 10.1016/j.cyto.2008.12.001. | eng |
dcterms.references | W.-D. Xu, Y. Zhao, y Y. Liu, «Role of the TWEAK/Fn14 pathway in autoimmune diseases», Immunol. Res., vol. 64, n.o 1, pp. 44-50, feb. 2016, doi: 10.1007/s12026-015-8761-y. | eng |
dcterms.references | N. Schwartz et al., «Urinary TWEAK and the activity of lupus nephritis», J. Autoimmun., vol. 27, n.o 4, pp. 242-250, dic. 2006, doi: 10.1016/j.jaut.2006.12.003. | eng |
dcterms.references | Z. Xuejing, T. Jiazhen, L. Jun, X. Xiangqing, Y. Shuguang, y L. Fuyou, «Urinary TWEAK Level as a Marker of Lupus Nephritis Activity in 46 Cases», J. Biomed. Biotechnol., vol. 2012, pp. 1-7, 2012, doi: 10.1155/2012/359647. | eng |
dcterms.references | M. N. Salem, H. A. Taha, M. Abd El-Fattah El-Feqi, N. N. Eesa, y R. A. Mohamed, «Urinary TNF-like weak inducer of apoptosis (TWEAK) as a biomarker of lupus nephritis», Z. Für Rheumatol., vol. 77, n.o 1, pp. 71-77, feb. 2018, doi: 10.1007/ s00393-016-0184-1. | eng |
dcterms.references | F. Reyes-Martínez et al., «Assessment of urinary TWEAK levels in Mexican patients with untreated lupus nephritis: An exploratory study», Nefrol. Engl. Ed., vol. 38, n.o 2, pp. 152-160, mar. 2018, doi: 10.1016/j.nefroe.2018.02.006. | eng |
dcterms.references | X. Liao, T. Pirapakaran, y X. M. Luo, «Chemokines and Chemokine Receptors in the Development of Lupus Nephritis», Mediators Inflamm., vol. 2016, pp. 1-15, 2016, doi: 10.1155/2016/6012715. | eng |
dcterms.references | K. A. Nikolova, N. M. Mihaylova, E. N. Voynova, A. I. Tchorbanov, R. E. Voll, y T. L. Vassilev, «Selective silencing of autoreactive B lymphocytes-Following the Nature’s way», Autoimmun. Rev., vol. 9, n.o 11, pp. 775-779, sep. 2010, doi: 10.1016/j.autrev.2010.06.010. | eng |
dcterms.references | G. Badr et al., «Infection of Female BWF1 Lupus Mice with Malaria Parasite Attenuates B Cell Autoreactivity by Modulating the CXCL12/CXCR4 Axis and Its Downstream Signals PI3K/AKT, NFκB and ERK», PloS One, vol. 10, n.o 4, p. e0125340, 2015, doi: 10.1371/journal.pone.0125340. | eng |
dcterms.references | P. J. Gough, K. J. Garton, P. T. Wille, M. Rychlewski, P. J. Dempsey, y E. W. Raines, «A disintegrin and metalloproteinase 10-mediated cleavage and shedding regulates the cell surface expression of CXC chemokine ligand 16», J. Immunol. Baltim. Md 1950, vol. 172, n.o 6, pp. 3678-3685, mar. 2004, doi: 10.4049/ jimmunol.172.6.3678. | eng |
dcterms.references | M. A. El-Gamasy y W. El-Naghy, «Urinary Neutrophil Gelatinase-Associated Lipocalin and Urinary Soluble CXCL16 as Biomarkers of Activity in Pediatric Lupus Nephritis», Indian J. Nephrol., vol. 28, n.o 6, pp. 427-432, dic. 2018, doi: 10.4103/ ijn.IJN_265_17. | eng |
dcterms.references | S. Wen, F. He, X. Zhu, S. Yuan, H. Liu, y L. Sun, «IFN-γ, CXCL16, uPAR: potential biomarkers for systemic lupus erythematosus», Clin. Exp. Rheumatol., vol. 36, n.o 1, pp. 36-43, feb. 2018. | eng |
dcterms.references | A. D. Luster, «Chemokines--chemotactic cytokines that mediate inflammation», N. Engl. J. Med., vol. 338, n.o 7, pp. 436-445, feb. 1998, doi: 10.1056/NEJM199802123380706. | eng |
dcterms.references | Y. Avihingsanon et al., «Measurement of urinary chemokine and growth factor messenger RNAs: a noninvasive monitoring in lupus nephritis», Kidney Int., vol. 69, n.o 4, pp. 747-753, feb. 2006, doi: 10.1038/sj.ki.5000132. | eng |
dcterms.references | J. W. Bauer et al., «Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity: a validation study», Arthritis Rheum., vol. 60, n.o 10, pp. 3098-3107, oct. 2009, doi: 10.1002/art.24803. | eng |
dcterms.references | K. O. Kong et al., «Enhanced expression of interferon-inducible protein-10 correlates with disease activity and clinical manifestations in systemic lupus erythematosus», Clin. Exp. Immunol., vol. 156, n.o 1, pp. 134-140, abr. 2009, doi: 10.1111/j.1365- 2249.2009.03880.x. | eng |
dcterms.references | P. Puapatanakul et al., «Interferon-Inducible Protein 10 and Disease Activity in Systemic Lupus Erythematosus and Lupus Nephritis: A Systematic Review and Meta-Analysis», Int. J. Mol. Sci., vol. 20, n.o 19, p. 4954, oct. 2019, doi: 10.3390/ ijms20194954. | eng |
dcterms.references | W. Lv, G. W. Booz, Y. Wang, F. Fan, y R. J. Roman, «Inflammation and renal fibrosis: Recent developments on key signaling molecules as potential therapeutic targets», Eur. J. Pharmacol., vol. 820, pp. 65-76, feb. 2018, doi: 10.1016/j.ejphar.2017.12.016. | eng |
dcterms.references | R. Gupta, A. Yadav, y A. Aggarwal, «Longitudinal assessment of monocyte chemoattractant protein-1 in lupus nephritis as a biomarker of disease activity», Clin. Rheumatol., vol. 35, n.o 11, pp. 2707-2714, nov. 2016, doi: 10.1007/s10067-016-3404-9. | eng |
dcterms.references | B. H. Rovin, H. Song, D. J. Birmingham, L. A. Hebert, C. Y. Yu, y H. N. Nagaraja, «Urine chemokines as biomarkers of human systemic lupus erythematosus activity», J. Am. Soc. Nephrol. JASN, vol. 16, n.o 2, pp. 467-473, feb. 2005, doi: 10.1681/ASN.2004080658. | eng |
dcterms.references | O. Kulkarni et al., «Spiegelmer Inhibition of CCL2/MCP-1 Ameliorates Lupus Nephritis in MRL-(Fas)lpr Mice», J. Am. Soc. Nephrol., vol. 18, n.o 8, pp. 2350-2358, ago. 2007, doi: 10.1681/ASN.2006121348. | eng |
dcterms.references | R. Singh, Usha, S. Rathore, S. Behura, y N. Singh, «Urinary MCP-1 as diagnostic and prognostic marker in patients with lupus nephritis flare», Lupus, vol. 21, n.o 11, pp. 1214-1218, oct. 2012, doi: 10.1177/0961203312452622. | eng |
dcterms.references | Y. H. Lee y G. G. Song, «Urinary MCP-1 as a biomarker for lupus nephritis: a meta-analysis», Z. Rheumatol., vol. 76, n.o 4, pp. 357-363, may 2017, doi: 10.1007/s00393-016-0109-z. | eng |
dcterms.references | Seshan SV, Jennette JC. Renal disease in systemic lupus erythematosus with emphasis on classification of lupus glomerulonephritis: advances and implications. Arch. Pathol. Lab. Med., 2009;133 (2) :233-48. | eng |
dcterms.references | Bihl GR, Petri M, Fine DM. Kidney biopsy in lupus nephritis: look before you leap. Nephrol Dial Transplant. 2006; 21:1749- 1752. | eng |
dcterms.references | Bolton WK, Vaughan ED. A comparative study of open surgical and percutaneous renal biopsies. J Urol 1977; 117:696-8. | eng |
dcterms.references | Radford MG, Donadio JV, et al. Renal biopsy in clinical practice. Mayo Clin Proc 1994; 69:983-4. | eng |
dcterms.references | Wieckre CG, Golper TA. Complications of percutaneous needle biopsy of the kidney. Am J Nephrol 1982; 2:173-8. | eng |
dcterms.references | Brissler JJ. Hemothorax as a complication of percutaneous renal biopsy. Am J Kidney Dis 1991; 18:122. | eng |
dcterms.references | Agadjanyan, A. Peterson, J. Noteboom, K.C.O’ Briant,A. Allen, D.W. Lin, N. Urban, C. W. Drescher, B. S. Knudsen, D. L. Stirewalt, R. Gentleman, R. L.Vessella, P. S. Nelson, D. B. Martin, M. Tewari, CirculatingmicroRNAs asstable bloodbased markers for cancer detection, Proc. Natl. Acad.Sci. U.S.A. 105(2008) 10513–10518. | eng |
dcterms.references | H.Zhao, J. Shen, L. Medico, D. Wang, C.B. Ambrosone, S. Liu, A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer,PLoS One 5(2010)e13735. | eng |
dcterms.references | C. Roth, B. Rack, V. Muller, W. Janni, K. Pantel, H. Schwarzenbach, Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer,Breast- CancerRes.12(2010)R90. | eng |
dcterms.references | H.M. Heneghan, N. Miller, A.J. Lowery, K.J. Sweeney, J. Newell, M.J. Kerin, Circulating microRNAs as novel minimally invasive biomarkers for breastcancer, Ann. Surg.251(2010)499–505. | eng |
dcterms.references | D.D. Taylor, C. Gercel-Taylor, MicroRNA signatures of tumor -derive dexosomes as diagnostic biomarkers of ovarian cancer,- Gynecol.Oncol.110(2008)13–21. | eng |
dcterms.references | Te JL, Dozmorov IM, Guthridge JM, Nguyen KL, Cavett JW, et al. 2010 Identification of Unique MicroRNA Signature Associated with Lupus Nephritis. PLoS ONE 5(5): e10344. | eng |
dcterms.references | Ruiz-Irastorza G, Khamashta MA, Castellino G, Hughes GR. Systemic lupus erythematosus. Lancet. 2001;357:1027-32. | eng |
dcterms.references | Austin HA. Clinical evaluation and monitoring of lupus kidney disease. Lupus 1998;7(9):618-621. | eng |
dcterms.references | Domoto DT. The significance of electron dense deposits in mild lupus nephritis. Yale J Biol Med 1980;53:317-324. | eng |
dcterms.references | Cameron. Lupus nephritis. J Am Soc Nephrol 1999; 10(2):413-424 | eng |
dcterms.references | Hricik, Chung-Park. Glomerulonephritis. New Engl J Med 1998;339(13):888-898. | eng |
dcterms.references | Golbus J, McCune WJ. Lupus nephritis. Clasification, prognosis, immunopathogenesis and treatment. Rheum Clin North Am 1994;20:213-224. | eng |
dcterms.references | Boumpas DT, Balow JE. Outcome criteria for lupus nephritis trials. A critical overview. Lupus 1998; 7(9):622-629. | eng |
dcterms.references | Appel GB, Silva FG, Pirani CL, Melzer JI, Estes D. Renal involvement in systemic lupus erythematosus (SLE): a study of 56 patients emphasizing histologic classification. Medicine. 1978;57:371–408. | eng |
dcterms.references | Whittier WL, Korbet SM. Renal biopsy: update. Curr Opin Nephrol Hypertens 2004;13(6):661—5. | eng |
dcterms.references | Mattix H, Singh AK. Is the bleeding time predictive of bleeding prior to a percutaneous renal biopsy? Curr Opin Nephrol Hypertens 1999;8(6):715—8. | eng |
dcterms.references | Hergesell O, Felten H, Andrassy K, Kühn K, Ritz E. Safety of ultrasound-guided percutaneous renal biopsy-retrospective analysis of 1090 consecutive cases. Nephrol Dial Transplant 1998;13(4):975—7. | eng |
dcterms.references | Schwarz A, Gwinner W, Hiss M, Radermacher J, Mengel M,Haller H. Safety and adequacy of renal transplant protocol biopsies. Am J Transplant 2005;5(8):1992—6. | eng |
dcterms.references | Manno C, Strippoli GF, Arnesano L, Bonifati C, Campobasso N, Gesualdo L, et al. Predictors of bleeding complications in percutaneous ultrasound-guided renal biopsy. Kidney Int 2004;66(4):1570—7. | eng |
dcterms.references | Eiro M, Katoh T, Watanabe T. Risk factors for bleeding complications in percutaneous renal biopsy. Clin Exp Nephrol 2005;9(1):40—5. | eng |
dcterms.references | Stiles KP, Hill C, LeBrun CJ, Reinmuth B, Yuan CM, Abbott KC. The impact of bleeding times on major complication rates after percutaneous real-time ultrasound-guided renal biopsies. J Nephrol 2001;14(4):275—9. | eng |
dcterms.references | Furness PN, Philpott CM, Chorbadjian MT, Nicholson ML, Bosmans JL, Corthouts BL, et al. Protocol biopsy of the stable renal transplant: a multicenter study of methods and complication rates. Transplantation 2003;76(6):969—73. | eng |
dcterms.references | Sohal AS, Gangji AS, Crowther MA, Treleaven D. Uremic bleeding: Pathophysiology and clinical risk factors. Thromb Res 2006;118(3):417—22. | eng |
dcterms.references | John P. Cogswell, et al. Identification of miRNA Changes in Alzheimer’s Disease Brain and CSF Yields Putative Biomarkers and Insights into Disease Pathways. Journal of Alzheimer’s Disease. 2008; 14(1): 27-41 | eng |
dcterms.references | Jessica A. Weber, et al. The MicroRNA Spectrum in 12 Body Fluids. Clinical Chemistry 56: 1733-1741, 2010. | eng |
dcterms.references | Kohda Y, Murakami H, Moe OW, Star RA. Analysis of segmental renal gene expression by laser capture microdissection. Kidney Int. 57(1), 321–331 (2000). | eng |
dcterms.references | White NM, Fatoohi E, Metias M, Jung K, Stephan C, Yousef GM. Metastamirs: a stepping stone towards improved cancer management. Nat. Rev. Clin. Oncol. 8(2), 75–84 (2010). | eng |
dcterms.references | Akkina S, Becker BN. MicroRNAs in kidney function and disease. Transl. Res. 157(4), 236–240 (2011). | eng |
dcterms.references | Li JY, Yong TY, Michael MZ, Gleadle JM. Review: the role of microRNAs in kidney disease. Nephrology (Carlton)15(6), 599–608 (2010). | eng |
dcterms.references | Liang M, Liu Y, Mladinov D et al. MicroRNA: a new frontier in kidney and blood pressure research. Am. J. Physiol. Renal Physiol. 297(3), F553–F558 (2009). | eng |
dcterms.references | Tian Z, Greene AS, Pietrusz JL, Matus IR, Liang M. MicroRNAtarget pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res. 18(3), 404–411 (2008). | eng |
dcterms.references | Sun Y, Koo S, White N et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res. 32(22), e188 (2004). | eng |
dcterms.references | Zhou H, Cheruvanky A, Hu X et al. Urinary exosomal transcription factors, a new class of biomarkers for renal disease. Kidney Int. 74(5), 613–621 (2008). | eng |
dcterms.references | Borchers AT, Naguwa SM, Shoenfeld Y, Gershwin ME (2010) The geoepidemiology of systemic lupus erythematosus. Autoimmun Rev 9:A277–A287 | eng |
dcterms.references | Lawrence RC, Helmick CG, Arnett FC, Deyo RA, Felson DT, Giannini EH et al (1998) Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum 41:778–799 | eng |
dcterms.references | Lang B, Silverman E. A clinical overview of systemic lupus erithematosus in childhood. Pediatrics Review.1993;14:194-20 | eng |
dcterms.references | Cervera R, Khamashta MA, Font J, Sebastiani GD, Gil A, Lavilla P et al (2003) Morbidity and mortality in systemic lupus erythematosus during a 10-year period: a comparison of early and late manifestations in a cohort of 1, 000 patients. Med (Baltimore) 82:299–308 | eng |
dcterms.references | Sanchez-Vegazo I, et al. Nefritis lúpica. REV ESP PATOL 2002; Vol 35, n.º 3: 269-27 | eng |
dcterms.references | Anaya JM, Uribe M, Pinto LF, Matute G, Molina JF, Calle I. Nefritis Lúpica. Definición clínica, patológica y terapéutica. Rev Colomb Reumatol 2001; 8: 61-74 | spa |
dcterms.references | Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, Schaller JG, Talal N, Winchester RJ. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1982; 25:1271-1277 | eng |
dcterms.references | Weening JJ, D’Agati VD, Schwartz MM, Seshan SV, Alpers CE, Appel GB, Balow JE, Bruijn JA, Cook T, Ferrario F, Fogo AB, Ginzler EM, Hebert L, Hill G, Hill P, Jennette JC, Kong NC, Lesavre P, Lockshin M, Looi LM, Makino H, Moura LA, Nagata M. The classification of glomerulonephritis in systemic lupus erithematous revisited. J Am Soc Nephrol 15:241-250, 2004. | eng |
dcterms.references | Churg J, Bernstein J, Glassock RJ. Lupus nephritis. En: Classification and Atlas of Glomerular Disease, 2nd ed. New York, Igaku-Shoin, 1995, p51. | eng |
dcterms.references | Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008;105:10513 | eng |
dcterms.references | Gilad S, Meiri E, Yogev Y, et al. Serum microRNAs are promising novel biomarkers. PLoS One 2008;3:e3148. | eng |
dcterms.references | Hanke M, Hoefig K, Merz H, et al. A robust methodology to study urine microRNAas tumor marker: microRNA-126 and microRNA182 are related to urinary bladder cancer. Urol Oncol 2010;28:655–61 | eng |
dcterms.references | Boeri M. et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc. Natl Acad. Sci. USA 108, 3713–3718 (2011). | eng |
dcterms.references | Rice P, Longden I, Bleasby A. Emboss: the European Molecular Biology Open Software Suite. Trends Genet. 2000; 16(6):276-7 | eng |
dcterms.references | Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool. J. Mol. Biol. 1990; 215:403-410. | eng |
dcterms.references | Griffiths-Jones S, Saini Hk, Van Dongen S, Enright Aj. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008; 36 D154-D158 (www.mirbase.org). | eng |
dcterms.references | Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006; 22:1658-9 | eng |
dcterms.references | K. Zen, C.Y. Zhang, Circulating MicroRNAs: a novel class of biomarkers to diagnose and monitor human cancers, Med. Res. Rev (2010). | eng |
dcterms.references | J.L. Weickmann, D.G. Glitz, Human ribonucleases. Quantitation of pancreaticlike enzymes in serum, urine, and organ preparations, J. Biol. Chem. 257 (1982) 8705–8710. | eng |
dcterms.references | D.J. Gibbings, C. Ciaudo, M. Erhardt, O. Voinnet, Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity, Nat. Cell Biol. 11 (2009) 1143–1149. | eng |
dcterms.references | H. Valadi, K. Ekstrom, A. Bossios, M. Sjostrand, J.J. Lee, J.O. Lotvall, Exosome mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat. Cell Biol. 9 (2007) 654–659. | eng |
dcterms.references | H. Iguchi, N. Kosaka, T. Ochiya, Secretory microRNAs as a versatile communication tool, Commun. Integr. Biol. 3 (2010) 478–481. | eng |
dcterms.references | G. Camussi, M.C. Deregibus, S. Bruno, V. Cantaluppi, L. Biancone, Exosomes/microvesicles as a mechanism of cell-to-cell communication, Kidney Int. 78 (2010) 838–848. | eng |
dcterms.references | V. Muralidharan-Chari, J.W. Clancy, A. Sedgwick, C. D’Souza- Schorey, Microvesicles: mediators of extracellular communication during cancer progression, J. Cell Sci. 123 (2010) 1603–1611. | eng |
dcterms.references | K. Wang, S. Zhang, J. Weber, D. Baxter, D.J. Galas, Export of microRNAs and microRNA-protective protein by mammalian cells, Nucleic Acids Res. 38 (2010) 7248–7259. | eng |
dcterms.references | N. Kosaka, H. Iguchi, Y. Yoshioka, F. Takeshita, Y. Matsuki, T. Ochiya, Secretory mechanisms and intercellular transfer of microRNAs in living cells, J. Biol. Chem. 285 (2010) 17442– 17452. | eng |
dcterms.references | H. Valadi, K. Ekstrom, A. Bossios, M. Sjostrand, J.J. Lee, J.O. Lotvall, Exosomemediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat. Cell Biol. 9 (2007) 654–659. | eng |
dcterms.references | M.P. Hunter, N. Ismail, X. Zhang, B.D. Aguda, E.J. Lee, L. Yu, T. Xiao, J. Schafer, M.L. Lee, T.D. Schmittgen, S.P. Nana-Sinkam, D. Jarjoura, C.B. Marsh, Detection of microRNA expression in human peripheral blood microvesicles, PLoS One 3 (2008) e3694. | eng |
dcterms.references | A. Michael, S.D. Bajracharya, P.S. Yuen, H. Zhou, R.A. Star, G.G. Illei, I. Alevizos, Exosomes from human saliva as a source of microRNA biomarkers, Oral Dis. 16 (2010) 34–38. | eng |
dcterms.references | I. Dimov, L. Jankovic Velickovic, V. Stefanovic, Urinary exosom es, ScientificWorldJournal 9 (2009) 1107–1118. | eng |
dcterms.references | D.M. Pegtel, K. Cosmopoulos, D.A. Thorley-Lawson, M.A. van Eijndhoven, E.S. Hopmans, J.L. Lindenberg, T.D. de Gruijl, T. Wurdinger, J.M. Middeldorp, Functional delivery of viral miRNAs via exosomes, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 6328–6333. | eng |
dcterms.references | Rivas-Larrauri F, Yamazaki-Nakashimada MA. Lupus eritematoso sistémico: ¿es una sola enfermedad? Reumatol Clin. 2016;12(5):274–81. | spa |
dcterms.references | Pons-Estel GJ, Ugarte-Gil MF, Alarcon GS. Epidemiology of systemic lupus erythematosus. Expert Rev Clin Immunol. 2017 Aug;13(8):799–814. | spa |
dcterms.references | Rees F, Doherty M, Grainge MJ, Lanyon P, Zhang W. The worldwide incidence and prevalence of systemic lupus erythematosus: a systematic review of epidemiological studies. Rheumatology (Oxford). 2017 Nov;56(11):1945–61. | eng |
dcterms.references | Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, Van Vollenhoven R, et al. Systemic lupus erythematosus. Nat Rev Dis Prim [Internet]. 2016;2(June):1–22. Available from: http:// dx.doi.org/10.1038/nrdp.2016.39 | eng |
dcterms.references | Lanata CM, Paranjpe I, Nititham J, Taylor KE, Gianfrancesco M, Paranjpe M, et al. A phenotypic and genomics approach in a multi-ethnic cohort to subtype systemic lupus erythematosus. Nat Commun. 2019 Aug;10(1):3902. | eng |
dcterms.references | Sullivan KE. Genetics of systemic lupus erythematosus: Clinical Implications. Rheum Dis Clin North Am [Internet]. 2000;26(2):229–56. Available from: http://www.sciencedirect. com/science/article/pii/S0889857X0570137X | eng |
dcterms.references | Goulielmos GN, Zervou MI, Vazgiourakis VM, Ghodke-Puranik Y, Garyfallos A, Niewold TB. The genetics and molecular pathogenesis of systemic lupus erythematosus (SLE) in populations of different ancestry. Gene [Internet]. 2018;668:59–72. Available from: http://www.sciencedirect.com/science/article/ pii/S0378111918305304 | eng |
dcterms.references | Deng Y, Tsao BP. Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat Rev Rheumatol. 2010 Dec;6(12):683–92. | eng |
dcterms.references | Mo X, Guo Y, Qian Q, Fu M, Lei S, Zhang Y, et al. Mendelian randomization analysis revealed potential causal factors for systemic lupus erythematosus. Immunology. 2019 Oct; | eng |
dcterms.references | Navarro-Quiroz E, Pacheco-Lugo L, Lorenzi H, Diaz-Olmos Y, Almendrales L, Rico E, et al. High-Throughput Sequencing Reveals Circulating miRNAs as Potential Biomarkers of Kidney Damage in Patients with Systemic Lupus Erythematosus. PLoS One. 2016;11(11):e0166202. | eng |
dcterms.references | James JA, Neas BR, Moser KL, Hall T, Bruner GR, Sestak AL, et al. Systemic lupus erythematosus in adults is associated with previous Epstein-Barr virus exposure. Arthritis Rheum [Internet]. 2001 May 1;44(5):1122–6. Available from: https:// doi.org/10.1002/1529-0131(200105)44:5%3C1122::AID-ANR193% 3E3.0.CO | eng |
dcterms.references | Nelson P, Rylance P, Roden D, Trela M, Tugnet N. Viruses as potential pathogenic agents in systemic lupus erythematosus. Lupus [Internet]. 2014 Apr 24;23(6):596–605. Available from: https://doi.org/10.1177/0961203314531637 | eng |
dcterms.references | Smatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO, Yassine HM. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses. 2019 Aug;11(8). | eng |
dcterms.references | Pan Q, Liu Z, Liao S, Ye L, Lu X, Chen X, et al. Current mechanistic insights into the role of infection in systemic lupus erythematosus. Biomed Pharmacother. 2019;117:109122. | eng |
dcterms.references | Mohamed AE, Hasen AM, Mohammed GFA, Elmaraghy NN. Real-Time PCR of cytomegalovirus and Epstein-Barr virus in adult Egyptian patients with systemic lupus erythematosus. Int J Rheum Dis. 2015 May;18(4):452–8. | eng |
dcterms.references | Pavlovic M, Kats A, Cavallo M, Shoenfeld Y. Clinical and molecular evidence for association of SLE with parvovirus B19. Lupus. 2010 Jun;19(7):783–92. | eng |
dcterms.references | Broccolo F, Drago F, Cassina G, Fava A, Fusetti L, Matteoli B, et al. Selective reactivation of human herpesvirus 6 in patients with autoimmune connective tissue diseases. J Med Virol. 2013 Nov;85(11):1925–34. | eng |
dcterms.references | Tung Y-C, Ke L-Y, Tsai S-M, Lu P-L, Tsai W-C. High seroprevalence of human herpesvirus 8 infection in patients with systemic lupus erythematosus. Int J Rheum Dis. 2013 Dec;16(6):709–14. | eng |
dcterms.references | Abud-Mendoza C, Cuevas-Orta E, Santillan-Guerrero EN, Martinez-Martinez MU, Hernandez-Castro B, Estrada- Capetillo L, et al. Decreased blood levels of B lymphocytes and NK cells in patients with systemic lupus erythematosus (SLE) infected with papillomavirus (HPV). Arch Dermatol Res. 2013 Mar;305(2):117–23. | eng |
dcterms.references | Talib S, Bhattu S, Bhattu R, Deshpande S, Dahiphale D. Dengue fever triggering systemic lupus erythematosus and lupus nephritis: a case report. Vol. 6, International medical case reports journal. New Zealand; 2013. p. 71–5. | eng |
dcterms.references | de Abreu MM, Maiorano AC, Tedeschi SK, Yoshida K, Lin T-C, Solomon DH. Outcomes of lupus and rheumatoid arthritis patients with primary dengue infection: A seven-year report from Brazil. Semin Arthritis Rheum. 2018 Apr;47(5):749–55. | eng |
dcterms.references | Shirdel A, Hashemzadeh K, Sahebari M, Rafatpanah H, Hatef M, Rezaieyazdi Z, et al. Is there any Association Between Human Lymphotropic Virus Type I (HTLV-I) Infection and Systemic Lupus Erythematosus? An Original Research and Literature Review. Iran J Basic Med Sci. 2013 Mar;16(3):252–7. | eng |
dcterms.references | Mody GM, Patel N, Budhoo A, Dubula T. Concomitant systemic lupus erythematosus and HIV: case series and literature review. Semin Arthritis Rheum. 2014 Oct;44(2):186–94. | eng |
dcterms.references | Laserna A, Barahona-Correa J, Baquero L, Castañeda-Cardona C, Rosselli D. Economic impact of dengue fever in Latin America and the Caribbean: a systematic review. Rev Panam Salud Publica [Internet]. 2018 Sep 7;42:e111–e111. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31093139 | eng |
dcterms.references | Gaviria-garcia G, Zarza M De, Aroca-martinez G. Artículo Original / Original Article Características sociodemográficas y clínicas de pacientes Sociodemographic and clinical characteristics of patients with lupus nephritis . Barranquilla , Colombia. 2018;16(2):32–7. | spa |
dcterms.references | Tugnet N, Rylance P, Roden D, Trela M, Nelson P, Wolverhampton R, et al. Human Endogenous Retroviruses ( HERVs ) and Autoimmune Rheumatic Disease : Is There a Link ? 2013;13–21. | eng |
dcterms.references | Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb;409(6822):860–921. | eng |
dcterms.references | Bannert N, Kurth R. The evolutionary dynamics of human endogenous retroviral families. Annu Rev Genomics Hum Genet. 2006;7:149–73. | eng |
dcterms.references | Grandi N, Tramontano E. Human Endogenous Retroviruses Are Ancient Acquired Elements Still Shaping Innate Immune Responses. Front Immunol [Internet]. 2018 Sep 10;9:2039. Available from: https://www.ncbi.nlm.nih.gov/ pubmed/30250470 | eng |
dcterms.references | Winter EE, Goodstadt L, Ponting CP. Elevated rates of protein secretion, evolution, and disease among tissue-specific genes. Genome Res. 2004 Jan;14(1):54–61. | eng |
dcterms.references | Wang X, Zhao C, Zhang C, Mei X, Song J, Sun Y, et al. Increased HERV-E clone 4-1 expression contributes to DNA hypomethylation and IL-17 release from CD4(+) T cells via miR-302d/ MBD2 in systemic lupus erythematosus. Cell Commun Signal. 2019 Aug;17(1):94. | eng |
dcterms.references | Chen J, Foroozesh M, Qin Z. Transactivation of human endogenous retroviruses by tumor viruses and their functions in virus-associated malignancies. Oncogenesis. 2019;8(1). | eng |
dcterms.references | Martin JC, Baeten DL, Josien R. Emerging role of IL-17 and Th17 cells in systemic lupus erythematosus. Clin Immunol. 2014 Sep;154(1):1–12. | eng |
dcterms.references | Qiu CC, Caricchio R, Gallucci S. Triggers of Autoimmunity : The Role of Bacterial Infections in the Extracellular Exposure of Lupus Nuclear Autoantigens. 2019;10(November):1–15. | eng |
dcterms.references | Zhang P, Lu Q. Genetic and epigenetic influences on the loss of tolerance in autoimmunity. Cell Mol Immunol [Internet]. 2018;15(6):575–85. Available from: https://doi.org/10.1038/ cmi.2017.137 | eng |
dcterms.references | Mackay IR. Tolerance and autoimmunity. West J Med [Internet]. 2001 Feb;174(2):118–23. Available from: https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC1071274/ | eng |
dcterms.references | Tu J, Wang X, Geng G, Xue X, Lin X, Zhu X, et al. The Possible Effect of B-Cell Epitopes of Epstein–Barr Virus Early Antigen, Membrane Antigen, Latent Membrane Protein-1, and -2A on Systemic Lupus Erythematosus . Vol. 9, Frontiers in Immunology . 2018. p. 187. | eng |
dcterms.references | Mak Tak , Saunders Mary JB. Primer to the Immune Response. 2nd Editio. Academic Cell; 2014. 702 p. | eng |
dcterms.references | Rigante D, Mazzoni MB, Esposito S. The cryptic interplay between systemic lupus erythematosus and infections. Autoimmun Rev. 2014;13(2):96–102. | eng |
dcterms.references | Fujinami RS, von Herrath MG, Christen U, Whitton JL. Molecular Mimicry, Bystander Activation, or Viral Persistence: Infections and Autoimmune Disease. Clin Microbiol Rev. 2006 Jan;19(1):80 LP – 94. | eng |
dcterms.references | Smyth MJ, Sedgwick JD. Delayed kinetics of tumor necrosis factor-mediated bystander lysis by peptide-specific CD8+ cytotoxic T lymphocytes. Eur J Immunol. 1998 Dec;28(12):4162–9. | eng |
dcterms.references | Monneaux F, Muller S. Epitope spreading in systemic lupus erythematosus: identification of triggering peptide sequences. Arthritis Rheum. 2002 Jun;46(6):1430–8. | eng |
dcterms.references | Campisi L, Barbet G, Ding Y, Esplugues E, Flavell RA, Blander JM. Apoptosis in response to microbial infection induces autoreactive TH17 cells. Nat Immunol. 2016;17(9):1084–92. | eng |
oaire.version | info:eu-repo/semantics/publishedVersion | eng |