Kidney effects of Glucagon-Like Peptide 1 (GLP1): from molecular foundations to a pharmacophysiological perspective
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.contributor.author | Rico-Fontalvo, Jorge | |
dc.contributor.author | Reina, Maricely | |
dc.contributor.author | Soler, María José | |
dc.contributor.author | Unigarro-Palacios, Mario | |
dc.contributor.author | Castañeda González, Juan Pablo | |
dc.contributor.author | Jiménez Quintero, Javier | |
dc.contributor.author | Raad Sarabia, Maria Isabel | |
dc.contributor.author | Proenca de Moraes, Thyago | |
dc.contributor.author | Daza-Arnedo, Rodrigo | |
dc.date.accessioned | 2024-11-13T15:18:06Z | |
dc.date.available | 2024-11-13T15:18:06Z | |
dc.date.issued | 2024 | |
dc.description.abstract | GLP1 receptor agonists (GLP1-RAs) are drugs that mimic the effects of the incretin hormone GLP1 and were initially introduced in medicine for the treatment of diabetes in 2005 and for obesity in 2014. Over time, data from secondary and exploratory objectives of large randomized controlled-trials suggested that GLP1-RAs could also exert renal action by slowing the progression of kidney disease in patients with and without diabetes. Based on this rationale, the Flow study (1 mg semaglutide vs placebo) was designed and recruitment began in 2019 until May 2021. The recently published results confirmed the effect of semaglutide in reducing the composite renal outcome. However, similar to SGLT2 inhibitors, the potential mechanisms behind the renal effects of GLP1-RAs still need to be elucidated. The aim of this review is to address the different physiological mechanisms of GLP1-RAs at the renal level, using evidence from experimental studies and current scientific literature. | eng |
dc.description.abstract | Os agonistas do receptor de GLP1 (GLP1- RAs) são medicamentos que imitam os efeitos do hormônio incretínico GLP1. Eles foram inicialmente introduzidos na medicina para o tratamento do diabetes em 2005 e para a obesidade em 2014. Com o passar do tempo, dados provenientes de objetivos secundários e exploratórios de amplos ensaios clínicos randomizados sugeriram que os GLP1-RAs também poderiam exercer ação renal ao retardar a progressão da doença renal em pacientes com e sem diabetes. Com base nesse raciocínio, o estudo Flow (semaglutida 1 mg vs. placebo) foi desenhado e o recrutamento começou em 2019, estendendo-se até maio de 2021. Os resultados publicados recentemente confirmaram o efeito da semaglutida na redução do desfecho renal composto. No entanto, assim como os inibidores do SGLT2, os mecanismos potenciais por trás dos efeitos renais dos GLP1-RAs ainda precisam ser elucidados. O objetivo desta revisão é abordar os diferentes mecanismos fisiológicos dos GLP1-RAs em nível renal, utilizando evidências de estudos experimentais e da literatura científica atual. | ptg |
dc.format.mimetype | ||
dc.identifier.doi | https://doi.org/10.1590/2175-8239-JBN-2024-0101en | |
dc.identifier.issn | 01012800 (Impreso) | |
dc.identifier.issn | 21758239 (Electrónico) | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/15936 | |
dc.identifier.url | https://www.bjnephrology.org/en/article/kidney-effects-of-glucagon-like-peptide-1-glp1-from-molecular-foundations-to-a-pharmacophysiological-perspective/ | |
dc.language.iso | spa | |
dc.publisher | Brazilian Society of Nephrology | spa |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | |
dc.source | Brazilian Journal of Nephrology | eng |
dc.source | Braz. J. Nephrol. (J. Bras. Nefrol.) | eng |
dc.subject | Albuminuria | spa |
dc.subject | Diabetes | spa |
dc.subject | Incretins | spa |
dc.subject | Obesity | spa |
dc.subject | Kidney disease | spa |
dc.subject.keywords | Albuminúria | ptg |
dc.subject.keywords | Diabetes | ptg |
dc.subject.keywords | Incretinas | ptg |
dc.subject.keywords | Obesidade | ptg |
dc.subject.keywords | Doença Renal | ptg |
dc.title | Kidney effects of Glucagon-Like Peptide 1 (GLP1): from molecular foundations to a pharmacophysiological perspective | eng |
dc.title.translated | Efeitos renais do Peptídeo 1 Semelhante ao Glucagon (GLP1): das bases moleculares a uma perspectiva farmacofisiológica | ptg |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.spa | Artículo científico | |
dcterms.references | Donnelly D. The structure and function of the glucagonlike peptide-1 receptor and its ligands. Br J Pharmacol. 2012;166(1):27–41. doi: http://doi.org/10.1111/j.1476- 5381.2011.01687.x. PubMed PMID: 21950636. | eng |
dcterms.references | Gupta V. Glucagon-like peptide-1 analogues: an overview. Indian J Endocrinol Metab. 2013;17(3):413–21. doi: http://doi. org/10.4103/2230-8210.111625. PubMed PMID: 23869296. | eng |
dcterms.references | Kuhre RE, Deacon CF, Holst JJ, Petersen N. What is an L-cell and how do we study the secretory mechanisms of the L-cell? Front Endocrinol (Lausanne). 2021;12:694284. doi: http://doi. org/10.3389/fendo.2021.694284. PubMed PMID: 34168620. | eng |
dcterms.references | Müller TD, Finan B, Bloom S, D’Alessio D, Drucker DJ, Flatt P, et al. Glucagon-like peptide 1 (GLP1). Mol Metab. 2019;30:72– 130. doi: http://doi.org/10.1016/j.molmet.2019.09.010. PubMed PMID: 31767182 | eng |
dcterms.references | Park MK. Glucagon-like peptide-2. In: Takei Y, Ando H, Tsutsui K, eds. Handbook of hormones: comparative endocrinology for basic and clinical research. Oxford: Elsevier; 2016. p. 138–139. doi: http://doi.org/10.1016/B978-0-12- 801028-0.00141-0. | eng |
dcterms.references | Kreymann B, Ghatei M, Williams G, Bloom S. Glucagonlike peptide-1 7–36: a physiological incretin in man. Lancet. 1987;330(2):1300–4. doi: http://doi.org/10.1016/S0140- 6736(87)91194-9. PubMed PMID: 2890903. | eng |
dcterms.references | Górriz JL, Soler MJ, Navarro-González JF, García-Carro C, Puchades MJ, D’Marco L, et al. GLP1 receptor agonists and diabetic kidney disease: a call of attention to nephrologists. J Clin Med. 2020;9(4):947. doi: http://doi.org/10.3390/ jcm9040947. PubMed PMID: 32235471. | eng |
dcterms.references | Adelhorst K, Hedegaard B, Knudsen LB, Kirk O. Structureactivity studies of glucagon-like peptide-1. J Biol Chem. 1994;269(9):6275–8. doi: http://doi.org/10.1016/S0021- 9258(17)37366-0. PubMed PMID: 8119974. | eng |
dcterms.references | Ohneda A, Ohneda K, Ohneda M, Koizumi F, Ohashi S, Kawai K, et al. The structure-function relationship of GLP1 related peptides in the endocrine function of the canine pancreas. Tohoku J Exp Med. 1991;165(3):209–21. doi: http://doi. org/10.1620/tjem.165.209. PubMed PMID: 1807008. | eng |
dcterms.references | Hareter A, Hoffmann E, Bode H-P, Göke B, Göke R. The positive of the imidazole side chain of histidine7 is crucial for GLP1 action. Endocr J. 1997;44(5):701–5. doi: http://doi. org/10.1507/endocrj.44.701. PubMed PMID: 9466326. | eng |
dcterms.references | Smith NK, Hackett TA, Galli A, Flynn CR. GLP1: molecular mechanisms and outcomes of a complex signaling system. Neurochem Int. 2019;128:94–105. doi: http://doi. org/10.1016/j.neuint.2019.04.010. PubMed PMID: 31002893. | eng |
dcterms.references | Zhao X, Wang M, Wen Z, Lu Z, Cui L, Fu C, et al. GLP1 receptor agonists: beyond their pancreatic effects. Front Endocrinol (Lausanne). 2021;12:721135. doi: http://doi. org/10.3389/fendo.2021.721135. PubMed PMID: 34497589. | eng |
dcterms.references | Fontalvo JER, Arnedo RD, Raad M, Pájaro N, Guerrero JC, Oviedo AV, et al. Agonistas del receptor GLP1: desde su efecto fisiológico en el sistema incretina hasta du rol en enfermedad renal diabética. Arch Med (Oviedo). 2021;17(2):2. | spa |
dcterms.references | Tran KL, Park YI, Pandya S, Muliyil NJ, Jensen BD, Huynh K, et al. Overview of glucagon-like peptide-1 receptor agonists for the treatment of patients with type 2 diabetes. Am Health Drug Benefits. 2017;10(4):178-88. PubMed PMID: 28794822. | eng |
dcterms.references | Kalra S, Baruah MP, Sahay RK, Unnikrishnan AG, Uppal S, Adetunji O. Glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes: past, present, and future. Indian J Endocrinol Metab. 2016;20(2):254–67. doi: http://doi. org/10.4103/2230-8210.176351. PubMed PMID: 27042424. | eng |
dcterms.references | Gentilella R, Pechtner V, Corcos A, Consoli A. Glucagon-like peptide-1 receptor agonists in type 2 diabetes treatment: are they all the same? Diabetes Metab Res Rev. 2019;35(1):e3070. doi: http://doi.org/10.1002/dmrr.3070. PubMed PMID: 30156747. | eng |
dcterms.references | Pyke C, Heller RS, Kirk RK, Ørskov C, Reedtz-Runge S, Kaastrup P, et al. GLP1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology. 2014;155(4):1280–90. doi: http://doi.org/10.1210/en.2013- 1934. PubMed PMID: 24467746. | eng |
dcterms.references | Crajoinas RO, Oricchio FT, Pessoa TD, Pacheco BP, Lessa LM, Malnic G, et al. Mechanisms mediating the diuretic and natriuretic actions of the incretin hormone glucagon-like peptide-1. Am J Physiol Renal Physiol. 2011;301(2):F355–63. doi: http://doi.org/10.1152/ajprenal.00729.2010. PubMed PMID: 21593184. | eng |
dcterms.references | Jensen EP, Poulsen SS, Kissow H, Holstein-Rathlou N-H, Deacon CF, Jensen BL, et al. Activation of GLP1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow. Am J Physiol Renal Physiol. 2015;308(8):F867–77. doi: http://doi. org/10.1152/ajprenal.00527.2014. PubMed PMID: 25656368. | eng |
dcterms.references | Gutzwiller J-P, Tschopp S, Bock A, Zehnder CE, Huber AR, Kreyenbuehl M, et al. Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J Clin Endocrinol Metab. 2004;89(6):3055–61. doi: http:// doi.org/10.1210/jc.2003-031403. PubMed PMID: 15181098. | eng |
dcterms.references | Greco EV, Russo G, Giandalia A, Viazzi F, Pontremoli R, De Cosmo S. GLP1 receptor agonists and kidney protection. Medicina (Kaunas). 2019;55(6):233. doi: http://doi. org/10.3390/medicina55060233. PubMed PMID: 31159279. | eng |
dcterms.references | Gault VA, Hölscher C. GLP1 receptor agonists show neuroprotective effects in animal models of diabetes. Peptides. 2018;100:101–7. doi: http://doi.org/10.1016/j. peptides.2017.11.017. PubMed PMID: 29412810. | eng |
dcterms.references | Farah LX, Valentini V, Pessoa TD, Malnic G, McDonough AA, Girardi AC. The physiological role of glucagon-like peptide-1 in the regulation of renal function. Am J Physiol Renal Physiol. 2016;310(2):F123–7. doi: http://doi.org/10.1152/ ajprenal.00394.2015. PubMed PMID: 26447224. | eng |
dcterms.references | Tang-Christensen M, Larsen P, Goke R, Fink-Jensen A, Jessop D, Moller M, et al. Central administration of GLP1- (7-36) amide inhibits food and water intake in rats. Am J Physiol. 1996;271(4):R848–56. doi: http://doi.org/10.1152/ ajpregu.1996.271.4.R848. PubMed PMID: 8897973. | eng |
dcterms.references | Almutairi M, Al Batran R, Ussher JR. Glucagon-like peptide-1 receptor action in the vasculature. Peptides. 2019;111:26–32. doi: http://doi.org/10.1016/j.peptides.2018.09.002. PubMed PMID: 30227157. | eng |
dcterms.references | Dai Y, Mehta JL, Chen M. Glucagon-like peptide-1 receptor agonist liraglutide inhibits endothelin-1 in endothelial cell by repressing nuclear factor-kappa B activation. Cardiovasc Drugs Ther. 2013;27(5):371–80. doi: http://doi.org/10.1007/s10557- 013-6463-z. PubMed PMID: 23657563. | eng |
dcterms.references | Elbert A, Castellaro C, Litwak L, Inserra F, Wassermann A, Sinay I. Efectos renales de los agonistas GLP1 en la diabetes tipo 2. Medicina (B Aires). 2022;82(4):576–90. PubMed PMID: 35904915. | spa |
dcterms.references | Puglisi S, Rossini A, Poli R, Dughera F, Pia A, Terzolo M, et al. Effects of SGLT2 inhibitors and GLP1 receptor agonists on renin-angiotensin-aldosterone system. Front Endocrinol (Lausanne). 2021;12:738848. doi: http://doi.org/10.3389/ fendo.2021.738848. PubMed PMID: 34745006. | eng |
dcterms.references | North EJ, Newman JD. Review of cardiovascular outcomes trials of sodium–glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists. Curr Opin Cardiol. 2019;34(6):687–92. doi: http://doi.org/10.1097/ HCO.0000000000000673. PubMed PMID: 31436559. | eng |
dcterms.references | Ishibashi Y, Matsui T, Ojima A, Nishino Y, Nakashima S, Maeda S, et al. Glucagon-like peptide-1 inhibits angiotensin IIinduced mesangial cell damage via protein kinase A. Microvasc Res. 2012;84(3):395–8. doi: http://doi.org/10.1016/j. mvr.2012.06.008. PubMed PMID: 22750392. | eng |
dcterms.references | Kaschina E, Unger T. Angiotensin AT1/AT2 receptors: regulation, signalling and function. Blood Press. 2003;12(2):70– 88. doi: http://doi.org/10.1080/08037050310001057. PubMed PMID: 12797627. | eng |
dcterms.references | Mima A, Hiraoka-Yamomoto J, Li Q, Kitada M, Li C, Geraldes P, et al. Protective effects of GLP1 on glomerular endothelium and its inhibition by PKCβ activation in diabetes. Diabetes. 2012;61(11):2967–79. doi: http://doi.org/10.2337/db11-1824. PubMed PMID: 22826029. | eng |
dcterms.references | Okabe K, Matsushima S, Ikeda S, Ikeda M, Ishikita A, Tadokoro T, et al. DPP (Dipeptidyl Peptidase)-4 inhibitor attenuates ang II (Angiotensin II)–induced cardiac hypertrophy via GLP (Glucagon- Like Peptide)-1–dependent suppression of nox (nicotinamide adenine dinucleotide phosphate oxidase) 4-HDAC (histone deacetylase) 4 pathway. Hypertension. 2020;75(4):991–1001. doi: http://doi.org/10.1161/HYPERTENSIONAHA.119.14400. PubMed PMID: 32160098. | eng |
dcterms.references | Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22. doi: http:// doi.org/10.1056/NEJMoa1603827. PubMed PMID: 27295427. | eng |
dcterms.references | Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–44. http://doi.org/10.1056/NEJMoa1607141. PubMed PMID: 27633186. | eng |
dcterms.references | Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebocontrolled trial. Lancet. 2019;394(10193):131–8. doi: http://doi. org/10.1016/S0140-6736(19)31150-X. PubMed PMID: 31189509. | eng |
dcterms.references | Hernandez AF, Green JB, Janmohamed S, D’Agostino RB Sr, Granger CB, Jones NP, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet. 2018;392(10157):1519–29. doi: http://doi.org/10.1016/S0140-6736(18)32261-X. PubMed PMID: 30291013. | eng |
dcterms.references | Gerstein HC, Sattar N, Rosenstock J, Ramasundarahettige C, Pratley R, Lopes RD, et al. Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N Engl J Med. 2021;385(10):896–907. doi: http://doi.org/10.1056/ NEJMoa2108269. PubMed PMID: 34215025. | eng |
dcterms.references | Daza-Arnedo R, Rico-Fontalvo J, Raad-Sarabia M, Ramos- Clason E, Bohórquez-Rivero J, Montejo-Hernández J, et al. Semaglutida en enfermedad renal diabética: experiencia en dos programas de salud renal en Colombia. Diabetes Metab. 2022;9(3):337–47. | eng |
dcterms.references | Aviles Bueno B, Soler MJ, Perez-Belmonte L, Jimenez Millan A, Rivas Ruiz F, Garcia de Lucas MD. Semaglutide in type 2 diabetes with chronic kidney disease at high risk progression: real-world clinical practice. Clin Kidney J. 2022;15(8):1593–600. doi: http:// doi.org/10.1093/ckj/sfac096. PubMed PMID: 35892023. | eng |
dcterms.references | Perkovic V, Tuttle KR, Rossing P, Mahaffey KW, Mann JF, Bakris G, et al. Effects of semaglutide on chronic kidney disease in patients with Type 2 Diabetes. N Engl J Med. 2024;391(2):109–21. doi: http://doi.org/10.1056/ NEJMoa2403347. PubMed PMID: 38785209. | eng |
dcterms.references | Liu Y, Ruan B, Jiang H, Le S, Liu Y, Ao X, et al. The weightloss effect of GLP1-RAs glucagon-like peptide-1 receptor agonists in non-diabetic individuals with overweight or obesity: a systematic review with meta-analysis and trial sequential analysis of randomized controlled trials. Am J Clin Nutr. 2023;118(3):614–26. doi: http://doi.org/10.1016/j. ajcnut.2023.04.017. PubMed PMID: 37661106. | eng |
dcterms.references | Xu D, Nair A, Sigston C, Ho C, Li J, Yang D, et al. Potential roles of glucagon-like peptide 1 receptor agonists (GLP-1 RAs) in nondiabetic populations. Cardiovasc Ther. 2022;2022(1):6820377. doi: http://doi. org/10.1155/2022/6820377. PubMed PMID: 36474714. | eng |
dcterms.references | Ma H, Lin Y-H, Dai L-Z, Lin C-S, Huang Y, Liu S-Y. Efficacy and safety of GLP1 receptor agonists versus SGLT-2 inhibitors in overweight/obese patients with or without diabetes mellitus: a systematic review and network meta-analysis. BMJ Open. 2023;13(3):e061807. doi: http://doi.org/10.1136/ bmjopen-2022-061807. PubMed PMID: 36882248. | eng |
dcterms.references | Wadden TA, Bailey TS, Billings LK, Davies M, Frias JP, Koroleva A, et al. Effect of subcutaneous semaglutide vs placebo as an adjunct to intensive behavioral therapy on body weight in adults with overweight or obesity: the STEP 3 randomized clinical trial. JAMA. 2021;325(14):1403-13. doi: http://doi. org/10.1001/jama.2021.1831. PubMed PMID: 33625476. | eng |
dcterms.references | Lundkvist P, Pereira MJ, Katsogiannos P, Sjöström CD, Johnsson E, Eriksson JW. Dapagliflozin once daily plus exenatide once weekly in obese adults without diabetes: S ustained reductions in body weight, glycaemia and blood pressure over 1 year. Diabetes Obes Metab. 2017;19(9):1276–88. doi: http://doi. org/10.1111/dom.12954. PubMed PMID: 28345814. | eng |
dcterms.references | Lincoff AM, Brown-Frandsen K, Colhoun HM, Deanfield J, Emerson SS, Esbjerg S, et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N Engl J Med. 2023;389(24):2221–32. doi: http://doi.org/10.1056/ NEJMoa2307563. PubMed PMID: 37952131. | eng |
dcterms.references | Heerspink HJ, Apperloo E, Davies M, Dicker D, Kandler K, Rosenstock J, et al. Effects of semaglutide on albuminuria and kidney function in people with overweight or obesity with or without type 2 diabetes: exploratory analysis from the STEP 1, 2, and 3 trials. Diabetes Care. 2023;46(4):801–10. doi: http:// doi.org/10.2337/dc22-1889. PubMed PMID: 36801984. | eng |
dcterms.references | Colhoun HM, Lingvay I, Brown PM, Deanfield J, Brown- Frandsen K, Kahn SE, et al. Long-term kidney outcomes of semaglutide in obesity and cardiovascular disease in the SELECT trial. Nat Med. 2024;30(7):2058. doi: http://doi. org/10.1038/s41591-024-03015-5. PubMed PMID: 38796653. | eng |
oaire.version | info:eu-repo/semantics/publishedVersion |