Anomaly identification during polymerase chain reaction for detecting SARS-cov-2 using artificial intelligence trained from simulated data

datacite.rightshttp://purl.org/coar/access_right/c_16ecspa
dc.contributor.authorVillarreal-González, Reynaldo
dc.contributor.authorAcosta-Hoyos, Antonio J.
dc.contributor.authorGarzón-Ochoa, Jaime A.
dc.contributor.authorGalán-Freyle, Nataly J.
dc.contributor.authorAmar-Sepúlveda, Paola
dc.contributor.authorPacheco-Londoño, Leonardo C.
dc.date.accessioned2021-12-13T15:11:26Z
dc.date.available2021-12-13T15:11:26Z
dc.date.issued2021
dc.description.abstractReal-time reverse transcription (RT) PCR is the gold standard for detecting Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), owing to its sensitivity and specificity, thereby meeting the demand for the rising number of cases. The scarcity of trained molecular biologists for analyzing PCR results makes data verification a challenge. Artificial intelligence (AI) was designed to ease verification, by detecting atypical profiles in PCR curves caused by contamination or artifacts. Four classes of simulated real-time RT-PCR curves were generated, namely, positive, early, no, and abnormal amplifications. Machine learning (ML) models were generated and tested using small amounts of data from each class. The best model was used for classifying the big data obtained by the Virology Laboratory of Simon Bolivar University from real-time RT-PCR curves for SARS-CoV-2, and the model was retrained and implemented in a software that correlated patient data with test and AI diagnoses. The best strategy for AI included a binary classification model, which was generated from simulated data, where data analyzed by the first model were classified as either positive or negative and abnormal. To differentiate between negative and abnormal, the data were reevaluated using the second model. In the first model, the data required preanalysis through a combination of prepossessing. The early amplification class was eliminated from the models because the numbers of cases in big data was negligible. ML models can be created from simulated data using minimum available information. During analysis, changes or variations can be incorporated by generating simulated data, avoiding the incorporation of large amounts of experimental data encompassing all possible changes. For diagnosing SARS-CoV-2, this type of AI is critical for optimizing PCR tests because it enables rapid diagnosis and reduces false positives. Our method can also be used for other types of molecular analyses.eng
dc.format.mimetypepdfspa
dc.identifier.citationVillarreal-González, R.; Acosta- Hoyos, A.J.; Garzon-Ochoa, J.A.; Galán- Freyle, N.J.; Amar-Sepúlveda, P.; Pacheco- Londoño, L.C. Anomaly Identification during Polymerase Chain Reaction for Detecting SARS-CoV-2 Using Artificial Intelligence Trained from Simulated Data. Molecules 2021, 26, 20. https://dx.doi.org/10.3390/ molecules26010020spa
dc.identifier.doihttps://dx.doi.org/10.3390/molecules26010020
dc.identifier.issn1420-3049
dc.identifier.urihttps://hdl.handle.net/20.500.12442/9229
dc.identifier.urlhttps://www.mdpi.com/journal/molecules
dc.language.isoengeng
dc.publisherMDPIspa
dc.publisherFacultad de Ingenieríasspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceRevista Moleculeseng
dc.sourceVol. 26, No. 1 (2021)
dc.subjectSARS-CoV-2spa
dc.subjectArtificial intelligenceeng
dc.subjectPolymerase chain reactioneng
dc.subjectCOVID-19eng
dc.subjectSimulated dataeng
dc.titleAnomaly identification during polymerase chain reaction for detecting SARS-cov-2 using artificial intelligence trained from simulated dataeng
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.spaArtículo científicospa
dcterms.referencesMashamba-Thompson, T.P.; Crayton, E.D. Blockchain and artificial intelligence technology for novel coronavirus disease 2019 self-testing. Diagnostics 2020, 10, 198.eng
dcterms.referencesHuang, L.; Zhang, H.; Deng, D.; Zhao, K.; Liu, K.; Hendrix, D.A.; Mathews, D.H. LinearFold: Linear-time approximate RNA folding by 50-to-30 dynamic programming and beam search. Bioinformatics 2019, 35, i295–i304.eng
dcterms.referencesJumper, J.; Tunyasuvunakool, K.; Kohli, P.; Hassabis, D.; Team, A. Computational Predictions of Protein Structures Associated with COVID-19. Available online: https://deepmind.com/research/open-source/computational-predictions-of-protein-structuresassociated- with-COVID-19 (accessed on 28 July 2020).eng
dcterms.referencesRobson, B. Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus. Comput. Biol. Med. 2020, 119, 103670.eng
dcterms.referencesCai, C.Z.; Han, L.Y.; Chen, X.; Cao, Z.W.; Chen, Y.Z. Prediction of functional class of the SARS coronavirus proteins by a statistical learning method. J. Proteome Res. 2005, 4, 1855–1862.eng
dcterms.referencesAhuja, A.S.; Reddy, V.P.; Marques, O. Artificial intelligence and COVID-19: A multidisciplinary approach. Integr. Med. Res. 2020, 9, 100434.eng
dcterms.referencesAllam, Z.; Dey, G.; Jones, D.S. Artificial Intelligence (AI) provided early detection of the Coronavirus (COVID-19) in China and will influence future urban health policy internationally. AI 2020, 1, 156–165.eng
dcterms.referencesFusco, A.; Dicuonzo, G.; Dell’Atti, V.; Tatullo,M. Blockchain in healthcare: Insights on COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 7167.eng
dcterms.referencesRakib, A.; Paul, A.; Chy, M.N.U.; Sami, S.A.; Baral, S.K.; Majumder, M.; Tareq, A.M.; Amin, M.N.; Shahriar, A.; Uddin, M.Z.; et al. Biochemical and computational approach of selected phytocompounds from tinospora crispa in the management of COVID-19. Molecules 2020, 25, 3936.eng
dcterms.referencesGalán-Freyle, N.J.; Ospina-Castro, M.L.; Medina-González, A.R.; Villarreal-González, R.; Hernández-Rivera, S.P.; Pacheco- Londoño, L.C. Artificial intelligence assisted mid-infrared laser spectroscopy in situ detection of petroleum in soils. Appl. Sci. 2020, 10, 1319.eng
dcterms.referencesPacheco-Londoño, L.C.; Warren, E.; Galán-Freyle, N.J.; Villarreal-González, R.; Aparicio-Bolaño, J.A.; Ospina-Castro, M.L.; Shih, W.C.; Hernández-Rivera, S.P. Mid-infrared laser spectroscopy detection and quantification of explosives in soils using multivariate analysis and artificial intelligence. Appl. Sci. 2020, 10, 4178.eng
dcterms.referencesHammad, M.; Maher, A.; Wang, K.; Jiang, F.; Amrani, M. Detection of abnormal heart conditions based on characteristics of ECG signals. Measurement 2018, 125, 634–644.eng
dcterms.referencesAlghamdi, A.S.; Polat, K.; Alghoson, A.; Alshdadi, A.A.; Abd El-Latif, A.A. A novel blood pressure estimation method based on the classification of oscillometric waveforms using machine-learning methods. Appl. Acoust. 2020, 164, 107279.eng
dcterms.referencesKhalil, H.; El-Hag, N.; Sedik, A.; El-Shafie, W.; Mohamed, A.E.N.; Khalaf, A.A.M.; El-Banby, G.M.; Abd El-Samie, F.I.; El-Fishawy, A.S. Classification of diabetic retinopathy types based on Convolution Neural Network (CNN). Menoufia J. Electron. Eng. Res. 2019, 28, 126–153.eng
dcterms.referencesHaggag, N.T.; Sedik, A.; Elbanby, G.M.; El-Fishawy, A.S.; Khalaf, A.A. Classification of Corneal Pattern Based on Convolutional LSTM Neural Network. Menoufia J. Electr. Eng. Res. 2019, 28, 158–162.eng
dcterms.referencesSedik, A.; Iliyasu, A.M.; Abd El-Rahiem, B.; Abdel Samea, M.E.; Abdel-Raheem, A.; Hammad, M.; Peng, J.; Abd El-Samie, F.E.; Abd El-Latif, A.A. Deploying machine and deep learning models for efficient data-augmented detection of COVID-19 infections. Viruses 2020, 12, 769.eng
dcterms.referencesZhavoronkov, A. Artificial intelligence for drug discovery, biomarker development, and generation of novel chemistry. Mol. Pharm. 2018, 15, 4311–4313.eng
dcterms.referencesYan, L.; Zhang, H.T.; Xiao, Y.; Wang, M.; Sun, C.; Liang, J.; Li, S.; Zhang, M.; Guo, Y.; Xiao, Y.; et al. Prediction of criticality in patients with severe Covid-19 infection using three clinical features: A machine learning-based prognostic model with clinical data in Wuhan. medRxiv 2020.eng
dcterms.referencesKriegova, E.; Fillerova, R.; Kvapil, P. Direct-RT-qPCR detection of SARS-CoV-2 without RNA extraction as part of a COVID-19 testing strategy: From sample to result in one hour. Diagnostics 2020, 10, 605.eng
dcterms.referencesCarter, L.J.; Garner, L.V.; Smoot, J.W.; Li, Y.; Zhou, Q.; Saveson, C.J.; Sasso, J.M.; Gregg, A.C.; Soares, D.J.; Beskid, T.R.; et al. Assay techniques and test development for COVID-19 diagnosis. ACS Cent. Sci. 2020, 6, 591–605.eng
dcterms.referencesYip, C.C.Y.; Sridhar, S.; Leung, K.H.; Ng, A.C.K.; Chan, K.H.; Chan, J.F.W.; Tsang, O.T.Y.; Hung, I.F.N.; Cheng, V.C.C.; Yuen, K.Y.; et al. Development and evaluation of novel and highly sensitive single-tube nested real-time RT-PCR assays for SARS-CoV-2 detection. Int. J. Mol. Sci. 2020, 21, 5674.eng
dcterms.referencesChow, F.W.N.; Chan, T.T.Y.; Tam, A.R.; Zhao, S.; Yao, W.; Fung, J.; Cheng, F.K.K.; Lo, G.C.S.; Chu, S.; Aw-Yong, K.L.; et al. A rapid, simple, inexpensive, and mobile colorimetric assay COVID-19-LAMP for mass on-site screening of COVID-19. Int. J. Mol. Sci. 2020, 21, 5380.eng
dcterms.referencesAllam, M.; Cai, S.; Ganesh, S.; Venkatesan, M.; Doodhwala, S.; Song, Z.; Hu, T.; Kumar, A.; Heit, J.; Coskun, A.F.; et al. COVID-19 diagnostics, tools, and prevention. Diagnostics 2020, 10, 409.eng
dcterms.referencesYuan, X.; Yang, C.; He, Q.; Chen, J.; Yu, D.; Li, J.; Zhai, S.; Qin, Z.; Du, K.; Chu, Z.; et al. Current and perspective diagnostic techniques for COVID-19. ACS Infect. Dis. 2020, 6, 1998–2016.eng
dcterms.referencesChauhan, D.S.; Prasad, R.; Srivastava, R.; Jaggi, M.; Chauhan, S.C.; Yallapu, M.M. Comprehensive review on current interventions, diagnostics, and nanotechnology perspectives against SARS-CoV-2. Bioconjug. Chem. 2020, 31, 2021–2045.eng
dcterms.referencesEpanechnikov, V.A. Non-parametric estimation of a multivariate probability density. Theory Probab. Its Appl. 1969, 14, 153–158.eng
dcterms.referencesRosenblatt, M. Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 1956, 27, 832–837.eng
dcterms.referencesParzen, E. On estimation of a probability density function and mode. Ann. Math. Stat. 1962, 33, 1065–1076.eng
dcterms.referencesFabian Pedregosa, G.V.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.eng
dcterms.referencesBergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.eng
dcterms.referencesCorman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045.eng
dcterms.referencesBuitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.; et al. API design for machine learning software: Experiences from the scikit-learn project. In Proceedings of the European Conference on Machine Learning and Principles and Practices of Knowledge Discovery in Databases, Prague, Czech Republic, 23 September 2013.eng
oaire.versioninfo:eu-repo/semantics/acceptedVersionspa
sb.programaMaestría en Gestión y Emprendimiento Tecnológicospa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
PDF
Tamaño:
2.95 MB
Formato:
Adobe Portable Document Format