Identificación de variantes en genes asociados a la resistencia y la fuerza muscular en dos grupos de deportistas del Pacífico colombiano
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
dc.contributor.advisor | Leyva Rojas, Jorge A. | |
dc.contributor.advisor | Yosa Reyes, Juvenal | |
dc.contributor.author | Fontecha Pacheco, Briyis Suranny | |
dc.date.accessioned | 2024-06-26T17:07:24Z | |
dc.date.available | 2024-06-26T17:07:24Z | |
dc.date.issued | 2024 | |
dc.description.abstract | “Sportomics” u ómica del deporte es un enfoque interdisciplinario que combina la genómica, proteómica y metabolómica en las ciencias deportivas, cuyo objetivo principal es descubrir los mecanismos moleculares del rendimiento deportivo mediante la identificación de biomarcadores. Múltiples polimorfismos han sido reportados en genes que influyen en el rendimiento de deportistas cuyas disciplinas se basan en la resistencia y fuerza muscular. En Colombia, la investigación en genética deportiva es limitada, lo que genera una brecha en el conocimiento de esta rama de las ciencias en el ámbito nacional, por lo que, al disponer de la secuenciación genómica de dos grupos de deportistas de alto rendimiento del Valle del Cauca, específicamente halterofilistas y ciclistas, se llevó a cabo el presente estudio. Estas secuenciaciones fueron obtenidas a partir de un macroproyecto inicial denominado “Identificación de variantes en genes asociados con la modulación autonómica por la variabilidad de la frecuencia cardiaca en deportistas de alto rendimiento del Valle del Cauca” del Dr. Yecid Mina de la Escuela Nacional del Deporte, quien para los fines pertinentes de este estudio facilito los datos. Tras una revisión en la literatura se seleccionaron los siguientes genes por su función, impacto y asociación de los diferentes genotipos en el rendimiento de los deportistas que se desempeñaban en la población de estudio: ACTN3, involucrado en la contracción muscular rápida, importante para la fuerza explosiva; ECA, regulador de la presión arterial y el flujo sanguíneo, impactando la resistencia cardiovascular; AMPD1, el cual participa en el metabolismo energético, crucial para la producción de energía durante el ejercicio; CDKN1A, que interviene en la reparación del ADN y la apoptosis celular, claves para la recuperación muscular; HFE, regulador de la absorción de hierro, esencial para el transporte de oxígeno a los músculos; MYBPC3, que influye en la estructura y función del corazón, vital para la resistencia cardiovascular; NFIA-AS2, modulador de la respuesta al estrés, importante para la adaptación al entrenamiento; PPARA y PPARGC1A, que intervienen en el metabolismo de lípidos y glucosa, claves para la producción de energía; LRPPRC, que participa en la regulación del crecimiento muscular, importante para la hipertrofia; MMS22L, que interviene en la reparación del ADN, crucial para la recuperación muscular; y PHACTR1, regulador de la apoptosis celular, importante para la eliminación de células dañadas. El objetivo de este estudio fue determinar la presencia de variantes genéticas en los genes ACTN3, ECA, AMPD1, CDKN1A, HFE, MYBPC3, NFIA-AS2, PPARA, PPARGC1A, LRPPRC, MMS22L y PHACTR1 en dos grupos de deportistas de alto rendimiento del pacifico colombiano: halterofilistas y ciclistas. Mediante herramientas de bioinformática se realizó el análisis de homología de secuencias en donde se determinó la presencia de polimorfismos de único nucleótido (Single Nucleotide Polymorphism SNPs) en las secuenciaciones genéticas de diecinueve deportistas de alto rendimiento de los cuales once eran halterofilistas y ocho ciclistas. En el análisis genético y estadístico no se revelaron diferencias significativas entre las dos poblaciones de deportistas en cuanto a las variantes genéticas identificadas. En el caso de los halterofilistas: el 54,5% presentó el SNP C > T en el gen ACTN3, el 72,7% el SNP G > A en el gen ECA, el 27,3% el SNP A > C en el gen CDKN1A, el 9,1% el SNP C > G en el gen HFE, el 54,5% presentó el SNP C > T en el gen MYBPC3, el 18,2% el SNP G > T en el gen NFIA-AS2, el 54,5% el SNP G > C en el gen PPARA, el 27,3% el SNP C > T en el gen PPARGC1A, el 18,2% el SNP A > G en el gen LRPPRC, el 90,9% el SNP T > C en el gen MMS22L y el 63,6% el SNP C > T en el gen PHACTR1. No hubo presentación de polimorfismos en el gen AMPD1. En el caso de los ciclistas: el 62,5% presento el SNP C > T en el gen ACTN3, el 25,0% el SNP G > A en el gen AMPD1, el 75,0% el SNP G > A en el gen ECA, el 25,0% el SNP A > C en el gen CDKN1A, el 12,5% el SNP C > G en el gen HFE, el 37,5% presento el SNP C > T en el gen MYBPC3, el 12,5% el SNP G > T en el gen NFIA-AS2, el 12,5% el SNP G > C en el gen PPARA, el 87,5% el SNP C > T en el gen PPARGC1A, el 50,0% el SNP A > G en el gen LRPPRC, el 50,0% el SNP T > C en el gen MMS22L y el 25,0% el SNP C > T en el gen PHACTR1. A pesar de las diferentes demandas metabólicas asociadas con las disciplinas deportivas de los ciclistas (actividades aeróbicas) y los halterofilistas (actividades anaeróbicas), no se encontró un único tipo de polimorfismo en cada grupo estudiado. Esto sugiere que las variantes genéticas no están estrechamente relacionadas con la elección deportiva ni con el metabolismo específico. Se destaca la importancia de considerar otros factores, como la nutrición y las ayudas ergogénicas, así como investigar más genes relacionados con el metabolismo para comprender completamente la interacción gen-ambiente en las respuestas al ejercicio. Este estudio proporciona una visión inicial sobre las variantes genéticas presentes en deportistas de alto rendimiento del Valle del Cauca en disciplinas de halterofilia y ciclismo. Aunque se encontraron diferencias entre los grupos en cuanto a los SNPs identificados, se necesita una investigación más exhaustiva para comprender completamente cómo estas variantes genéticas afectan el rendimiento deportivo. Esto resalta la importancia de continuar explorando el campo de la genética deportiva y considerar múltiples factores que influyen en el rendimiento deportivo. | spa |
dc.description.abstract | "Sportomics", is an interdisciplinary approach that combines genomics, proteomics, and metabolomics in sports science, aiming to discover the molecular mechanisms of athletic performance by identifying biomarkers. Multiple polymorphisms have been reported in genes that influence the performance of athletes in disciplines based on endurance and muscular strength. In Colombia, research in sports genetics is limited, creating a gap in knowledge in this branch of science in the country. Therefore, this study was conducted using genomic sequencing data from two groups of high-performance athletes from Valle del Cauca, specifically weightlifters and cyclists, obtained from an initial macro project called "Identification of variants in genes associated with autonomic modulation by heart rate variability in high-performance athletes from Valle del Cauca," led by Dr. Yecid Mina from the National School of Sports, who provided the data for this study. After reviewing the literature, the following genes were selected based on their function, impact, and association of different genotypes with athlete performance in the study population: ACTN3, involved in rapid muscle contraction crucial for explosive strength; ACE, regulating blood pressure and blood flow, impacting cardiovascular endurance; AMPD1, participating in energy metabolism crucial for energy production during exercise; CDKN1A, involved in DNA repair and cellular apoptosis crucial for muscle recovery; HFE, regulating iron absorption essential for oxygen transport to muscles; MYBPC3, influencing heart structure and function vital for cardiovascular endurance; NFIA-AS2, modulating stress response important for adaptation to training; PPARA and PPARGC1A, involved in lipid and glucose metabolism crucial for energy production; LRPPRC, participating in muscle growth regulation important for hypertrophy; MMS22L, involved in DNA repair crucial for muscle recovery; and PHACTR1, regulating cellular apoptosis important for the elimination of damaged cells. The aim of this study was to determine the presence of genetic variants in the genes ACTN3, ACE, AMPD1, CDKN1A, HFE, MYBPC3, NFIA-AS2, PPARA, PPARGC1A, LRPPRC, MMS22L, and PHACTR1 in two groups of high-performance athletes from the Colombian Pacific region: weightlifters and cyclists. Bioinformatics tools were used for sequence homology analysis, determining the presence of single nucleotide polymorphisms (SNPs) in the genetic sequences of nineteen high-performance athletes, eleven weightlifters, and eight cyclists. The genetic and statistical analysis did not reveal significant differences between the two populations of athletes in terms of the genetic variants identified. In the case of weightlifters: 54.5% had the SNP C > T in the ACTN3 gene, 72.7% had the SNP G > A in the ACE gene, 27.3% had the SNP A > C in the CDKN1A gene, 9.1% had the C > G SNP in the HFE gene, 54.5% had the C > T SNP in the MYBPC3 gene, 18.2% had the G > T SNP in the NFIA-AS2 gene , 54.5% the SNP G > C in the PPARA gene, 27.3% the SNP C > T in the PPARGC1A gene, 18.2% the SNP A > G in the LRPPRC gene, 90.9 % the T > C SNP in the MMS22L gene and 63.6% the C > T SNP in the PHACTR1 gene. There were no polymorphisms in the AMPD1 gene. In the case of cyclists: 62.5% presented the SNP C > T in the ACTN3 gene, the 25.0% the G > A SNP in the AMPD1 gene, 75.0% the G > A SNP in the ACE gene, 25.0% the A > C SNP in the CDKN1A gene, 12.5% the SNP C > G in the HFE gene, 37.5% presented the SNP C > T in the MYBPC3 gene, 12.5% the SNP G > T in the NFIAAS2 gene, 12.5% the SNP G > C in the PPARA gene, 87.5% the SNP C > T in the PPARGC1A gene, 50.0% the SNP A > G in the LRPPRC gene, 50.0% the SNP T > C in the gene MMS22L and 25.0% the C > T SNP in the PHACTR1 gene. Despite the different metabolic demands associated with the sports disciplines of cyclists (aerobic activities) and weightlifters (anaerobic activities), a single type of polymorphism was not found in each studied group. This suggests that genetic variants are not closely related to athletic choice or specific metabolism. The importance of considering other factors such as nutrition and ergogenic aids, as well as investigating more metabolism-related genes, to fully understand the geneenvironment interaction in exercise responses is highlighted. This study provides an initial insight into the genetic variants present in high-performance athletes from Valle del Cauca in weightlifting and cycling disciplines. Although differences were found between the groups in terms of identified SNPs, further research is needed to fully understand how these genetic variants affect athletic performance. This emphasizes the importance of continuing to explore the field of sports genetics and considering multiple factors influencing athletic performance | eng |
dc.format.mimetype | ||
dc.identifier.uri | https://hdl.handle.net/20.500.12442/14775 | |
dc.language.iso | spa | |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias Básicas y Biomédicas | spa |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | eng |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | |
dc.subject | Ómica del deporte | spa |
dc.subject | Polimorfismos | spa |
dc.subject | Halterofilistas | spa |
dc.subject | Ciclistas | spa |
dc.subject | ACTN3 | spa |
dc.subject | ACE | spa |
dc.subject | AMPD1 | spa |
dc.subject | CDKN1A | spa |
dc.subject | HFE | spa |
dc.subject | MYBPC3 | spa |
dc.subject | NFIA-AS2 | spa |
dc.subject | PPARA | spa |
dc.subject | PPARGC1A | spa |
dc.subject | LRPPRC | spa |
dc.subject | MMS22L | spa |
dc.subject | PHACTR1 | spa |
dc.subject.keywords | Sportomics | eng |
dc.subject.keywords | Polymorphisms | eng |
dc.subject.keywords | Weightlifters | eng |
dc.subject.keywords | Cyclists | eng |
dc.subject.keywords | ACTN3 | eng |
dc.subject.keywords | ACE | eng |
dc.subject.keywords | AMPD1 | eng |
dc.subject.keywords | CDKN1A | eng |
dc.subject.keywords | HFE | eng |
dc.subject.keywords | MYBPC3 | eng |
dc.subject.keywords | NFIA-AS2 | eng |
dc.subject.keywords | PPARA | eng |
dc.subject.keywords | PPARGC1A | eng |
dc.subject.keywords | LRPPRC | eng |
dc.subject.keywords | MMS22L | eng |
dc.subject.keywords | PHACTR1 | eng |
dc.title | Identificación de variantes en genes asociados a la resistencia y la fuerza muscular en dos grupos de deportistas del Pacífico colombiano | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.spa | Trabajo de grado máster | |
dcterms.references | Bongiovanni T, Pintus R, Dessi A, Noto A, Sardo S, Finco G, Corsello G, Fanos V. Sportomics: metabolomics applied to sports. The new revolution? European Review for Medical and Pharmacological sciences. 2019; 23: 11011 – 11019. https://doi.org/10.26355/eurrev_201912_19807 | eng |
dcterms.references | Sellami M, Elrayess M, Puce L, Bragazzi N. Molecular Big Data in Sports Sciences: state-of-Art and Future Prospects of OMICS-Based Sports Sciences. Frontier in Molecular Biosciences. 2022; 8:815410. https://doi.org/10.3389/fmolb.2021.815410 | eng |
dcterms.references | Zilberman G, Chen J, Gerstein M. On Sports and Genes. Recent Patents on DNA & Gene Sequences. 2012; 6(3):180-188. https://doi.org/10.2174/187221512802717367 | eng |
dcterms.references | Bray M, Hagberg J, Perusse L, Rankinen T, Roth S, Wolfarth B, Bouchard C. The Human Gene Map for Performance and Health-Related Fitness Phenotypes: The 2006-2007 Update. Medicine & Science in Sports & Exercise. 2009; 41(1): 35- 73. https://doi.org/10.1249/MSS.0b013e3181844179 | eng |
dcterms.references | Ahmetov I, Egorova E, Gabdrakhmanova L, Fedotovskaya O. Genes and Athletic Performance: An Update. Genetics and Sports. 2016; 61: 41-54. https://doi.org/10.1159/000445240. | eng |
dcterms.references | Varillas D, Del Coso J, Gutierrez J, Aguilar M, Muñoz A, Maestro A, Morencos E. Genetics and sports performance: the present and future in the identification of talent for sports based on DNA testing. European Journal of Applied Physiology. 2021; 122:1811-1830. https://doi.org/10.1007/s00421-022-04945-z | eng |
dcterms.references | Semenova E, Hall E, Ahmetov I. Genes and Athletic Performance: The 2023 Update. Genes. 2023; 14(6):1235. https://doi.org/10.3390/genes14061235 | eng |
dcterms.references | Pickering C, Kiely J. ACTN3: More than Just a Gene for Speed. Frontiers in Physiology. 2017; 8:1080. https://doi.org/10.3389/fphys.2017.01080 | eng |
dcterms.references | Jones A, Montgomery H, Woods D. Human Performance: A Role for the ACE Genotype?. Exercise and Sport Sciences Reviews. 2002; 30 (4): 184-190. https://doi.org/10.1097/00003677-200210000-00008 | eng |
dcterms.references | Fedotovskaya O, Danilova A, Akhmetov I. Effect of AMPD1 Gene Polymorphism on Muscle Activity in Humans. Bull Exp Biol Med. 2013; 154:489-491. https://doi.org/10.1007/s10517-013-1984-9 | eng |
dcterms.references | Semenova E, Zempo H, Miyamoto E, Kumagai H. Genome-Wide Association Study Identifies CDKN1A as a Novel Locus Associated with Muscle Fiber Composition. Cells. 2022; 11(23):3910. https://doi.org/10.3390/cells11233910 | eng |
dcterms.references | Thakkar D, Sicova N, Guest B, Garcia B. HFE Genotype and Endurance Performance in Competitive Male Athletes. Med. Sci. Sports Exerc. 2021; 53(7):1385-1390. https://doi.org/10.1249/MSS.0000000000002595. | eng |
dcterms.references | Riguene E, Theodoridou M, Barrak L, Elrayess M, Nomikos M. The relationship between changes in MYBPC3 single-nucleotide polymorphism-associated metabolites and elite athletes’ adaptive cardiac function. Journal of Cardiovascular Development and Disease. 2023;10(9): 400. https://doi.org/10.3390/jcdd10090400 | eng |
dcterms.references | Malczewska J, Orysiak J, Majorczyk E, Sitkowski D, Starczewski M, Żmijewski P. HIF-1α and NFIA-AS2 Polymorphisms as Potential Determinants of Total Hemoglobin Mass in Endurance Athletes. Journal of Strength and Conditioning Research. 2022; 36(6):1596-1604. https://doi.org/10.1519/JSC.0000000000003686. | eng |
dcterms.references | Ahmetov I, Mozhayskaya I, Flavell D. PPARalpha gene variation and physical performance in Russian athletes. Eur. J. Appl. Physiol. 2006; 97:103-108. https://doi.org/10.1007/s00421-006-0154-4 | eng |
dcterms.references | Yvert T, Miyamoto E, Tobina T. PPARGC1A rs8192678 and NRF1 rs6949152 Polymorphisms Are Associated with Muscle Fiber Composition in Women. Genes. 2020; 11:1012. https://doi.org/10.3390/genes11091012 | eng |
dcterms.references | Willems S, Wright D, Day F, Trajanoska K, Joshi P, Morris J, Matteini A, Garton F, Grarup N, Oskolkov N. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nat. Commun. 2017; 8:16015. https://doi.org/10.1038/ncomms16015 | eng |
dcterms.references | Tikkanen E, Gustafsson S, Amar D. Biological Insights Into Muscular Strength: Genetic Findings in the UK Biobank. Sci Rep. 2018; 8(1):6451. https://doi.org/10.1038/s41598-018-24735-y | eng |
dcterms.references | Wiezlak M, Diring J, Abella J, Mouilleron S, Way M, McDonald N, Treisman R. G-actin regulates the shuttling and PP1 binding of the RPEL protein Phactr1 to control actomyosin assembly. J. Cell Sci. 2012; 125(23): 5860-5872. https://doi.org/10.1242/jcs.112078 | eng |
dcterms.references | González G. Distribución alélica en genes relacionados con el rendimiento deportivo en atletas elite del Valle del Cauca. [Tesis de maestría]. Cali: Universidad del Valle; 2015. https://bibliotecadigital.univalle.edu.co/server/api/core/bitstreams/4331ab22- 715a-4e95-968d-e3bbfcf4318f/content | spa |
dcterms.references | Mina Y. Functional Integromics of Physical exercise in athletes from Valle del Cauca. [Tesis de doctorado]. Cali: Universidad del Valle; 2021 | eng |
dcterms.references | Ahmetov I, Hall E, Semenova E, Pranckevičienė E, Ginevičienė V. Chapter Five – Advances in sports genomics. Advances in Clinical Chemistry. 2022; 107:215- 263. https://doi.org/10.1016/bs.acc.2021.07.004 | eng |
dcterms.references | North K, Yang N, Wattanasirichaigoon D, Mills M, Easteal S, Beggs A. A common nonsense mutation results in α-actinin-3 deficiency in the general population. Nat. Genet. 1999; 21:353–354. https://doi.org/10.1038/7675 | eng |
dcterms.references | Puthucheary Z, Skipworth J, Rawal J. The ACE Gene and Human Performance: 12 Years On. Sports Med. 2011; 41: 433–448. https://doi.org/10.2165/11588720- 000000000-00000 | eng |
dcterms.references | Horozoglu C, Emre H, Karaagac A, Kucukhuseyin O, Bilgic T, Himmetoglu S, Gheybi A, Yaylim I, Zeybek U. Effects on genetic variations of MLCK2, AMPD1 and COL5A1 on muscle endurance. Rev Bras Med Esporte. 2022; 28(4): 261- 266. https://doi.org/10.1590/1517-8692202228022021_0180 | eng |
dcterms.references | Semenova E, Miyamoto E, Akimov E. The association of HFE gene H63D polymorphism with endurance athlete status and aerobic capacity: novel findings and a meta-analysis. Eur J Appl Physiol. 2020; 120: 665–673. https://doi.org/10.1007/s00421-020-04306-8 | eng |
dcterms.references | Al-Khelaifi F, Borisov O, Generozov E, Miyamoto E, Miyachi M, Naito H. Genome-wide association study reveals a novel association between MYBPC3 gene polymorphism, endurance athlete status, aerobic capacity and steroid metabolism. Frontiers in genetics. 2020; 11: 533511. https://doi.org/10.3389/fgene.2020.00595 | eng |
dcterms.references | Ahmetov I, Kulemin N, Popov D, Naumov V, Akimov E, Bravy Y. Genome-wide association study identifies three novel genetic markers associated with elite endurance performance. Biology of Sport. 2015; 32(1): 3-9. https://doi.org/10.5604/20831862.1124568 | eng |
dcterms.references | Lopez-Leon S, Tuvblad C, Forero D. Sports genetics: the PPARA gene and athletes’ high ability in endurance sports. A systematic review and meta-analysis. Biology of Sport. 2016; 33(1): 3-6. https://doi.org/10.5604/20831862.1180170 | eng |
dcterms.references | Tharabenjasin P, Pabalan N, Jarjanazi H. Association of PPARGC1A Gly428Ser (rs8192678) polymorphism with potential for athletic ability and sports performance: A meta-analysis. PLoS ONE. 2019; 14(1): e0200967. https://doi.org/10.1371/journal.pone.0200967 | eng |
dcterms.references | Pearson, K. On the test of goodness of fit. Biometrika 1922; 14: 186-191. | eng |
dcterms.references | Edwards D, Forster J, Chagné D, Batley J. What Are SNPs?. Association Mapping in Plants. 2007; 41-52. https://doi.org/10.1007/978-0-387-36011-9_3 | eng |
dcterms.references | Shastry B. SNPs: Impact on Gene Function and Phenotype. Single Nucleotide Polymorphisms. Methods in Molecular Biology™. 2009; vol 578: 3-22. https://doi.org/10.1007/978-1-60327-411-1_1 | eng |
dcterms.references | Frazer K, Murray S, Schork N. Human genetic variation and its contribution to complex traits. Nat Rev Genet. 2009; 10: 241–251. https://doi.org/10.1038/nrg2554 | eng |
dcterms.references | Lippi G, Longo U, Maffulli N. Genetics and sports. British Medical Bulletin. 2010; 93 (1): 27–47. https://doi.org/10.1093/bmb/ldp007 | eng |
dcterms.references | García EC. Genética, actividad física y deporte para la salud. Archivos de medicina del deporte: revista de la Federación Española de Medicina del Deporte y de la Confederación Iberoamericana de Medicina del Deporte. 2013; 30(155): 167-171. https://archivosdemedicinadeldeporte.com/articulos/upload/REV_02_Genetica_ 155.pdf | spa |
dcterms.references | López M, Ribelles A, Ruiz-Rosety J, Carrasco M, De Vaca S, Rosety M. Estudio bioquímico en ciclistas. Modificaciones de los valores basales tras el ejercicio intenso. Apunts. Medicina de l'Esport. 1995; 32(125): 153-156. https://doi.org/10.1016/S1886-6581(95)75867-4 | spa |
dcterms.references | Faria I. Applied physiology of cycling. Sports Medicine. 1984; 1:187-204. https://doi.org/10.2165/00007256-198401030-00003. | eng |
dcterms.references | Lakshmanan C, Jayakumar S. Correlation of biochemical variables and long distance performance of cyclists. International Journal of Physiology, Nutrition and Physical Education. 2020; 6(2): 299-301. https://www.journalofsports.com/pdf/2020/vol5issue2/PartE/7-1-44-985.pdf | eng |
dcterms.references | Storey A, Smith H. Unique Aspects of Competitive Weightlifting. Sports Med. 2012; 42: 769–790. https://doi.org/10.1007/BF03262294 | eng |
dcterms.references | Minigalin A, Shumakov A, Baranova T. Acute and delayed biochemical and physiological effects of exhaustive weightlifting exercise. Hum Physiol. 2011; 37:200–205. https://doi.org/10.1134/S0362119711010129 | eng |
dcterms.references | Firman G. Fisiología del ejercicio físico. Corrientes, Argentina: Facultad de Medicina de la UNNE. 2000. https://www.academia.edu/21897811/CATEDRA_No_1_DE_FISIOLOG%C3%8 DA_HUMANA_FACULTAD_DE_MEDICINA_DE_LA_UNNE | spa |
dcterms.references | National Center for Biotechnology Information. Gen: ACTN3 actinin alpha 3 [Internet]. National Library of Medicine. 2023. [Citado 26 de agosto de 2023]. Recuperado a partir de: https://www.ncbi.nlm.nih.gov/gene/89ACE | eng |
dcterms.references | UniProt Consortium. UniProtKB - Q08043 (ACTN3_HUMAN): Alpha-actinin-3 [Internet]. UniProt. 2023. [Citado 26 de agosto de 2023]. Recuperado a partir de: https://www.uniprot.org/uniprotkb/Q08043/entry. | eng |
dcterms.references | National Center for Biotechnology Information. Gen: ACE angiotensin I converting enzyme [Internet]. National Library of Medicine. 2023. [Citado 30 de agosto de 2023]. Recuperado a partir de: https://www.ncbi.nlm.nih.gov/gene/1636 | eng |
dcterms.references | UniProt Consortium. UniProtKB - P12821 (ACE_HUMAN): Angiotensinconverting enzyme [Internet]. UniProt. 2023. [Citado 30 de agosto de 2023]. Recuperado a partir de: https://www.uniprot.org/uniprotkb/P12821/entry | eng |
dcterms.references | De Oliveira Z. Estudio molecular de los genes ECA, ACTN-3 y CK-M en practicantes de atletismo de alto rendimiento – énfasis en pruebas de potencia anaeróbica. [Tesis de doctorado]. Murcia: Universidad Católica de Murcia; 2019. https://repositorio.ucam.edu/bitstream/handle/10952/4096/Tesis.pdf?sequence =1&isAllowed=y | spa |
dcterms.references | Ginevičienė V, Jakaitienė A, Pranculis A, Milašius K, Tubelis L, Utkus A. AMPD1 rs17602729 is associated with physical performance of sprint and power in elite Lithuanian athletes. BMC genetics. 2014; 15: 58. https://doi.org/10.1186/1471- 2156-15-58 | eng |
dcterms.references | Muniesa C, Santiago C, Gomez F, Lucia A, Diez C, Lapeña A. Genética y deporte. Publicaciones oficiales de la Subdireccion General de Deporte y Salud. Madrid, España. 2011. https://munideporte.com/imagenes/documentacion/ficheros/02C044F6.pdf | spa |
dcterms.references | Verwijs S, Pinto Y, Kuster D, van der Velden J, Limpens J, van Hattum J, van der Crabben S, Lekanne R, Wilde A, Jørstad H. Beneficial Effects of Cardiomyopathy-Associated Genetic Variants on Physical Performance: A Hypothesis-Generating Scoping Review Cardiology. 2022; 147(1): 90–97. https://doi.org/10.1159/000520471 | eng |
dcterms.references | Ahmetov I, Fedotovskaya O. Chapter Six – Current Progress in Sports Genomics. Advances in Clinical chemistry. 2015; 70: 247-314. https://doi.org/10.1016/bs.acc.2015.03.003 | eng |
dcterms.references | Ahmetov I, Egorova E, Mustafina L. The PPARA gene polymorphism in team sports athletes. Central European Journal of Sport Sciences and Medicine. 2013; 1: 19-24. https://www.researchgate.net/publication/259104985_The_PPARA_gene_poly morphism_in_team_sports_athletes | eng |
dcterms.references | Maciejewska A, Sawczuk M, Cieszczyk P, Mozhayskaya A, Ahmetov I. The PPARGC1A gene Gly482Ser in Polish and Russian athletes, Journal of Sports Sciences. 2012; 30(1): 101-113. https://doi.org/10.1080/02640414.2011.623709LRPPRC | eng |
dcterms.references | Cui J, Wang L, Ren X, Zhang Y, Zhang H. LRPPRC: A Multifunctional Protein Involved in Energy Metabolism and Human Disease. Frontiers in physiology. 2019; 10: 595. https://doi.org/10.3389/fphys.2019.00595 | eng |
dcterms.references | Piwko W, Mlejnkova L, Mutreja K, Ranjha L, Stafa D, Smirnov A, Brodersen M, Zellweger R, Sturzenegger A, Janscak P, Lopes M, Peter M, Cejka P. The MMS22L-TONSL heterodimer directly promotes RAD51-dependent recombination upon replication stress. The EMBO journal. 2016; 35(23): 2584– 2601. https://doi.org/10.15252/embj.201593132 | eng |
dcterms.references | Diaz P, Fernandez P. Asociación de variables cualitativas: El test exacto de Fisher y el test de McNemar. Cadernos de atención primaria. 2004; 11(5): 304- 308 | eng |
dcterms.references | Peña O, Aideé S, Guereca J, Carrasco C, Enríquez L. Polimorfismos de los genes ACTN3 y ACE y su relación con el rendimiento deportivo en deportes individuales: Una revisión sistemática. Tip Revista Especializada en Ciencias Químico-Biológicas. 2022; 25:1-11. https://doi.org/10.22201/fesz.23958723e.2022.480 | spa |
dcterms.references | Ma F, Yang Y, Li X, Zhou F, Gao C, Li M. The Association of Sport Performance with ACE and ACTN3 Genetic Polymorphisms: A Systematic Review and MetaAnalysis. PLoS ONE. 2013; 8(1): e54685. https://doi.org/10.1371/journal.pone.0054685 | eng |
dcterms.references | Powers S, Howley E. Endurance exercise training and the regulation of skeletal muscle metabolism. Journal of Applied Physiology. 2005; 98(6): 2108–2112. https://doi.org/10.1152/japplphysiol.01371.2004 | eng |
dcterms.references | Maciejewska-Skrendo A, Buryta M, Czarny W, Król P, Stastny P, Petr M, Safranow K, Sawczuk M. The Polymorphisms of the Peroxisome-Proliferator Activated Receptors' Alfa Gene Modify the Aerobic Training Induced Changes of Cholesterol and Glucose. Journal of clinical medicine. 2019; 8(7): 1043. https://doi.org/10.3390/jcm8071043 | eng |
dcterms.references | Hall E, Lockey S, Heffernan S, Herbert A, Stebbings G, Day S, Collins M, Pitsiladis Y, Erskine R, Williams A. The PPARGC1A Gly482Ser polymorphism is associated with elite long-distance running performance. Journal of Sports Sciences. 2023; 41(1): 56-62. https://doi.org/10.1080/02640414.2023.2195737SNP | eng |
dcterms.references | Kikuchi N, Moreland E, Homma H, Semenova E, Saito M, Larin A, Kobatake N, Yusupov R, Okamoto T, Nakazato K. Genes and Weightlifting Performance. Genes. 2022; 13: 25. https://doi.org/10.3390/genes13010025SNPMMS22L | eng |
dcterms.references | Willems S, Wright D, Day F, Trajanoska K, Joshi P, Morris J, Matteini A, Garton F, Grarup N. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nat. Commun. 2017; 8: 16015. https://doi.org/10.1038/ncomms16015 | eng |
dcterms.references | Moreland E, Borisov O, Semenova E, Larin A, Andryushchenko O, Andryushchenko L, Generozov E, Williams A, Ahmetov I. Polygenic profile of elite strength athletes. The Journal of Strength & Conditioning Research. 2022; 36 (9): 2509-2514. https://doi.org/10.1519/JSC.0000000000003901 | eng |
dcterms.references | Ward, R. M., Schmieder, R., Highnam, G., & Mittelman, D. (2013). Big data challenges and opportunities in high-throughput sequencing. Systems Biomedicine, 1(1), 29–34. https://doi.org/10.4161/sysb.24470 | eng |
dcterms.references | Ministerio de Salud de Colombia. Resolución No. 8430 de 1993. Por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud. Disponible en: https://www.minsalud.gov.co/sites/rid/lists/bibliotecadigital/ride/de/dij/resolucion8430-de-1993.pdf. Publicado en 1993. | spa |
dcterms.references | Consejo Internacional de Organizaciones Médicas Científicas (CIOMS) & Organización Mundial de la Salud (OMS). Pautas éticas internacionales para la investigación relacionada con la salud con seres humanos. Disponible en: https://cioms.ch/wp-content/uploads/2018/01/CIOMSEthicalGuideline_SP_WEB.pdf. Publicado en 2016 | spa |
dcterms.references | Broad Institute. VCF (Variant Call Format). GATK. Disponible en: https://gatk.broadinstitute.org/hc/en-us/articles/360035531692-VCF-VariantCall-Format . Accedido el 23 de febrero de 2024 | spa |
dcterms.references | Arroyo W. Genética y fútbol: asociación de los polimorfismos genéticos ACTN3 y ACE-I/D en jugadores de fútbol: Revisión literaria. Retos. 2021; 39:929-936. https://doi.org/10.47197/retos.v0i39.79347 | spa |
dcterms.references | Hutton E., Vakoc C., Siepel A. ACE: a probabilistic model for characterizing genelevel essentiality in CRISPR screens. Genome Biol. 2021; 22: 278. https://doi.org/10.1186/s13059-021-02491-z | eng |
dcterms.references | Arroyo W., Rodríguez A., Escarria A. La nueva frontera de la preparación deportiva, la genética y el polimorfismo ACE I/D en atletas de resistencia. Revista Digital: Actividad Física y Deporte. (2020); 6(2): 100-117. https://doi:10.31910/rdafd.v6.n2.2020.1571 | spa |
dcterms.references | Andrade O., Lavados P., Valdebenito C., Herrera C., Carrasco C., Salazar L. Polimorfismo Genético ACTN3 R577X en Deportistas Universitarios Chilenos. Int. J. Morphol. 2019; 37(4): 1493-1497. http://dx.doi.org/10.4067/S0717- 95022019000401493 | spa |
dcterms.references | Ben S., Eliakim A., Nemet D., Rabinovich M., Kassem E., Meckel Y. ACTN3 Polymorphism: Comparison Between Elite Swimmers and Runners. Sports medicine – open. (2015); 1(1): 13. https://doi.org/10.1186/s40798-015-0023-y | eng |
dcterms.references | Norman B., Mahnke D., Vallis A., Sabina R. Genetic and other determinants of AMP deaminase activity in healthy adult skeletal muscle. Journal of applied physiology (Bethesda, Md.: 1985). 1998; 85(4):1273–1278. https://doi.org/10.1152/jappl.1998.85.4.1273 | eng |
dcterms.references | Fischer H., Esbjörnsson M., Sabina R., Strömberg A., Peyrard M., Norman B. AMP deaminase deficiency is associated with lower sprint cycling performance in healthy subjects. Journal of applied physiology (Bethesda, Md.: 1985). 2007; 103(1): 315–322. https://doi.org/10.1152/japplphysiol.00185.2007 | eng |
dcterms.references | Rubio J., Martín M., Rabadán M., Gómez F., San Juan A., Alonso J., Chicharro J., Pérez M., Arenas J., Lucia, A. Frequency of the C34T mutation of the AMPD1 gene in world-class endurance athletes: does this mutation impair performance?. Journal of applied physiology (Bethesda, Md.: 1985). 2005; 98(6): 2108–2112. https://doi.org/10.1152/japplphysiol.01371.2004 | eng |
dcterms.references | Ticli G., Cazzalini O., Stivala L., Prosperi, E. Revisiting the Function of p21CDKN1A in DNA Repair: The Influence of Protein Interactions and Stability. International journal of molecular sciences. 2022; 23(13): 7058. https://doi.org/10.3390/ijms23137058 | eng |
dcterms.references | Van Rooij E., Quiat D., Johnson B., Sutherland L., Qi X., Richardson J., Kelm R., Olson E. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Developmental cell. 2009; 17(5): 662–673. https://doi.org/10.1016/j.devcel.2009.10.013 | eng |
dcterms.references | Wang J., Song C., Cao X., Li H., Cai H., Ma Y., Huang Y., Lan X., Lei C., Ma Y., Bai Y., Lin F., Chen, H. MiR-208b regulates cell cycle and promotes skeletal muscle cell proliferation by targeting CDKN1A. Journal of cellular physiology. 2019; 234(4): 3720–3729. https://doi.org/10.1002/jcp.27146 | eng |
dcterms.references | Võsa U., Claringbould A., Westra H., Bonder M., Deelen P., Zeng B., Kirsten H., Saha A., Kreuzhuber R., Yazar S., Brugge H., Oelen R., de Vries D., van der Wijst M., Kasela S., Pervjakova N., Alves I., Favé M., Agbessi M., Christiansen M., Franke L. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nature genetics. 2021; 53(9): 1300–1310. https://doi.org/10.1038/s41588-021-00913-z | eng |
dcterms.references | Hollerer I., Bachmann A., Muckenthaler M. Pathophysiological consequences and benefits of HFE mutations: 20 years of research. Haematologica. 2017; 102(5): 809–817. https://doi.org/10.3324/haematol.2016.160432 | eng |
dcterms.references | McKay A., Pyne D., Burke L., Peeling P. Iron Metabolism: Interactions with Energy and Carbohydrate Availability. Nutrients. 2020;12(12): 3692. https://doi.org/10.3390/nu12123692 | eng |
dcterms.references | Wallace D. The Regulation of Iron Absorption and Homeostasis. The Clinical biochemist. Reviews. (2016; 37(2): 51–62. | eng |
dcterms.references | Samarasena J., Winsor W., Lush R., Duggan P., Xie Y., Borgaonkar M. Individuals homozygous for the H63D mutation have significantly elevated iron indexes. Digestive diseases and sciences. 2006; 51(4): 803–807. https://doi.org/10.1007/s10620-006-3210-3 | eng |
dcterms.references | Feder J., Penny D., Irrinki A., Lee V., Lebrón J., Watson N., Tsuchihashi Z., Sigal E., Bjorkman P., Schatzman R. The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding. Proceedings of the National Academy of Sciences of the United States of America. 1998; 95(4): 1472–1477. https://doi.org/10.1073/pnas.95.4.1472 | eng |
dcterms.references | Bers D. M. Cardiac excitation-contraction coupling. Nature. 2002; 415(6868): 198–205. https://doi.org/10.1038/415198a | eng |
dcterms.references | Moss R., Fitzsimons D., Ralphe J. Cardiac MyBP-C regulates the rate and force of contraction in mammalian myocardium. Circulation research. 2015; 116(1): 183–192. https://doi.org/10.1161/CIRCRESAHA.116.300561 | eng |
dcterms.references | Al-Khelaifi F., Diboun I., Donati F., Botrè F., Abraham D., Hingorani A., Albagha O., Georgakopoulos C., Suhre K., Yousri N., Elrayess M. Metabolic GWAS of elite athletes reveals novel genetically-influenced metabolites associated with athletic performance. Scientific reports. 2019; 9(1): 19889. https://doi.org/10.1038/s41598-019-56496-7 | eng |
dcterms.references | Al-Khelaifi F., Diboun I., Donati F., Botrè F., Alsayrafi M., Georgakopoulos C., Suhre K., Yousri N., Elrayess M. A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines. Sports medicine – open. 2018; 4(1): 2. https://doi.org/10.1186/s40798-017-0114-z | eng |
dcterms.references | Yañez F. Síndrome corazón de atleta: historia, manifestaciones morfológicas e implicancias clínicas. Rev Chil Cardiol. 2012; 31(3): 215-225. http://dx.doi.org/10.4067/S0718-85602012000300005 | spa |
dcterms.references | Ling H., Fabbri M., Calin G. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nature reviews. Drug discovery. 2013; 12(11): 847–865. https://doi.org/10.1038/nrd4140 | eng |
dcterms.references | Starnes L., Sorrentino A., Pelosi E., Ballarino M., et al. NFI-A directs the fate of hematopoietic progenitors to the erythroid or granulocytic lineage and controls βglobin and G-CSF receptor expression. Blood. 2009; 114 (9): 1753–1763. https://doi.org/10.1182/blood-2008-12-196196 | eng |
dcterms.references | Bouchard C., Sarzynski M., Rice T., Kraus W., Church T., Sung Y., Rao D., Rankinen T. Genomic predictors of the maximal O₂ uptake response to standardized exercise training programs. Journal of applied physiology (Bethesda, Md.: 1985). 2011; 110(5): 1160–1170. https://doi.org/10.1152/japplphysiol.00973.2010 | eng |
dcterms.references | Timmons J., Knudsen S., Rankinen T., Koch L., Sarzynski M., Jensen T., Keller P., Scheele C., Vollaard N. B., Nielsen S., Akerström T., MacDougald O., Jansson E., Greenhaff P., Tarnopolsky M., van Loon L., Pedersen B., Sundberg C., Wahlestedt C., Britton S., Bouchard C. Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. Journal of applied physiology (Bethesda, Md.: 1985). 2010; 108(6): 1487–1496. https://doi.org/10.1152/japplphysiol.01295.2009 | eng |
dcterms.references | Liu F., Hendriks A., Ralf A., Boot A., Benyi E., Savendahl L. et al. Common DNA variants predict tall stature in Europeans. HUMAN GENETICS. 2014; 133(5): 587-597. https://dor.org/10.1007/s00439-013-1394-0 | eng |
dcterms.references | Raeder C., Wiewelhove T., Schneider C., Döweling A., Kellmann M., Meyer T., Ferrauti A. Effects of active recovery on muscle function following high-intensity training sessions in elite Olympic weightlifters. Adv Skelet Muscle Funct Assess. 2017; 1(1), 3-12 | eng |
dcterms.references | Maciejewska-Skrendo A., Mieszkowski J., Kochanowicz A., Niespodziński B., Cieszczyk P., Leźnicka K., Leońska-Duniec A., Kolbowicz M., Kaczmarczyk M., Piskorska E., Stankiewicz B., Stępniak R., Mostowik A., Zawartka M., RzeszutkoBełzowska A., Massidda M., Caló C., Kemerytė-Riaubienė E., Sawczuk M. Does the PPARA Intron 7 Gene Variant (rs4253778) Influence Performance in Power/Strength-Oriented Athletes? A Case-Control Replication Study in Three Cohorts of European Gymnasts. Journal of human kinetics. 2021; 79: 77–85. https://doi.org/10.2478/hukin-2020-0060 | eng |
dcterms.references | Desvergne B., Wahli, W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocrine reviews.1999; 20(5): 649–688. https://doi.org/10.1210/edrv.20.5.0380 | eng |
dcterms.references | Russell A., Feilchenfeldt J., Schreiber S., Praz M., Crettenand A., Gobelet C., Meier C., Bell D., Kralli A., Giacobino, J., Dériaz, O. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferatoractivated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes. 2003; 52(12): 2874–2881. https://doi.org/10.2337/diabetes.52.12.2874 | eng |
dcterms.references | Chen E., Mazzotti D., Furuya T., Cendoroglo M., Ramos L., Araujo L., Burbano R., Smith, M. Association of PPARalpha gene polymorphisms and lipid serum levels in a Brazilian elderly population. Experimental and molecular pathology. 2010; 88(1): 197–201. https://doi.org/10.1016/j.yexmp.2009.10.001 | eng |
dcterms.references | Cresci S., Jones P., Sucharov C., Marsh S., Lanfear D., Garsa A., Courtois M., Weinheimer C., Wu J., Province M., Kelly D., McLeod H., Spertus J. Interaction between PPARA genotype and beta-blocker treatment influences clinical outcomes following acute coronary syndromes. Pharmacogenomics. 2008; 9(10): 1403–1417. https://doi.org/10.2217/14622416.9.10.1403 | eng |
dcterms.references | Allard M., Schonekess O., Henning D., English D., Lopaschuk D. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Heart and circulatory physiology. 1994; 267:H742-H750. https://doi.org/10.1152/ajpheart.1994.267.2.H742 | eng |
dcterms.references | Petr M, Stastny P, Pecha O, Šteffl M, Šeda O, et al. Correction: PPARA Intron Polymorphism Associated with Power Performance in 30-s Anaerobic Wingate Test. PLOS ONE. 2015; 10(7). https://doi.org/10.1371/journal.pone.0134424 | eng |
dcterms.references | Bulğay C., Zorba E., Akman O., Bayraktar I., et al. Evaluation of Association between PPARGC1A Gene Polymorphism and Competitive Performance of Elite Athletes. Gazi Beden Eğitimi Ve Spor Bilimleri Dergisi. 2022; 27(4): 323-332. https://doi.org/10.53434/gbesbd.1126033 | eng |
dcterms.references | Lin J., Wu H., Tarr P. et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature. 2002; 418: 797–801. https://doi.org/10.1038/nature00904 | eng |
dcterms.references | Choi Y., Hong J., Lim S., Ko K., Pak Y. Impaired coactivator activity of the Gly482 variant of peroxisome proliferator-activated receptor gamma coactivator1alpha (PGC-1alpha) on mitochondrial transcription factor A (Tfam) promoter. Biochemical and biophysical research communications. 2006; 344(3): 708–712. https://doi.org/10.1016/j.bbrc.2006.03.193 | eng |
dcterms.references | Michael L., Wu Z., Cheatham R., Puigserver P., Adelmant G., Lehman J., Kelly D., Spiegelman B. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC1. Proceedings of the National Academy of Sciences of the United States of America. 2001; 98(7): 3820–3825. https://doi.org/10.1073/pnas.061035098 | eng |
dcterms.references | Zhang S., Lu W., Yan L., Wu M., Xu M., Chen L., Cheng H. Association between peroxisome proliferator-activated receptor-gamma coactivator-1alpha gene polymorphisms and type 2 diabetes in southern Chinese population: role of altered interaction with myocyte enhancer factor 2C. Chinese medical journal. 2007; 120(21): 1878–1885. Disponible en: https://mednexus.org/doi/pdf/10.5555/cmj.0366-6999.120.21.p1878.01 | eng |
dcterms.references | Liu L., Amy V., Liu G., McKeehan W. Novel complex integrating mitochondria and the microtubular cytoskeleton with chromosome remodeling and tumor suppressor RASSF1 deduced by in silico homology analysis, interaction cloning in yeast, and colocalization in cultured cells. In vitro cellular & developmental biology. Animal. 2002; 38(10): 582–594. https://doi.org/10.1290/1543- 706x(2002)38<582:ncimat>2.0.co;2 | eng |
dcterms.references | Cui J., Wang L., Ren X., Zhang Y., Zhang H. LRPPRC: A Multifunctional Protein Involved in Energy Metabolism and Human Disease. Frontiers in physiology. 2019;10, 595. https://doi.org/10.3389/fphys.2019.00595 | eng |
dcterms.references | Maciejewska-Skrendo, A., Sawczuk, M., Cięszczyk P., Ahmetov I. Genes and power athlete status. In Sports, Exercise, and Nutritional Genomics; Academic Press: Cambridge. MA, USA. 2019: 41–72. Disponible en: https://www.researchgate.net/publication/335513889_Genes_and_power_athlet e_status | eng |
dcterms.references | Hughes D., Ellefsen S., Baar K. Adaptations to Endurance and Strength Training. Cold Spring Harbor perspectives in medicine. 2018; 8(6): a029769. https://10.1101/cshperspect.a029769 | eng |
dcterms.references | Joyner M., Coyle E. Endurance exercise performance: the physiology of champions. The Journal of physiology. 2008; 586(1): 35-44. https://10.1113/jphysiol.2007.143834 | eng |
dcterms.references | López J., Fernández A. Fisiología del ejercicio. Madrid: Editorial Médica Panamericana, 2008. Disponible en: http://fisico.uta.cl/documentos/fisiologia/Fisiolog%C3%ADa%20del%20Ejercicio ,%20L%C3%B3pez%20Chicharro.pdf | spa |
dcterms.references | Qaisar R., Bhaskaran S., Van Remmen H. Muscle fiber type diversification during exercise and regeneration. Free radical biology & medicine. 2016; 98: 56– 67. https://10.1016/j.freeradbiomed.2016.03.025 | eng |
dcterms.references | Trujano M., Valerio J., López R., Ruíz A. Frecuencia del alelo menor en predicción genómica para características de crecimiento en bovinos Suizo Europeo. Revista bio ciencias. 2021; 8: e1052. https://doi.org/10.15741/revbio.08.e1052 | spa |
dcterms.references | Tennessen J., Bigham A., O'Connor T., Fu W., Kenny E., Gravel S., McGee S., Do R., Liu X., Jun G., Kang H., Jordan D., Leal S., Gabriel S., Rieder M., Abecasis G., Altshuler D., Nickerson D., Boerwinkle E., Sunyaev S., et al. NHLBI Exome Sequencing Project. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science (New York, N.Y.). 2012; 337(6090): 64–69. https://10.1126/science.1219240 | eng |
dcterms.references | Carballido S. Estudio de asociación de variantes genéticas con la miocardiopatía hipertrófica. [Tesis de maestría]. España: Universidad de A Coruña; 2017. Disponible en: http://eio.usc.es/pub/mte/descargas/ProyectosFinMaster/Proyecto_1459.pdf | spa |
dcterms.references | Turner S., Armstrong L., Bradford Y. Quality control procedures for genome wide association studies. Current protocols in human genetics 1. 2011; Unit 1. https://10.1002/0471142905.hg0119s68 | eng |
dcterms.references | National Center for Biotechnology Information. SNP attributes [Internet]. Disponible en: https://www.ncbi.nlm.nih.gov/projects/SNP/docs/rs_attributes.html | eng |
dcterms.references | Reich D. (2009). Reconstructing Native American population history. Nature, 488(7411), 370-374. https://10.1038/nature11258 | eng |
dcterms.references | NCBI. Allele Frequency Aggregator (ALFA) Release 2 is available! NCBI Insights [Internet]. 2021. Disponible en: https://ncbiinsights.ncbi.nlm.nih.gov/2021/01/22/allele-frequency-aggregator-2/ | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | |
sb.programa | Maestría en Genética | spa |
sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: