NHANES 2011–2014 Reveals Decreased Cognitive Performance in U.S. Older Adults with Metabolic Syndrome Combinations

datacite.rightshttp://purl.org/coar/access_right/c_abf2eng
dc.contributor.authorDíaz-Camargo, Edgar
dc.contributor.authorHernández-Lalinde, Juan
dc.contributor.authorSánchez-Rubio, María
dc.contributor.authorChaparro-Suárez, Yudy
dc.contributor.authorÁlvarez-Caicedo, Liseth
dc.contributor.authorFierro-Zarate, Alexandra
dc.contributor.authorGravini-Donado, Marbel
dc.contributor.authorGarcía-Pacheco, Henry
dc.contributor.authorRojas-Quintero, Joselyn
dc.contributor.authorBermúdez, Valmore
dc.date.accessioned2023-08-18T16:19:52Z
dc.date.available2023-08-18T16:19:52Z
dc.date.issued2023
dc.description.abstractA relationship between metabolic syndrome and cognitive impairment has been evidenced across research; however, conflicting results have been observed. A cross-sectional study was conducted on 3179 adults older than 60 from the 2011–2014 National Health and Nutrition Examination Survey (NHANES) to analyze the relationship between metabolic syndrome and cognitive impairment. In our results, we found that adults with abdominal obesity, high triglycerides, and low HDL cholesterol had 4.39 fewer points in the CERAD immediate recall test than adults without any metabolic syndrome factors [Beta = −4.39, SE = 1.32, 17.75 (1.36) vs. 22.14 (0.76)]. In addition, people with this metabolic syndrome combination exhibited 2.39 fewer points in the CERAD delayed recall test than those without metabolic syndrome criteria [Beta = −2.39, SE = 0.46, 4.32 (0.49) vs. 6.71 (0.30)]. It was also found that persons with high blood pressure, hyperglycemia, and low HDL–cholesterol levels reached 4.11 points less in the animal fluency test than people with no factors [Beta = −4.11, SE = 1.55, 12.67 (2.12) vs. 16.79 (1.35)]. These findings suggest that specific metabolic syndrome combinations are essential predictors of cognitive impairment. In this study, metabolic syndrome combinations that included obesity, fasting hyperglycemia, high triglycerides, and low HDL–cholesterol were among the most frequent criteria observed.eng
dc.format.mimetypepdfspa
dc.identifier.citationDíaz-Camargo, E., Hernández-Lalinde, J., Sánchez-Rubio, M., Chaparro-Suárez, Y., Álvarez-Caicedo, L., Fierro-Zarate, A., Gravini-Donado, M., García-Pacheco, H., Rojas-Quintero, J., & Bermúdez, V. (2023). NHANES 2011–2014 Reveals Decreased Cognitive Performance in U.S. Older Adults with Metabolic Syndrome Combinations. International Journal of Environmental Research and Public Health, 20(7), 5257. https://doi.org/10.3390/ijerph20075257eng
dc.identifier.doihttps://doi.org/10.3390/ijerph20075257
dc.identifier.issn16604601
dc.identifier.urihttps://hdl.handle.net/20.500.12442/13162
dc.language.isoengspa
dc.publisherMDPIspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceInternational Journal of Environmental Research and Public Healtheng
dc.sourceVol. 20 Issue 7 (2023)
dc.subjectMetabolic syndromeeng
dc.subjectCognitive impairmenteng
dc.subjectOlder adultseng
dc.subjectNHANESeng
dc.subjectObesityeng
dc.subjectHyperglycemiaeng
dc.subjectHigh triglycerideseng
dc.subjectLow HDL–cholesteroleng
dc.titleNHANES 2011–2014 Reveals Decreased Cognitive Performance in U.S. Older Adults with Metabolic Syndrome Combinationseng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.spaArtículo científicospa
dcterms.referencesEl-Tallawy, H.N.; Saadeldin, H.M.; Ezzeldin, A.M.; Tohamy, A.M.; Eltellawy, S.; Bathalath, A.M.; Shehab, M.M. Genetic, Clinical, and Biochemical Aspects of Patients with Alzheimer Disease. Egypt. J. Neurol. Psychiatry Neurosurg. 2022, 58, 24.eng
dcterms.referencesohnson, S.C.; Koscik, R.L.; Jonaitis, E.M.; Clark, L.R.; Mueller, K.D.; Berman, S.E.; Bendlin, B.B.; Engelman, C.D.; Okonkwo, O.C.; Hogan, K.J.; et al. The Wisconsin Registry for Alzheimer’s Prevention: A Review of Findings and Current Directions. Alzheimers Dement. 2018, 10, 130–142eng
dcterms.referencesWang, J.; Gu, B.J.; Masters, C.L.; Wang, Y.-J. A Systemic View of Alzheimer’s Disease—Insights from Amyloid-β Metabolism beyond the Brain. Nat. Rev. Neurol. 2017, 13, 612–623. [[PubMedeng
dcterms.referencesBennett, D.A.; Wilson, R.S.; Boyle, P.A.; Buchman, A.S.; Schneider, J.A. Relation of Neuropathology to Cognition in Persons without Cognitive Impairment. Ann. Neurol. 2012, 72, 599–609.eng
dcterms.referencesKatzman, R.; Terry, R.; DeTeresa, R.; Brown, T.; Davies, P.; Fuld, P.; Renbing, X.; Peck, A. Clinical, Pathological, and Neurochemical Changes in Dementia: A Subgroup with Preserved Mental Status and Numerous Neocortical Plaques. Ann. Neurol. 1988, 23, 138–14eng
dcterms.referencesJansen, W.J.; Ossenkoppele, R.; Knol, D.L.; Tijms, B.M.; Scheltens, P.; Verhey, F.R.J.; Visser, P.J.; Amyloid Biomarker Study Group; Aalten, P.; Aarsland, D.; et al. Prevalence of Cerebral Amyloid Pathology in Persons without Dementia: A Meta-Analysis. JAMA 2015, 313, 1924–1938.eng
dcterms.referencesBennett, D.A. Mixed Pathologies and Neural Reserve: Implications of Complexity for Alzheimer Disease Drug Discovery. PLoS Med. 2017, 14, e1002256. [eng
dcterms.referencesStern, Y. What Is Cognitive Reserve? Theory and Research Application of the Reserve Concept. J. Int. Neuropsychol. Soc. 2002, 8, 448–460.eng
dcterms.referencesAtamna, H.; Tenore, A.; Lui, F.; Dhahbi, J.M. Organ Reserve, Excess Metabolic Capacity, and Aging. Biogerontology 2018, 19, 171–184eng
dcterms.referencesWang, S.; Qin, L. Homeostatic Medicine: A Strategy for Exploring Health and Disease. Curr. Med. 2022, 1, 16.eng
dcterms.referencesIliodromiti, S.; Iglesias Sanchez, C.; Messow, C.-M.; Cruz, M.; Garcia Velasco, J.; Nelson, S.M. Excessive Age-Related Decline in Functional Ovarian Reserve in Infertile Women: Prospective Cohort of 15,500 Women. J. Clin. Endocrinol. Metab. 2016, 101, 3548–3554eng
dcterms.referencesPolverino, A.; Sorrentino, P.; Pesoli, M.; Mandolesi, L. Nutrition and Cognition across the Lifetime: An Overview on Epigenetic Mechanisms. AIMS Neurosci. 2021, 8, 448–476eng
dcterms.referencesRodgers, G.P.; Collins, F.S. Precision Nutrition—The Answer to “What to Eat to Stay Healthy”. JAMA 2020, 324, 735–736eng
dcterms.referencesProkopidis, K.; Giannos, P.; Ispoglou, T.; Witard, O.C.; Isanejad, M. Dietary Fiber Intake Is Associated with Cognitive Function in Older Adults: Data from the National Health and Nutrition Examination Survey. Am. J. Med. 2022, 135, E257–E262. [eng
dcterms.referencesMao, X.-Y.; Yin, X.-X.; Guan, Q.-W.; Xia, Q.-X.; Yang, N.; Zhou, H.-H.; Liu, Z.-Q.; Jin, W.-L. Dietary Nutrition for Neurological Disease Therapy: Current Status and Future Directions. Pharmacol. Ther. 2021, 226, 107861.eng
dcterms.referencesForet, J.T.; Oleson, S.; Hickson, B.; Valek, S.; Tanaka, H.; Haley, A.P. Metabolic Syndrome and Cognitive Function in Midlife. Arch. Clin. Neuropsychol. 2021, 36, 897–907eng
dcterms.referencesao, X.-Y.; Yin, X.-X.; Guan, Q.-W.; Xia, Q.-X.; Yang, N.; Zhou, H.-H.; Liu, Z.-Q.; Jin, W.-L. Dietary Nutrition for Neurological Disease Therapy: Current Status and Future Directions. Pharmacol. Ther. 2021, 226, 107861. [Googleeng
dcterms.referencesForet, J.T.; Oleson, S.; Hickson, B.; Valek, S.; Tanaka, H.; Haley, A.P. Metabolic Syndrome and Cognitive Function in Midlife. Arch. Clin. Neuropsychol. 2021, 36, 897–907.eng
dcterms.referencesWooten, T.; Ferland, T.; Poole, V.; Milberg, W.; McGlinchey, R.; DeGutis, J.; Esterman, M.; Leritz, E. Metabolic Risk in Older Adults Is Associated with Impaired Sustained Attention. Neuropsychology 2019, 33, 947–955.eng
dcterms.referencesFrazier, D.T.; Bettcher, B.M.; Dutt, S.; Patel, N.; Mungas, D.; Miller, J.; Green, R.; Kramer, J.H. Relationship between Insulin-Resistance Processing Speed and Specific Executive Function Profiles in Neurologically Intact Older Adults. J. Int. Neuropsychol. Soc. 2015, 21, 622–628. [eng
dcterms.referencesBahchevanov, K.M.; Dzhambov, A.M.; Chompalov, K.A.; Massaldjieva, R.I.; Atanassova, P.A.; Mitkov, M.D. Contribution of Components of Metabolic Syndrome to Cognitive Performance in Middle-Aged Adults. Arch. Clin. Neuropsychol. 2021, 36, 498–506. [eng
dcterms.referencesMone, P.; Gambardella, J.; Lombardi, A.; Pansini, A.; De Gennaro, S.; Leo, A.L.; Famiglietti, M.; Marro, A.; Morgante, M.; Frullone, S.; et al. Correlation of Physical and Cognitive Impairment in Diabetic and Hypertensive Frail Older Adults. Cardiovasc. Diabetol. 2022, 21, 10.eng
dcterms.referencesMundell, N.L.; Sethi, P.; Anstey, K.J.; Macpherson, H.; Dunstan, D.W.; Fraser, S.F.; Daly, R.M. The Influence of Adiposity on the Interactions between Strength, Physical Function and Cognition among Older Adults in the Australian Diabetes, Obesity, and Lifestyle (AusDiab) Study. BMC Geriatr. 2022, 22, 357. [eng
dcterms.referencesAn, Y.; Zhang, X.; Wang, Y.; Wang, Y.; Liu, W.; Wang, T.; Qin, Z.; Xiao, R. Longitudinal and Nonlinear Relations of Dietary and Serum Cholesterol in Midlife with Cognitive Decline: Results from EMCOA Study. Mol. Neurodegener. 2019, 14, 51.eng
dcterms.referencesIhle, A.; Gouveia, É.R.; Gouveia, B.R.; Freitas, D.L.; Jurema, J.; Tinôco, M.A.; Kliegel, M. High-Density Lipoprotein Cholesterol Level Relates to Working Memory, Immediate and Delayed Cued Recall in Brazilian Older Adults: The Role of Cognitive Reserve. Dement. Geriatr. Cogn. Disord. 2017, 44, 84–91. [eng
dcterms.referencesParthasarathy, V.; Frazier, D.T.; Bettcher, B.M.; Jastrzab, L.; Chao, L.; Reed, B.; Mungas, D.; Weiner, M.; DeCarli, C.; Chui, H.; et al. Triglycerides Are Negatively Correlated with Cognitive Function in Nondemented Aging Adults. Neuropsychology 2017, 31, 682–688. [eng
dcterms.referencesMizuhara, R.; Mitaki, S.; Takamura, M.; Abe, S.; Onoda, K.; Yamaguchi, S.; Nagai, A. Pulse Pressure Is Associated with Cognitive Performance in Japanese Non-Demented Population: A Cross-Sectional Study. BMC Neurol. 2022, 22, 137. [eng
dcterms.referencesNewcombe, E.A.; Camats-Perna, J.; Silva, M.L.; Valmas, N.; Huat, T.J.; Medeiros, R. Inflammation: The Link between Comorbidities, Genetics, and Alzheimer’s Disease. J. Neuroinflamm. 2018, 15, 276.eng
dcterms.referencesGierach, M.; Rasmus, A.; Orłowska, E. Verbal Fluency in Metabolic Syndrome. Brain Sci. 2022, 12, 255.eng
dcterms.referencesHalikas, A.; Gibas, K.J. AMPK Induced Memory Improvements in the Diabetic Population: A Case Study. Diabetes Metab. Syndr. 2018, 12, 1141–1146eng
dcterms.referencesPal, K.; Mukadam, N.; Petersen, I.; Cooper, C. Mild Cognitive Impairment and Progression to Dementia in People with Diabetes, Prediabetes and Metabolic Syndrome: A Systematic Review and Meta-Analysis. Soc. Psychiatry Psychiatr. Epidemiol. 2018, 53, 1149–1160.eng
dcterms.referencesYates, K.F.; Sweat, V.; Yau, P.L.; Turchiano, M.M.; Convit, A. Impact of Metabolic Syndrome on Cognition and Brain: A Selected Review of the Literature. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2060–2067eng
dcterms.referencesKarlsson, I.K.; Ploner, A.; Song, C.; Gatz, M.; Pedersen, N.L.; Hägg, S. Genetic Susceptibility to Cardiovascular Disease and Risk of Dementia. Transl. Psychiatry 2017, 7, e1142eng
dcterms.referencesAtti, A.R.; Valente, S.; Iodice, A.; Caramella, I.; Ferrari, B.; Albert, U.; Mandelli, L.; De Ronchi, D. Metabolic Syndrome, Mild Cognitive Impairment, and Dementia: A Meta–Analysis of Longitudinal Studies. Am. J. Geriatr. Psychiatry 2019, 27, 625–637.eng
dcterms.referencesSolfrizzi, V.; Scafato, E.; Capurso, C.; D’Introno, A.; Colacicco, A.M.; Frisardi, V.; Vendemiale, G.; Baldereschi, M.; Crepaldi, G.; Di Carlo, A.; et al. Metabolic Syndrome, Mild Cognitive Impairment, and Progression to Dementia. The Italian Longitudinal Study on Aging. Neurobiol. Aging 2011, 32, 1932–1941.eng
dcterms.referencesBotchway, B.O.; Okoye, F.C.; Chen, Y.; Arthur, W.E.; Fang, M. Alzheimer Disease: Recent Updates on Apolipoprotein E and Gut Microbiome Mediation of Oxidative Stress, and Prospective Interventional Agents. Aging Dis. 2022, 13, 87–102eng
dcterms.referencesMurray, E.R.; Kemp, M.; Nguyen, T.T. The Microbiota-Gut-Brain Axis in Alzheimer’s Disease: A Review of Taxonomic Alterations and Potential Avenues for Interventions. Arch. Clin. Neuropsychol. 2022, 37, 595–607.eng
dcterms.referencesThu Thuy Nguyen, V.; Endres, K. Targeting Gut Microbiota to Alleviate Neuroinflammation in Alzheimer’s Disease. Adv. Drug Deliv. Rev. 2022, 188, 114418.eng
dcterms.referencesKheirvari, M.; Lacy, V.A.; Goudarzi, H.; RabieNezhad Ganji, N.; Kamali Ardekani, M.; Anbara, T. The Changes in Cognitive Function following Bariatric Surgery Considering the Function of Gut Microbiome. Obes. Pillars 2022, 3, 100020. [eng
dcterms.referencesHandley, J.D.; Williams, D.M.; Caplin, S.; Stephens, J.W.; Barry, J. Changes in Cognitive Function following Bariatric Surgery: A Systematic Review. Obes. Surg. 2016, 26, 2530–2537.eng
dcterms.referencesCollden, H.; Hagberg, T.M.; Landin, A.; Norlen, A.-K.; Ryberg, H.; Wu, J.; Gustafsson, K.L.; Grahnemo, L.; Nilsson, K.; Sjogren, K.; et al. Origins of Progesterone in Male Mice. In Endocrine Abstracts; Bioscientifica: Bristol, UK, 2022; Volume 81.eng
dcterms.referencesTahmi, M.; Palta, P.; Luchsinger, J.A. Metabolic Syndrome, and Cognitive Function. Curr. Cardiol. Rep. 2021, 23, 180. [eng
dcterms.referencesKordestani-Moghadam, P.; Assari, S.; Nouriyengejeh, S.; Mohammadipour, F.; Pourabbasi, A. Cognitive Impairments and Associated Structural Brain Changes in Metabolic Syndrome and Implications of Neurocognitive Intervention. J. Obes. Metab. Syndr. 2020, 29, 174–179. [Google Scholar] [CrossRef] [PubMed]eng
dcterms.referencesNHANES—National Health and Nutrition Examination Survey Homepage. Available online:eng
dcterms.referencesJohnson, C.L.; Dohrmann, S.M.; Burt, V.L.; Mohadjer, L.K. National Health, and Nutrition Examination Survey: Sample Design, 2011–2014. In Vital and Health Statistics. Series 2, Data Evaluation and Methods Research; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD, USA, 2014; No. 162; pp. 1–33.eng
dcterms.referencesBrody, D.J.; Kramarow, E.A.; Taylor, C.A.; McGuire, L.C. Cognitive Performance in Adults Aged 60 and Over: National Health and Nutrition Examination Survey, 2011–2014. Natl. Health Stat. Rep. 2019, 126, 23.eng
dcterms.referencesMorris, J.C.; Heyman, A.; Mohs, R.C.; Hughes, J.P.; van Belle, G.; Fillenbaum, G.; Mellits, E.D.; Clark, C. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and Neuropsychological Assessment of Alzheimer’s Disease. Neurology 1989, 39, 1159–1165eng
dcterms.referencesFillenbaum, G.G.; van Belle, G.; Morris, J.C.; Mohs, R.C.; Mirra, S.S.; Davis, P.C.; Tariot, P.N.; Silverman, J.M.; Clark, C.M.; Welsh-Bohmer, K.A.; et al. Consortium to Establish a Registry for Alzheimer’s Disease (CERAD): The First Twenty Years. Alzheimer’s Dement. 2008, 4, 96–109.eng
dcterms.referencesHenry, J.D.; Crawford, J.R. A Meta-Analytic Review of Verbal Fluency Performance following Focal Cortical Lesions. Neuropsychology 2004, 18, 284–295.eng
dcterms.referencesJaeger, J. Digit Symbol Substitution Test: The Case for Sensitivity Over Specificity in Neuropsychological Testing. J. Clin. Psychopharmacol. 2018, 38, 513–519eng
dcterms.referencesAlberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C.; et al. A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645.eng
dcterms.referencesNHANES Survey Methods and Analytic Guidelines. Available online: https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx (accessed on 13 July 2022).eng
dcterms.referencesNational Center for Health Statistics (U.S.) (Ed.) National Center for Health Statistics Data Presentation Standards for Proportions; Vital and Health Statistics. Series 2, Data Evaluation and Methods Research; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD, USA, 2017.eng
dcterms.referencesGao, H.; Wang, K.; Ahmadizar, F.; Zhuang, J.; Jiang, Y.; Zhang, L.; Gu, J.; Zhao, W.; Xia, Z. Associations of Changes in Late-Life Blood Pressure with Cognitive Impairment among Older Population in China. BMC Geriatr. 2021, 21, 536.eng
dcterms.referencesPedditzi, E.; Peters, R.; Beckett, N. The Risk of Overweight/Obesity in Mid-Life and Late Life for the Development of Dementia: A Systematic Review and Meta-Analysis of Longitudinal Studies. Age Ageing 2016, 45, 14–21.eng
dcterms.referencesZhang, T.; Shaw, M.; Cherbuin, N. Association between Type 2 Diabetes Mellitus and Brain Atrophy: A Meta-Analysis. Diabetes Metab. J. 2022, 46, 781–802eng
dcterms.referencesGoughari, A.S.; Mazhari, S.; Pourrahimi, A.M.; Sadeghi, M.M.; Nakhaee, N. Associations between Components of Metabolic Syndrome and Cognition in Patients with Schizophrenia. J. Psychiatr. Pract. 2015, 21, 190–197. [eng
dcterms.referencesLiu, C.-L.; Lin, M.-H.; Peng, L.-N.; Chen, L.-K.; Su, C.-T.; Liu, L.-K.; Chen, L.-Y. Late-Life Metabolic Syndrome Prevents Cognitive Decline among Older Men Aged 75 Years and over: One-Year Prospective Cohort Study. J. Nutr. Health Aging 2013, 17, 523–526eng
dcterms.referencesMartinez-Miller, E.E.; Kohl, H.W.; Barlow, C.E.; Willis, B.L.; DeFina, L.F. Metabolic Syndrome and Cognitive Impairment among High Socioeconomic, Nondemented Older US Adults. J. Am. Geriatr. Soc. 2019, 67, 1437–1443.eng
dcterms.referencesFeinkohl, I.; Janke, J.; Hadzidiakos, D.; Slooter, A.; Winterer, G.; Spies, C.; Pischon, T. Associations of the Metabolic Syndrome and Its Components with Cognitive Impairment in Older Adults. BMC Geriatr. 2019, 19, 77.eng
dcterms.referencesHarrison, S.L.; Stephan, B.C.M.; Siervo, M.; Granic, A.; Davies, K.; Wesnes, K.A.; Kirkwood, T.B.L.; Robinson, L.; Jagger, C. Is There an Association between Metabolic Syndrome and Cognitive Function in Very Old Adults? The Newcastle 85+ Study. J. Am. Geriatr. Soc. 2015, 63, 667–675. [eng
dcterms.referencesGross, T.J.; Araújo, R.B.; Vale, F.A.C.; Bassani, M.; Maciel, C.D. Dependence between Cognitive Impairment and Metabolic Syndrome Applied to a Brazilian Elderly Dataset. Artif. Intell. Med. 2018, 90, 53–60.eng
dcterms.referencesGuicciardi, M.; Crisafulli, A.; Doneddu, A.; Fadda, D.; Lecis, R. Effects of Metabolic Syndrome on Cognitive Performance of Adults During Exercise. Front. Psychol. 2019, 10, 1845.
dcterms.referencesm, S.-H.; Kim, M.; Ahn, Y.-B.; Lim, H.-K.; Kang, S.-G.; Cho, J.; Park, S.-J.; Song, S.-W. Effect of Dance Exercise on Cognitive Function in Elderly Patients with Metabolic Syndrome: A Pilot Study. J. Sports. Sci. Med. 2011, 10, 671–678. [eng
dcterms.referencesaffe, K.; Haan, M.; Blackwell, T.; Cherkasova, E.; Whitmer, R.A.; West, N. Metabolic Syndrome and Cognitive Decline in Elderly Latinos: Findings from the Sacramento Area Latino Study of Aging Study. J. Am. Geriatr. Soc. 2007, 55, 758–762.eng
dcterms.referencesHishikawa, N.; Fukui, Y.; Sato, K.; Kono, S.; Yamashita, T.; Ohta, Y.; Deguchi, K.; Abe, K. Cognitive and Affective Functions in Alzheimer’s Disease Patients with Metabolic Syndrome. Eur. J. Neurol. 2016, 23, 339–345.eng
dcterms.referencesLee, E.Y.; Lee, S.J.; Kim, K.M.; Yun, Y.M.; Song, B.M.; Kim, J.E.; Kim, H.C.; Rhee, Y.; Youm, Y.; Kim, C.O. Association of Metabolic Syndrome and 25-Hydroxyvitamin D with Cognitive Impairment among Elderly Koreans. Geriatr. Gerontol. Int. 2017, 17, 1069–1075. [eng
dcterms.referencesoreans. Geriatr. Gerontol. Int. 2017, 17, 1069–1075. [Google Scholar] [CrossRef] [PubMed] Mehra, A.; Suri, V.; Kumari, S.; Avasthi, A.; Grover, S. Association of Mild Cognitive Impairment and Metabolic Syndrome in Patients with Hypertension. Asian J. Psychiatr. 2020, 53, 102185eng
dcterms.referencesOh, H.-M.; Kim, S.-H.; Kang, S.-G.; Park, S.-J.; Song, S.-W. The Relationship between Metabolic Syndrome and Cognitive Function. Korean J. Fam. Med. 2011, 32, 358–366.eng
dcterms.referencesSchmitt, L.O.; Gaspar, J.M. Obesity-Induced Brain Neuroinflammatory and Mitochondrial Changes. Metabolites 2023, 13, 86. [eng
dcterms.referencesMarcos, J.L.; Olivares-Barraza, R.; Ceballo, K.; Wastavino, M.; Ortiz, V.; Riquelme, J.; Martínez-Pinto, J.; Muñoz, P.; Cruz, G.; Sotomayor-Zárate, R. Obesogenic Diet-Induced Neuroinflammation: A Pathological Link between Hedonic and Homeostatic Control of Food Intake. Int. J. Mol. Sci. 2023, 24, 1468.eng
dcterms.referencesJin, Y.; Wu, R.; Li, L.; Shen, L.; Gu, Y.; Sun, C. Exosomes from Inflamed Macrophages Promote the Progression of Parkinson’s Disease by Inducing Neuroinflammation. Mol. Neurobiol. 2023, 60, 1914–1928.eng
dcterms.referencesHata, M.; Andriessen, E.M.M.A.; Hata, M.; Diaz-Marin, R.; Fournier, F.; Crespo-Garcia, S.; Blot, G.; Juneau, R.; Pilon, F.; Dejda, A.; et al. Past History of Obesity Triggers Persistent Epigenetic Changes in Innate Immunity and Exacerbates Neuroinflammation. Science 2023, 379, 45–62.eng
dcterms.referencesYang, X.; Xu, Y.; Gao, W.; Wang, L.; Zhao, X.; Liu, G.; Fan, K.; Liu, S.; Hao, H.; Qu, S.; et al. Hyperinsulinemia-Induced Microglial Mitochondrial Dynamic and Metabolic Alterations Lead to Neuroinflammation In Vivo and in Vitro. Front. Neurosci. 2022, 16, 1036872.eng
dcterms.referencesSalas-Venegas, V.; Flores-Torres, R.P.; Rodríguez-Cortés, Y.M.; Rodríguez-Retana, D.; Ramírez-Carreto, R.J.; Concepción-Carrillo, L.E.; Pérez-Flores, L.J.; Alarcón-Aguilar, A.; López-Díazguerrero, N.E.; Gómez-González, B.; et al. The Obese Brain: Mechanisms of Systemic and Local Inflammation, and Interventions to Reverse the Cognitive Deficit. Front. Integr. Neurosci. 2022, 16, 798995. [eng
dcterms.referencesZingale, V.D.; D’Angiolini, S.; Chiricosta, L.; Calcaterra, V.; Selvaggio, G.G.O.; Zuccotti, G.; Destro, F.; Pelizzo, G.; Mazzon, E. Does Childhood Obesity Trigger Neuroinflammation? Biomedicines 2022, 10, 1953.eng
dcterms.referencesNeniskyte, U.; Neher, J.J.; Brown, G.C. Neuronal Death Induced by Nanomolar Amyloid β Is Mediated by Primary Phagocytosis of Neurons by Microglia. J. Biol. Chem. 2011, 286, 39904–39913.eng
dcterms.referencesCavalieri, M.; Ropele, S.; Petrovic, K.; Pluta-Fuerst, A.; Homayoon, N.; Enzinger, C.; Grazer, A.; Katschnig, P.; Schwingenschuh, P.; Berghold, A.; et al. Metabolic Syndrome, Brain Magnetic Resonance Imaging, and Cognition. Diabetes Care 2010, 33, 2489–2495. [eng
oaire.versioninfo:eu-repo/semantics/publishedVersioneng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
09_2023_GC_ART_NHANES.pdf
Tamaño:
805.03 KB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones