Predictores de mortalidad en una cohorte de pacientes hospitalizados con COVID 19 en la ciudad de Valledupar
datacite.rights | http://purl.org/coar/access_right/c_16ec | spa |
dc.contributor.advisor | Trindade, Cristiano | |
dc.contributor.advisor | Bustos, Gina Maureth | |
dc.contributor.author | Flórez Pérez, Jhon Jairo | |
dc.date.accessioned | 2023-12-11T14:44:45Z | |
dc.date.available | 2023-12-11T14:44:45Z | |
dc.date.issued | 2023 | |
dc.description.abstract | El nuevo coronavirus humano afecta principalmente al sistema respiratorio, dando lugar a una enfermedad respiratoria caracterizada por fiebre, tos seca, disnea, fatiga y, en casos graves, puede avanzar hacia neumonía intersticial, distrés respiratorio agudo severo, disfunción renal, sepsis y, en última instancia, la muerte. El 80 % de los pacientes experimenta síntomas leves a nivel respiratorio, mientras que en el 15 % de los casos, el cuadro clínico se torna grave. Un 5 % de las personas requiere atención crítica, siendo el síndrome de distrés respiratorio agudo (SDRA) la principal causa de mortalidad asociada al SARS-CoV-2. Este síndrome resulta de la interacción del virus con los receptores de la enzima convertidora de angiotensina 2 (ACE2), liberando su ARN dentro de las células epiteliales, lo que conlleva a su replicación y propagación a células adyacentes. Este proceso provoca una respuesta inflamatoria pulmonar y, en última instancia, limita el intercambio de gases en los alvéolos. El SDRA se caracteriza por ser una inflamación sistémica que afecta de manera evidente los pulmones y otros órganos. Objetivo. Este estudio tiene como objetivo determinar los factores predictores de mortalidad en una cohorte de pacientes hospitalizados con COVID-19 en la ciudad de Valledupar. Metodología: Este estudio epidemiológico es de naturaleza observacional de tipo transversal analítico. La población de estudio está conformada por las historias clínicas de los pacientes con COVID-19 que fueron hospitalizados en las instituciones colaboradoras entre marzo de 2020 y diciembre de 2021. La muestra se calculó teniendo en cuenta una población de 3193 hospitalizados confirmados para COVID 19, según el Instituto Nacional de Salud, con una frecuencia esperada 8%, con un porcentaje de error de 5%, con un límite de confianza de 95% para un total de muestra de 110 historias clínicas a evaluar. | spa |
dc.description.abstract | The new human coronavirus mainly affects the respiratory system, leading to a respiratory illness characterized by fever, dry cough, dyspnea, fatigue and, in severe cases, may progress to interstitial pneumonia, severe acute respiratory distress, renal dysfunction, sepsis and, ultimately, death. Eighty percent of patients experience mild respiratory symptoms, while in 15 percent of cases, the clinical picture becomes severe. About 5% of people require critical care, with acute respiratory distress syndrome (ARDS) being the main cause of morbidity associated with SARS-CoV-2. This syndrome results from the interaction of the virus with angiotensin-converting enzyme 2 (ACE2) receptors, releasing its RNA into epithelial cells, which leads to its replication and spread to adjacent cells. This process provokes a pulmonary inflammatory response and ultimately limits gas exchange in the alveoli. ARDS is characterized as a systemic inflammation that clearly affects the lungs and other organs. Objective. The aim of this study was to determine the predictors of mortality in a cohort of patients hospitalized with COVID-19 in the city of Valledupar. Methodology: This is an observational epidemiological study of cross-sectional analytical nature. The study population consists of the medical records of patients with COVID-19 who were hospitalized in the collaborating institutions between March 2020 and December 2021. The sample was calculated taking into account a population of 3193 hospitalized patients confirmed for COVID 19, according to the National Institute of Health, with an expected frequency of 8%, with an error rate of 5%, with a confidence limit of 95% for a total sample of 110 clinical histories to be evaluated. | eng |
dc.format.mimetype | spa | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/13566 | |
dc.language.iso | spa | spa |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias Básicas y Biomédicas | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Covid-19 | spa |
dc.subject | Hemoglobina | spa |
dc.subject | Cloro | spa |
dc.subject | Ventilación mecánica | spa |
dc.subject | Hemoglobin | eng |
dc.subject | Chlorine | eng |
dc.subject | Mechanical ventilation | eng |
dc.title | Predictores de mortalidad en una cohorte de pacientes hospitalizados con COVID 19 en la ciudad de Valledupar | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.spa | Trabajo de grado máster | spa |
dcterms.references | Wang MY, Zhao R, Gao LJ, Gao XF, Wang DP, Cao JM. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front Cell Infect Microbiol. 2020 Nov 25; 10:587269. | eng |
dcterms.references | 1.COVID 19 Reporte Situacional [Internet]. Banco Interamericano de Desarrollo. 2023 [cited 2023 Nov 9]. Available from: https://www.iadb.org/es/coronavirus/situacion-actual-de-la-pandemia. | spa |
dcterms.references | Instituto Nacional de Salud COVID-19 en Colombia Reporte 13-07-2022. | spa |
dcterms.references | Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol. 2020 Dec;41(12):1100-1115. | eng |
dcterms.references | Kirtipal N, Bharadwaj S, Kang SG. From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infect Genet Evol. 2020 nov; 85:104502. | eng |
dcterms.references | Minakshi R, Jan AT, Rahman S, Kim J. A Testimony of the Surgent SARS-CoV-2 in the Immunological Panorama of the Human Host. Front Cell Infect Microbiol. 2020; 10:575404. | eng |
dcterms.references | Kasal DA, De Lorenzo A, Tibiriçá E. COVID-19 and Microvascular Disease: Pathophysiology of SARS-CoV-2 Infection With Focus on the Renin-Angiotensin System. Heart Lung Circ. 2020 nov;29(11):1596-1602. | eng |
dcterms.references | Long B, Brady WJ, Bridwell RE, et al. Electrocardiographic manifestations of COVID-19. Am J Emerg Med. 2021; 41:96-103. doi: 10.1016/j.ajem.2020.12.060 | eng |
dcterms.references | Chang WT, Toh HS, Liao CT, Yu WL. Cardiac Involvement of COVID-19: A Comprehensive Review. Am J Med Sci. 2021 Jan;361(1):14-22. | eng |
dcterms.references | Kasal DA, De Lorenzo A, Tibiriçá E. COVID-19 and Microvascular Disease: Pathophysiology of SARS-CoV-2 Infection With Focus on the Renin-Angiotensin System. Heart Lung Circ. 2020;29(11):1596-1602. | eng |
dcterms.references | Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–733. doi: 10.1056/NEJMoa2001017. | eng |
dcterms.references | Halaji M., Farahani A., Ranjbar R., Heiat M., Dehkordi F. S. (2020). Emerging coronaviruses: first SARS, second MERS and third SARS-CoV-2: epidemiological updates of COVID-19. Infez. Med. 28, 6–17. | eng |
dcterms.references | Lam T. T., Shum M. H., Zhu H. C., Tong Y. G., Ni X. B., Liao Y. S., et al. . (2020). Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature 583, 282–285. 10.1038/s41586-020-2169-0. | eng |
dcterms.references | Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., et al. . (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–574. 10.1016/S0140-6736(20)30251-8. | eng |
dcterms.references | Cascella M., Rajnik M., Cuomo A., Dulebohn S. C., Di Napoli R. (2020). Features, Evaluation and Treatment Coronavirus (COVID-19). StatPearls Publishing: Florida, USA. [Google Scholar] | eng |
dcterms.references | Li X., Geng M., Peng Y., Meng L., Lu S. (2020). Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal. 10, 102–108. 10.1016/j.jpha.2020.03.001. | eng |
dcterms.references | Malik Y.S., Sircar S., Bhat S., Sharun K., Dhama K., Dadar M., Tiwari R., Chaicumpa W. Emerging novel coronavirus (2019-nCoV)-current scenario, evolutionary perspective based on genome analysis and recent developments. The Veterinary Quarterly. 2020; 40:68–76. | eng |
dcterms.references | Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020; 8:420–422. | eng |
dcterms.references | Zhou J., Chu H., Li C., Wong B.H.Y., Cheng Z.S., Poon V.K.M., Sun T.H., Lau C.C.Y., Wong K.K.Y., Chan J.Y.W., Chan J.F.W., To K.K.W., Chan K.H., Zheng B.J., Yuen K.Y. Active replication of middle east respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J. Infect. Dis. 2014; 209:1331–1342. | eng |
dcterms.references | Ji W., Wang W., Zhao X., Zai J., Li X. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J. Med. Virol. 2020; 92:433–440. | eng |
dcterms.references | Yi Y., Lagniton P.N.P., Ye S., Li E., Xu R.H. COVID-19: what has been learned and to be learned about the novel coronavirus disease. Int. J. Biol. Sci. 2020; 16:1753–1766. | eng |
dcterms.references | Callaway E., Cyranoski D.J.N. Vol. 577. 2020. Why snakes probably aren’t spreading the new China virus; p. 1. | eng |
dcterms.references | Cyranoski D. This scientist hopes to test coronavirus drugs on animals in locked-down Wuhan. Nature. 2020; 577:607. | eng |
dcterms.references | Kirtipal N, Bharadwaj S, Kang SG. From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infect Genet Evol. 2020; 85:104502. doi: 10.1016/j.meegid.2020.104502. | eng |
dcterms.references | Poudel U, Subedi D, Pantha S, Dhakal S. Animal coronaviruses and coronavirus disease 2019: Lesson for One Health approach. Open Vet J. 2020 Oct;10(3):239-251. doi: 10.4314/ovj. v10i3.1. | eng |
dcterms.references | Gorbalenya A.E., Baker S.C., Baric R.S., de Groot R.J., Drosten C., Gulyaeva A.A., Haagmans B.L., Lauber C., Leontovich A.M., Neuman B.W., Penzar D., Perlman S., Poon L.L.M., Samborskiy D.V., Sidorov I.A., Sola I., Ziebuhr J., Coronaviridae Study Group of the International Committee on Taxonomy of V The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020; 5:536–544. | spa |
dcterms.references | Siddell S.G., Walker P.J., Lefkowitz E.J., Mushegian A.R., Adams M.J., Dutilh B.E., Gorbalenya A.E., Harrach B., Harrison R.L., Junglen S. Additional changes to taxonomy ratified in a special vote by the International Committee on Taxonomy of Viruses (October 2018) Arch. Virol. 2019; 164:943–946. | eng |
dcterms.references | Ruiz B, Jiménez María. SARS-CoV-2 y pandemia de síndrome respiratorio agudo (COVID-19). Ars Pharm Epub 20-Jul-2020. 61(2): 63-79. https://dx.doi.org/10.30827/ars.v61i2.15177. | spa |
dcterms.references | Murray P R, Rosenthal K S, Pfaller M A Microbiología médica. 8va ed. Barcelona: Elsevier; 2017.p.506-511. | spa |
dcterms.references | Fehr A.R, Perlman S. Coronaviruses: An Overview of Their Replication and Pathogenesis. Methods Mol Biol. 2015; 1282:1-23. | eng |
dcterms.references | Vellingiri B., Jayaramayya K., Iyer M., Narayanasamy A., Govindasamy V., Giridharan B., et al. COVID-19: A promising cure for the global panic. Sci Total Environ. 2020; 725:1-18. | eng |
dcterms.references | De Wit E, Van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016; 14 (8): 523-534. | eng |
dcterms.references | Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike. glycoprotein. Cell [Internet]. 2020; 1-12. Available in: http://www. ncbi.nlm.nih.gov/pubmed/32155444 10. | eng |
dcterms.references | Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367 (6483): 1260-1263 | eng |
dcterms.references | Guzmán A, Antezana J, Llaveta G. (2020). SARS-CoV-2: estructura, replicación y mecanismos fisiopatológicos relacionados con COVID-19. Gaceta Médica Boliviana, 43(2), 170-178. | spa |
dcterms.references | Cui J., Li F., Shi ZL Origen y evolución de coronavirus patógenos. Nat. Rev. Microbiol. 2019; 17: 181-192. | spa |
dcterms.references | Belouzard S., Millet J.K., Licitra B.N., Whittaker G.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses Basel. 2012; 4:1011–1033. | eng |
dcterms.references | Menachery V.D., Dinnon K.H., Yount B.L., McAnarney E.T., Gralinski L.E., Hale A., Graham R.L., Scobey T., Anthony S.J., Wang L.S., Graham B., Randell S.H., Lipkin W.I., Baric R.S. Trypsin treatment unlocks barrier for zoonotic bat coronavirus infection. J. Virol. 2020;94. | eng |
dcterms.references | Fehr AR, Perlman S. Coronavirus: una descripción general de su replicación y patogénesis. Métodos en biología molecular Clifton, NJ 2015; 1282: 1-23. | spa |
dcterms.references | Yoshimoto FK. Las proteínas del síndrome respiratorio agudo severo coronavirus-2 (SARS CoV-2 o n-COV19), la causa de COVID-19. Protein J. 2020; 39 (3): 198–216. doi: 10.1007 / s10930-020-09901-4. | spa |
dcterms.references | Wu C., Liu Y., Yang Y., Zhang P., Zhong W., Wang Y., Wang Q., Xu Y., Li M., Li X., Zheng M., Chen L., Li H Análisis de dianas terapéuticas para SARS-CoV-2 y descubrimiento de fármacos potenciales por métodos computacionales. Acta Pharm. Pecado. B. 2020; 10 (5): 766–788. doi: 10.1016 / j. apsb.2020.02.008. | spa |
dcterms.references | Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., Chen H.D., Chen J., Luo Y., Guo H., Jiang R.D., pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579:270–273. | eng |
dcterms.references | Lu R.J., Zhao X., Li J., Niu P.H., Yang B., Wu H.L., Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395:565–574. | eng |
dcterms.references | Hilgenfeld R. From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J. 2014; 281:4085–4096. | eng |
dcterms.references | Pastrian G. Bases Genéticas y Moleculares del COVID-19 (SARS-CoV-2). Mecanismos de Patogénesis y de Respuesta Inmune. International journal of odontostomatology, 14(3), 331-337. (2020). | spa |
dcterms.references | Krishnamoorthy, S., Swain, B., Verma, R.S. et al. SARS-CoV, MERS-CoV, and 2019-nCoV viruses: an overview of origin, evolution, and genetic variations. VirusDis. 31, 411–423 (2020). | eng |
dcterms.references | Lu R. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395:565–574. | eng |
dcterms.references | Perlman S., Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol. 2009; 7:439–450. | eng |
dcterms.references | Snijder E.J. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J. Virol. 2006; 80:5927–5940. | eng |
dcterms.references | Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol. 2020;41(12):1100-1115. | eng |
dcterms.references | Hoffmann M, Kleine Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020:1-10. | eng |
dcterms.references | Del Rio C, Malani PN. COVID-19New Insights on a Rapidly Changing Epidemic. JAMA. 2020;323(14):1339-1340. doi:10.1001/jama.2020.3072. | eng |
dcterms.references | Xu Z, Shi L, Wang Y. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020; 8:420–422. | eng |
dcterms.references | Huang C, Wang Y, Li X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395:497–506. | eng |
dcterms.references | Liu J, Li S, Liu J. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. medRxiv. 2020 doi: 10.1101/2020.02.16.20023671. | eng |
dcterms.references | Ciceri F, Beretta L, Scandroglio AM, Colombo S, Landoni G, Ruggeri A, et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis [Internet]. Australia: Critical Care and Resuscitation; 2020 | eng |
dcterms.references | Paules CI, Marston HD, Fauci AS. Coronavirus Infections-More Than Just the Common Cold. JAMA [Internet]. 2020 [Citado 23/01/2020];323(8):707-8. | eng |
dcterms.references | Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395: 1054-62. | eng |
dcterms.references | Vabret N, Britton G, Gruber C, Hegde S, Kim J, Kuksin M et al. Immunology of COVID-19: Current State of the Science. Immunity. 2020. | eng |
dcterms.references | Cecconi M, Forni G, Mantovani A. Ten things we learned about COVID-19 [published online ahead of print, 2020 Jun 5]. Intensive Care Med. 2020; 1-4. doi:10.1007/s00134-020-06140-0. | eng |
dcterms.references | Peteranderl C, Herold S. the impact of the interferon/tnf-related apoptosis-inducing ligand signaling axis on disease progression in respiratory viral infection and beyond. Front Immunol. 2017; 8:313. | eng |
dcterms.references | Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004; 203:631–637. | eng |
dcterms.references | Goodman B. COVID-19 Lung Problems May Start in Blood Vessels [Internet]. New York: Medscape; 2020 [Internet]. New York: Medscape; 2020. | eng |
dcterms.references | Joly B, Siguret V, Veyradier A. Understanding pathophysiology of hemostasis disorders in critically ill patients with COVID-19. Intensive Care Medicine [Internet]. 2020. | eng |
dcterms.references | Davenport L. COVID-19 pneumonia: only some cases resemble severe acute respiratory distress syndrome [Internet]. New York: Medscape; 2020. | eng |
dcterms.references | Wang PH, Cheng Y. Increasing host cellular receptor—angiotensin-converting enzyme 2 (ace2) expression by coronavirus may facilitate 2019-nCoV infection. bioRxiv. 2020 doi: 10.1101/2020.02.24.963348. | eng |
dcterms.references | Li H, Liu L, Zhang D y col. SARS-CoV-2 y sepsis viral: observaciones e hipótesis. Lancet. 2020; 395 (10235): 1517-1520. | spa |
dcterms.references | Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., et al. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395, 507–513. 10.1016/S0140-67362030211-7. | eng |
dcterms.references | Guan W. J., Ni Z. Y., Hu Y., Liang W. H., Ou C. Q., He J. X., et al. (2020). Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382, 1708–1720. 10.1056/NEJMoa2002032. | eng |
dcterms.references | Martini R. The compelling arguments for the need of microvascular investigation in COVID-19 critical patients. Clin Hemorheol Microcirc. 2020; 75:27–34. | eng |
dcterms.references | Barton L. M, Duval E. J, Stroberg E, Ghosh S, Mukhopadhyay S. (2020). COVID-19 autopsies, Oklahoma, USA. Am. J. Clin. Pathol. 153: aqaa062. | eng |
dcterms.references | Gritti G, Raimondi F, Ripamonti D, Riva I, Landi F, Alborghetti L, et al. (2020). Use of siltuximab in patients with COVID-19 pneumonia requiring ventilatory support. medRxiv [preprint]. 10.1101/2020.04.01.20048561. | eng |
dcterms.references | Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. (2020). Clinical and immunologic features in severe and moderate forms of Coronavirus Disease 2019. J. Clin. Invest. 130, 2620–2629. 10.1101/2020.02.16.20023903. | eng |
dcterms.references | Saxena S. K. (2020). Coronavirus Disease 2019 (COVID-19). Singapore: Springer Science and Business Media, LLC. | eng |
dcterms.references | Geng Y, Wei Z, Qian H, Huang J, Lodato R, Castriotta R. J. (2020). Pathophysiological characteristics and therapeutic approaches for pulmonary injury and cardiovascular complications of coronavirus disease 2019. Cardiovasc. Pathol. 47:7228. 10.1016/j.carpath.2020.107228. | eng |
dcterms.references | Moccia F, Gerbino A, Lionetti V, Miragoli M, Munaron M. L, Pagliaro P, et al. (2020). COVID-19-associated cardiovascular morbidity in older adults: a position paper from the Italian Society of Cardiovascular Researches. GeroScience 20, 1–29. 10.1007/s11357-020-00198. | eng |
dcterms.references | Lapi D, Stornaiuolo M, Sabatino L, Sommella E, Tenore G, Daglia M. et al. (2020). The pomace extract taurisolo protects rat brain from ischemia-reperfusion injury. Front. Cell. Neurosci. 14:3. 10.3389/fncel.2020.00003. | eng |
dcterms.references | Zhang, W., Zhao, Y., Zhang, F., Wang, Q., Li, T., Liu, Z., et al. (2020). The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the experience of clinical immunologists from China. Clin. Immunol. 214:108393. | eng |
dcterms.references | Chousterman, B. G., Swirski, F. K., and Weber, G. F. (2017). Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol. 39, 517–528.doi: 10.1007/s00281-017-0639-8. | eng |
dcterms.references | Takao, K., and Miyakawa, T. (2015). Genomic responses in mouse models greatly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. U.S.A. 112,1167–1172. doi: 10.1073/pnas.1401965111. | eng |
dcterms.references | Dellinger, R. P., Levy, M. M., Carlet, J. M., Bion, J., Parker, M. M., Jaeschke, R., et al. (2008). Surviving sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit. Care Med. 36,296–327. | eng |
dcterms.references | Carow, B., and Rottenberg,M. E. (2014). SOCS3, a major regulator of infection and inflammation. Front. Immunol. 5:58. | eng |
dcterms.references | Shalova, I. N., Lim, J. Y., Chittezhath, M., Zinkernagel, A. S., Beasley, F.,Hernández-Jiménez, E., et al. (2015). Human monocytes undergo functional re-programming during sepsis mediated by hypoxia-inducible factor-1 alpha. Immunity 42, 484–498. | eng |
dcterms.references | Bikdeli, B.,Madhavan,M. V., Jimenez, D., Chuich, T., Dreyfus, I., Driggin, E., et al. (2020). COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J. Am. Coll. Cardiol.75:31. | eng |
dcterms.references | Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., Manson, J. J., et al. (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395, 1033–1034. | eng |
dcterms.references | Escher, R., Breakey, N., and Lämmle, B. (2020). Severe COVID-19 infection associated with endothelial activation. Thromb. Res. 192:62. doi: 10.1016/j.thromres.2020.04.014. | eng |
dcterms.references | Panigada, M., Bottino, N., Tagliabue, P., Grasselli, G., Novembrino, C., Chantarangkul, V., et al. (2020). Hypercoagulability of COVID-19 patients in Intensive Care Unit. A report of thromboelastography findings and other parameters of hemostasis. J. Thromb. Haemost. doi: 10.1111/jth.14850. | eng |
dcterms.references | Colantuoni A, Martini R, Caprari P, et al. COVID-19 Sepsis and Microcirculation Dysfunction. Front Physiol. 2020; 11:747. Published 2020 Jun 26. doi:10.3389/fphys.2020.00747. | eng |
dcterms.references | Scheeren TWL. Journal of Clinical Monitoring and Computing 2015 end of year summary: tissue oxygenation and microcirculation. J Clin Monit Comput. abril de 2016;30(2):141-6. | eng |
dcterms.references | Leach RM, Treacher DF. The pulmonary physician in critical care • 2: Oxygen delivery and consumption in the critically ill. Thorax. 1 de febrero de 2002;57(2):170-7. | eng |
dcterms.references | Regueira T, Andresen M. Manipulación del transporte y consumo de oxígeno en la sepsis. Rev Médica Chile. febrero de 2010;138(2):233-42. | spa |
dcterms.references | Vincent J-L, De Backer D. Oxygen transport-the oxygen delivery controversy. Intensive Care Med. noviembre de 2004;30(11):1990-6. | eng |
dcterms.references | Jones A, Shapiro N, Trzeciak S, Arnold R, Claremont H, Kline J. Lactate clearance vs central venous oxygen saturation as goalsof early sepsis therapy. JAMA. 2010;303:739---46. | eng |
dcterms.references | Vincent J-L, De Backer D. My paper 20 years later: effects of dobutamine on the VO2/DO2 relationship. Intensive Care Med. 1 de noviembre de 2014;40(11):1643-8. | eng |
dcterms.references | Dellinger RP, Levy MM, Rhodes A, Annane D, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock. Crit Care Med. 2016; 41:580-637. | eng |
dcterms.references | Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013; 369:840-851. | eng |
dcterms.references | Mesquida J, Borrat X, Lorente JA, Masip J, Baigorri F. Objetivos de la reanimación hemodinámica. Med Intensiva. 2011;35:449-508. | spa |
dcterms.references | Marik P, Pastores S, Annane D, Meduri GU, Sprung CL, Arlt W, et al. Recommendations for the diagnosis and management of corticoesteroid insuffi ency in critically ill adult patients: Consensus statements from an international task force by the American College of Critical Care Medicine. Crit Care Med. 2008;36:1937-1949. | eng |
dcterms.references | De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010; 362:779-789. | eng |
dcterms.references | van Beest PA, van Ingen J, Boerma EC, Holman ND, Groen H, Koopmans M, et al. No agreement of mixed venous and central venous saturation in sepsis, independent of sepsis origin. Crit Care. 2010;14: R219. | eng |
dcterms.references | Gutiérrez G, Comignanni P, Huespe L, Hurtado FJ, Dubin A, Jha V, et al. Central venous to mixed venous blood oxygen and lactate gradients are associated with outcome in critically ill patients. Intensive Care Med. 2008; 34:1662- 1668. | eng |
dcterms.references | Bakker J, Postelnicu R, Mukherjee V. Lactate: Where Are We Now? Crit Care Clin. 2020 Jan;36(1):115-124. doi: 10.1016/j.ccc.2019.08.009. Epub 2019 Oct 18. PMID: 31733674. | eng |
dcterms.references | Tapia P, Soto D, Bruhn A, Alegria L, Jarufe N, Luengo C, Kattan E, Ospina-Tascon G, Bakker J, Hernandez G (2015) Impairment of exogenous lactate clearance in experimental hyperdynamic septic shock is not related to total liver hypoperfusion. Crit Care 19:188. | eng |
dcterms.references | Brooks GA (2009) Cell-cell and intracellular lactate shuttles. J Physiol 587:5591–5600. | eng |
dcterms.references | Mulett Torres, L Relación Delta de CO2/Diferencia arteriovenosa de oxígeno como marcador pronóstico de morbimortalidad en pacientes con sepsis y choque séptico en fase de reanimación. [Internet]. 2019 [citado: 2021, agosto] Universidad Nacional de Colombia Sede Bogotá Facultad de Medicina Departamento de Medicina Interna. | spa |
dcterms.references | Hernandez G, Luengo C, Bruhn A, Kattan E, Friedman G, Ospina-Tascon GA, Fuentealba A, Castro R, Regueira T, Romero C, Ince C, Bakker J (2014) When to stop septic shock resuscitation: clues from a dynamic perfusion monitoring. Ann Intensive Care 4:30 | eng |
dcterms.references | Ait-Oufella H, Bakker J (2016) Understanding clinical signs of poor tissue perfusion during septic shock. Intensive Care Med 42:2070–2072. | eng |
dcterms.references | Ospina-Tascon GA, Umana M, Bermudez W, Bautista-Rincon DF, Hernandez G, Bruhn A, Granados M, Salazar B, Arango-Davila C, De Backer D (2015) Combination of arterial lactate levels and venous-arterial CO2 to arterial-venous O2 content difference ratio as markers of resuscitation in patients with septic shock. Intensive Care Med 41:796–805. | eng |
dcterms.references | Gotmaker R, Peake SL, Forbes A, Bellomo R, ARISE Investigators (2017) Mortality is greater in septic patients with hyperlactatemia than with refractory hypotension. Shock 48:294–300. | eng |
dcterms.references | Vallet B, Pinsky MR, Cecconi M. Resuscitation of patients with septic shock: please "mind the gap"! Intensive Care Med. 2013 Sep;39(9):1653-5. doi: 10.1007/s00134-013-2998-5. Epub 2013 Jun 29. PMID: 23812340; PMCID: PMC3732761. | eng |
dcterms.references | Ocelotl R, Valle J, De Jesús D, Cortés José, Herrera B, Mendoza M. Delta de CO2 como factor de riesgo de muerte en choque séptico. Rev. Asoc. Mex. Med. Crít. Ter. Intensiva [revista en la Internet]. 2016 abr [citado 2021 Ago 09]; 30(1): 30-42. | spa |
dcterms.references | Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020;395 (10239):1763–1770. 10.1016/S0140-6736(20)31189-2. | eng |
dcterms.references | Oxley TJ, Mocco J, Majidi S, et al. Large-vessel stroke as a presenting feature of Covid-19 in the young. N Engl J Med. 2020;382: e60 10.1056/NEJMc2009787. | eng |
dcterms.references | Zhang L, Yan X, Fan Q, et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. 2020;18(6):1324–1329. 10.1111/jth.14859. | eng |
dcterms.references | Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020;7(6): e438–e440. 10.1016/S2352-3026(20)30145-9. | eng |
dcterms.references | Chen R, Sang L, Jiang M, et al. Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. J Allergy Clin Immunol. 2020;146:89 10.1016/j.jaci.2020.05.003. | eng |
dcterms.references | Spiezia L, Boscolo A, Poletto F, et al. COVID-19-related severe hypercoagulability in patients admitted to intensive care unit for acute respiratory failure. Thromb Haemost. 2020;120(6):998–1000. 10.1055/s-0040-1710018. | eng |
dcterms.references | Pavoni V, Gianesello L, Pazzi M, Stera C, Meconi T, Frigieri FC. Evaluation of coagulation function by rotation thromboelastometry in critically ill patients with severe COVID-19 pneumonia. J Thromb Thrombolysis. 2020. 10.1007/s11239-020-02130-7. | eng |
dcterms.references | Escher R, Breakey N, Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res. 2020;190:62 10.1016/j.thromres.2020.04.014. | eng |
dcterms.references | Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418. 10.1016/S0140-6736(20)30937-5. | eng |
dcterms.references | Inciardi RM, Lupi L, Zaccone G, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020. 10.1001/jamacardio.2020.1096. | eng |
dcterms.references | Liu Y, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;63(3):364–374. 10.1007/s11427-020-1643-8. | eng |
dcterms.references | Chen C, Zhou Y, Wang DW. SARS-CoV-2: a potential novel etiology of fulminant myocarditis. Herz. 2020;45:230 10.1007/s00059-020-04909-z. | eng |
dcterms.references | Rath D, Petersen-Uribe Á, Avdiu A, et al. Impaired cardiac function is associated with mortality in patients with acute COVID-19 infection. Clin Res Cardiol. 2020. 10.1007/s00392-020-01683-0. | eng |
dcterms.references | Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020. 10.1001/jamacardio.2020.0950. | eng |
dcterms.references | Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020. 10.1001/jamacardio.2020.1017. | eng |
dcterms.references | Cao Z, Li T, Liang L, et al. Clinical characteristics of coronavirus disease 2019 patients in Beijing, China. PLoS One. 2020;15(6): e0234764 10.1371/journal.pone.0234764. | eng |
dcterms.references | Shi S, Qin M, Cai Y, et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. Eur Heart J. 2020;41(22):2070–2079. 10.1093/eurheartj/ehaa408. | eng |
dcterms.references | Toraih EA, Elshazli RM, Hussein MH, et al. Association of cardiac biomarkers and comorbidities with increased mortality, severity, and cardiac injury in COVID-19 patients: a meta-regression and Decision tree analysis. J Med Virol. 2020. 10.1002/jmv.26166. | eng |
dcterms.references | Zheng H-Y, Zhang M, Yang C-X, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17(5):541–543. 10.1038/s41423-020-0401-3. | eng |
dcterms.references | Ma A, Cheng J, Yang J, Dong M, Liao X, Kang Y. Neutrophil-to-lymphocyte ratio as a predictive biomarker for moderate-severe ARDS in severe COVID-19 patients. Crit Care. 2020;24(1):288 10.1186/s13054-020-03007-0. | eng |
dcterms.references | Jiang M, Guo Y, Luo Q, et al. T cell subset counts in peripheral blood can be used as discriminatory biomarkers for diagnosis and severity prediction of COVID-19. J Infect Dis. 2020;222:198 10.1093/infdis/jiaa252. | eng |
dcterms.references | Li S, Jiang L, Li X, et al. Clinical and pathological investigation of patients with severe COVID-19. JCI Insight. 2020;5(12). 10.1172/jci.insight.138070. | eng |
dcterms.references | Yao N, Wang SN, Lian JQ, et al. Clinical characteristics and influencing factors of patients with novel coronavirus pneumonia combined with liver injury in Shaanxi region. Zhonghua Gan Zang Bing Za Zhi. 2020;28:E003 10.3760/cma.j.cn501113-20200226-00070. | eng |
dcterms.references | Huang J, Cheng A, Kumar R, et al. Hypoalbuminemia predicts the outcome of COVID-19 independent of age and co-morbidity. J Med Virol. 2020. 10.1002/jmv.26003. | eng |
dcterms.references | Poggiali E, Zaino D, Immovilli P, et al. Lactate dehydrogenase and C-reactive protein as predictors of respiratory failure in CoVID-19 patients. Clin Chim Acta. 2020;509:135–138. 10.1016/j.cca.2020.06.012. | eng |
dcterms.references | Zhang G, Zhang J, Wang B, Zhu X, Wang Q, Qiu S. Analysis of clinical characteristics and laboratory findings of 95 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a retrospective analysis. Respir Res. 2020;21(1):74 10.1186/s12931-020-01338-8. | eng |
dcterms.references | Cheng Y, Luo R, Wang K, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97(5): 829–838. 10.1016/j.kint.2020.03.005. | eng |
dcterms.references | Wang G, Wu C, Zhang Q, et al. C-reactive protein level may predict the risk of COVID-19 aggravation. Open Forum Infect Dis. 2020;7(5): ofaa153 10.1093/ofid/ofaa153. | eng |
dcterms.references | Liu F, Li L, Xu M, et al. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol. 2020;127:104370 10.1016/j.jcv.2020.104370. | eng |
dcterms.references | Wang G, Wu C, Zhang Q, et al. C-reactive protein level may predict the risk of COVID-19 aggravation. Open Forum Infect Dis. 2020;7(5): ofaa153 10.1093/ofid/ofaa153. | eng |
dcterms.references | Luo X, Zhou W, Yan X, et al. Prognostic value of C-reactive protein in patients with COVID-19. Clin Infect Dis. 2020. 10.1093/cid/ciaa641. | eng |
dcterms.references | Wang G, Wu C, Zhang Q, et al. C-reactive protein level may predict the risk of COVID-19 aggravation. Open Forum Infect Dis. 2020;7(5): ofaa153 10.1093/ofid/ofaa153. | eng |
dcterms.references | Ciceri F, Castagna A, Rovere-Querini P, et al. Early predictors of clinical outcomes of COVID-19 outbreak in Milan, Italy. Clin Immunol. 2020;217:108509 10.1016/j.clim.2020.108509. | eng |
dcterms.references | Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–481. 10.1016/S2213-2600(20)30079-5. | eng |
dcterms.references | Palaiodimos L, Kokkinidis DG, Li W, et al. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism. 2020;108:154262 10.1016/j.metabol.2020.154262. | eng |
dcterms.references | Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020;146: 110 10.1016/j.jaci.2020.04.006. | eng |
dcterms.references | Zhu Z, Cai T, Fan L, et al. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int J Infect Dis. 2020;95:332–339. 10.1016/j.ijid.2020.04.041. | eng |
dcterms.references | Carlino MV, Valenti N, Cesaro F, Costanzo A, Cristiano G, Guarino M, Sforza A. Predictors of Intensive Care Unit admission in patients with coronavirus disease 2019 (COVID-19). Monaldi Arch Chest Dis. 2020 Jul 15;90(3). | eng |
dcterms.references | Tibirica E, De Lorenzo A. Importance of the evaluation of systemic microvascular flow and reactivity in critically ill patients with coronavirus disease 2019 - COVID-19. Microvasc Res. 2020 Sep; 131:104028. | eng |
dcterms.references | Hohberger B, Ganslmayer M, Lucio M, et al. Retinal Microcirculation as a Correlate of a Systemic Capillary Impairment After Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Front Med (Lausanne). 2021; 8:676554. | eng |
dcterms.references | Abou-Arab O, Beyls C, Khalipha A, Guilbart M, Huette P, et al. (2021) Microvascular flow alterations in critically ill COVID-19 patients: A prospective study. PLOS ONE 16(2): e0246636. | eng |
dcterms.references | Lewnard JA, Liu VX, Jackson ML, Schmidt MA, Jewell BL, Flores JP, et al. Incidence, clinical outcomes, and transmission dynamics of severe coronavirus disease 2019 in California and Washington: prospective cohort study. BMJ. 2020 May 22;369:m1923. doi: 10.1136/bmj.m1923. Erratum in: BMJ. 2020 Jun 4;369:m2205. PMID: 32444358; PMCID: PMC7243800. | eng |
dcterms.references | Nepogodiev D, Bhangu A, Glasbey J, et al. Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study. The Lancet, (2020). 396(10243), 27–38. doi:10.1016/s0140-6736(20)31182. | eng |
dcterms.references | Lorduy J, Pereira J, Ripoll Y, Reales A. Mortalidad por COVID-19 y diagnóstico tardío en las primeras etapas de la pandemia en Bolívar-Colombia. Rev haban cienc méd [Internet]. 2021 [citado]; 20(4): e4112. Disponible en: http://www.revhabanera.sld.cu/index.php/rhab/article/view/4112. | spa |
dcterms.references | Nieto P, Restrepo H, Sprockel J, et al (2022). Asociación del grupo sanguíneo ABO con complicaciones en covid-19 : revisión sistemática y meta-análisis. Revista Repertorio De Medicina Y Cirugía, 31, 28–39. https://doi.org/10.31260/RepertMedCir.01217372.1322. | spa |
dcterms.references | Du, Rong Hui et al. “Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study.” The European respiratory journal vol. 55,5 2000524. 7 May. 2020, doi:10.1183/13993003.00524-2020. | eng |
dcterms.references | Clift AK, Coupland CAC, Keogh RH, Diaz-Ordaz K, Williamson E, Harrison EM, et al. Living risk prediction algorithm (QCOVID) for risk of hospital admission and mortality from coronavirus 19 in adults: National derivation and validation cohort study. BMJ. 2020;371:m3731, https://doi.org/10.1136/thoraxjnl-2020-216001. | eng |
dcterms.references | Knight SR, Ho A, Pius R, Buchan I, Carson G, Drake TM, et al, ISARIC4C investigators. Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO Clinical Characterization Protocol: Development and validation of the 4C Mortality Score. BMJ. 2020;370:m3339, https://doi.org/10.1136/bmj.m3339. | eng |
dcterms.references | Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475-81. | eng |
dcterms.references | Liu J, Liu Y, Xiang P, Pu L, Xiong H, et al. (2020) Neutrophil-to-Lymphocyte ratio predicts severe illness patients with 2019 novel coronavirus in the early stage. | eng |
dcterms.references | Acosta G, Escobar G, Bernaola G, Alfaro J, Taype W, Marcos C, et al. Description of patients with severe covid-19 treated in a national referral hospital in Peru. Rev Peru Med Exp Salud Publica. 2020 [acceso: 08/11/2020]; 37(2): 253 -8. Disponible en: Disponible en: https://rpmesp.ins.gob.pe/index.php/rpmesp/article/view/5437/3713. | eng |
dcterms.references | Zhu J, Ji P, Pang J, Zhong Z, Li H, He C, et al. Clinical characteristics of 3062 COVID-19 patients: A meta-analysis. Journal of Medical Virology. 2020;92(10):1902–1914. | eng |
dcterms.references | Ertuğlu LA, Kanbay A, Afşar B, Elsürer Afşar R, Kanbay M. COVID-19 and acute kidney injury. Tuberk Toraks. 2020;68(4):407-418. | eng |
dcterms.references | Bertsimas D, Lukin G, Mingardi L, Nohadani O, Orfanoudaki A, Stellato B, et al. COVID-19 mortality risk assessment: An international multi-center study. PLoS ONE. 2020;15(12):e0243262. | eng |
dcterms.references | Du RH, Liang LR, Yang CQ, Wang W, Cao TZ., Li, M, et al. Predictors of mortality for patients with COVID19 pneumonia caused by SARS-CoV-2: a prospective cohort study. Eur Respir J. 2020; 55: 2000524. DOI: 10.1183/13993003.00524-2020. | eng |
dcterms.references | Gupta R, Ghosh A, Singh AK, Misra A. Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes Metab Syndr [Internet]. 2020 [Citado 24/04/2020];14(3):211-2. Disponible en: Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/32172175. | eng |
dcterms.references | Cavezzi A, Troiani E, Corrao S. COVID-19: Hemoglobin, Iron, and Hypoxia beyond Inflammation. A Narrative Review. Clinics and Practice. 2020; 10(2):1271. https://doi.org/10.4081/cp.2020.1271. | eng |
dcterms.references | Malieckal DA, Uppal NN, Ng JH ,Jhaveri KD , Hirsch JS. Electrolyte abnormalities inpatients hospitalized withCOVID-19. Clin Kidney J. 2021; 14:1704–7, http://dx.doi.org/10.1093/ckj/sfab060. | eng |
dcterms.references | Chen H, Qin L, Wu S, Xu W, Gao R, Zhang X. Clinical characteristics and laboratory features of COVID-19 in high altitude areas: A retrospective cohort study. PloS One., 16 (2021), pp. e0249964 http://dx.doi.org/10.1371/journal.pone.0249964. | eng |
dcterms.references | Duan J, Wang X, Chi J, Chen H, Bai L, Hu Q, et al. Correlation between the variables collected at admission and progression to severe cases during hospitalization among patients with COVID-19 in Chongqing. | eng |
dcterms.references | Zhang MQ, Wang XH, Chen YL, Zhao KL, Cai YQ, An CL, et al. Clinical features of 2019 novel coronavirus pneumonia in the early stage from a fever clinic in Beijing. 2020. Zhonghua Jie He He Hu Xi Za Zhi 2020 Mar 12; 43 (3): 215-8. | eng |
dcterms.references | Qu R, Ling Y, Zhang YH, Wei LY, Chen X, Li X, et al. Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19. J Med Virol 2020 Mar17;10.1002/jmv.25767. | eng |
dcterms.references | Yang M, Hon KL, Li K, Fok TF, Li CK. The effect of SARS coronavirus on blood system: its clinical findings and the pathophysiologic hypothesis. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2003 Jun; 11 (3): 217-21. | eng |
dcterms.references | Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta 2020; 506: 145-8. | eng |
dcterms.references | Connolly B, Salisbury L, O’Neill B, Geneen L, et al. For the. (2015). Exercise rehabilitation following intensive care unit discharge for recovery from critical illness. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD008632.pub2. | eng |
dcterms.references | Pastrian-Soto G, Pastrian-Soto G. Genetic and Molecular Basis of COVID-19 (SARS-CoV-2) Mechanisms of Pathogenesis and Imnune. International journal of odontostomatology (Internet). septiembre de 2020 (citado 6 de septiembre de 2020);14(3):331-7. DOI: http://dx.doi.org/10.4067/S0718-381X2020000300331. | eng |
dcterms.references | 1. Ley 1581 de 2012. Bogotá: Departamento Administrativo de función pública; 2012. | spa |
dcterms.references | Resolución 8430. Bogotá: Ministerio de salud; 1993. | spa |
dcterms.references | Instituto nacional de salud. (2021). COVID 19 en Colombia, tasa de incidencia y mortalidad por municipios. Bogotá: Instituto Nacional de Salud. | spa |
dcterms.references | Salazar M, Barochiner J, Espeche W, Ennis I. COVID-19, hipertensión y enfermedad cardiovascular [COVID-19 and its relationship with hypertension and cardiovascular disease]. Hipertens Riesgo Vasc. 2020;37(4):176-180. doi:10.1016/j.hipert.2020.06.0 | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | spa |
sb.programa | Maestría en Genética | spa |
sb.sede | Sede Barranquilla | spa |