Nonintegrability of the Armbruster-Guckenheimer-Kim Quartic Hamiltonian Through Morales-Ramis Theory
dc.contributor.author | Acosta-Humánez, P. | |
dc.contributor.author | Alvarez-Ramírez, M. | |
dc.contributor.author | Stuchi, T.J. | |
dc.date.accessioned | 2018-02-08T14:59:21Z | |
dc.date.available | 2018-02-08T14:59:21Z | |
dc.date.issued | 2018-01-09 | |
dc.description.abstract | We show the nonintegrability of the three-parameter Armburster--Guckenheimer--Kim quartic Hamiltonian using Morales--Ramis theory, with the exception of the three already known integrable cases. We use Poincaré sections to illustrate the breakdown of regular motion for some parameter values. | spa |
dc.identifier.issn | 15360040 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12442/1725 | |
dc.language.iso | eng | spa |
dc.publisher | Sociedad de Matemática Industrial y Aplicada | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.source | Vol. 17, No.1 (2018) | eng |
dc.source | Revista SIAM | spa |
dc.source.uri | https://doi.org/10.1137/16M1080689 | |
dc.subject | Hamiltonian | eng |
dc.subject | Integrability of dynamical systems | eng |
dc.subject | Diferential Galois theory | eng |
dc.subject | Legendre equation | eng |
dc.subject | Schrodinger equation | eng |
dc.title | Nonintegrability of the Armbruster-Guckenheimer-Kim Quartic Hamiltonian Through Morales-Ramis Theory | eng |
dc.type | article | spa |
dcterms.references | R. Abraham and J. E. Marsden, Foundations of Mechanics, Benjamin Cummings, San Francisco, 1978. | eng |
dcterms.references | M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Wiley, New York, 1984. | eng |
dcterms.references | P. Acosta-Hum anez and D. Bl azquez-Sanz, Non-integrability of some Hamiltonians with rational potential, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), pp. 265{293, https://doi.org/10.3934/dcdsb. 2008.10.265. | eng |
dcterms.references | P. B. Acosta-Hum anez, Galoisian Approach to Supersymmetric Quantum Mechanics. The Integrability Analysis of the Schr odinger Equation by Means of Di erential Galois Theory, VDM Verlag Dr. M uller, Berlin, 2010. | eng |
dcterms.references | P. B. Acosta-Hum anez, J. L azaro, J. Morales-Ruiz, and C. Pantazi, On the integrability of polynomial vector elds in the plane by means of Picard-Vessiot theory, Discrete Contin. Dyn. Syst., 35 (2015), pp. 1767{1800, https://doi.org/10.3934/dcds.2015.35.1767. | eng |
dcterms.references | P. B. Acosta-Hum anez, J. Morales-Ruiz, and J. A. Weil, Galoisian approach to integrability of Schr odinger equation, Rep. Math. Phys., 67 (2011), pp. 305{374, https://doi.org/10.1016/ S0034-4877(11)60019-0. | eng |
dcterms.references | P. Andrle, A third integral of motion in a system with a potential of the fourth degree, Phys. Lett. A, 17 (1966), pp. 169{175. | eng |
dcterms.references | D. Armbruster, J. Guckenheimer, and S. Kim, Chaotic dynamics in systems with square symmetry, Phys. Lett. A, 140 (1989), pp. 416{420, https://doi.org/10.1016/0375-9601(89)90078-9. | eng |
dcterms.references | A. Bostan, T. Combot, and M. E. Din, Computing necessary integrability conditions for planar parametrized homogeneous potentials, in Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, 2014, pp. 67{74, https://doi.org/10.1145/2608628.2608662. | eng |
dcterms.references | G. Contopoulos, Galactic Dynamics, Princeton University Press, Princeton, NJ, 1988. | eng |
dcterms.references | A. A. Elmandouh, On the dynamics of Armbruster-Guckenheimer-Kim galactic potential in a rotating reference frame, Astrophys. Space Sci., 361 (2016), pp. 182{194, https://doi.org/10.1007/ s10509-016-2770-8. | eng |
dcterms.references | J. Hietarinta, Direct methods for the search of the second invariant, Phys. Rep., 147 (1987), pp. 87{154. | eng |
dcterms.references | I. Kaplansky, An Introduction to Di erential Algebra, Hermann, Paris, 1957. | eng |
dcterms.references | E. Kolchin, Di erential Algebra and Algebraic Groups, Pure and Appl. Math. 59, Academic Press, New York, 1973. | eng |
dcterms.references | J. Llibre and L. Roberto, Periodic orbits and non-integrability of Armbruster-Guckenheimer-Kim potential, Astrophys. Space Sci., 343 (2013), pp. 69{74, https://doi.org/10.1007/s10509-012-1210-7. | eng |
dcterms.references | A. Maciejewski and M. Przybylska, Darboux points and integrability of Hamiltonian systems with homogeneous polynomial potential, J. Math. Phys., 46 (2005), 062901, https://doi.org/10.1063/1. 1917311. | eng |
dcterms.references | J. Morales-Ruiz, Di erential Galois Theory and Non-Integrability of Hamiltonian Systems, Progr. Math. 178, Birkhauser, Basel, 1999. | eng |
dcterms.references | J. Morales-Ruiz and J. P. Ramis, Integrability of dynamical systems through di erential galois theory: A practical guide, in Di erential Algebra, Complex Analysis and Orthogonal Polynomials, Contemp. Math. 509, AMS, Providence, RI, 2010, pp. 143{220, http://dx.doi.org/10.1090/conm/509. | eng |
dcterms.references | J. J. Morales-Ruiz and J. P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems I, Methods Appl. Anal., 8 (2001), pp. 33{96, https://doi.org/10.4310/MAA.2001.v8.n1.a3. | eng |
dcterms.references | J. J. Morales-Ruiz and J. P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems II, Methods Appl. Anal., 8 (2001), pp. 97{112, https://doi.org/10.4310/MAA.2001.v8.n1.a4. | eng |
dcterms.references | K. Nakagawa, Direct Construction of Polynomial First Integrals for Hamiltonian Systems with a Two- Dimensional Homogeneous Polynomial Potential, Ph.D. thesis, Department of Astronomical Science, Graduate University for Advanced Study and the National Astronomical Observatory of Japan, 2002. | eng |
dcterms.references | G. P oschl and E. Teller, Bemerkungen zur quantenmechanik des anharmonischen oszillators, Z. Phys., 83 (1933), pp. 143{151. | eng |
dcterms.references | F. Simonelli and J. P. Gollub, Surface wave mode interactions: E ects of symmetry and degeneracy, J. Fluid Mech., 199 (1989), pp. 471{494, https://dx.doi.org/10.1017/S0022112089000443. | eng |
dcterms.references | E. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Di erential Equations, Part I, 2nd ed., Oxford University Press, Oxford, UK, 1962. | eng |
dcterms.references | M. van der Put and M. Singer, Galois Theory of Linear Di erential Equations, Grundlehren Math. Wiss. 328, Springer, Berlin, 2003. | eng |
dcterms.references | S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, New York, 1990. | eng |
dcterms.references | H. Yoshida, Nonintegrability of the truncated Toda lattice Hamiltonian at any order, Comm. Math. Phys., 116 (1988), pp. 529{538. | eng |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- PDF.pdf
- Tamaño:
- 19.63 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Formato Pdf texto completo
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: