Identificación de variantes en genes asociados a la resistencia y la fuerza muscular en dos grupos de deportistas del Pacífico colombiano
Cargando...
Fecha
2024
Autores
Fontecha Pacheco, Briyis Suranny
Título de la revista
ISSN de la revista
Título del volumen
Editor
Ediciones Universidad Simón Bolívar
Facultad de Ciencias Básicas y Biomédicas
Facultad de Ciencias Básicas y Biomédicas
Resumen
“Sportomics” u ómica del deporte es un enfoque interdisciplinario que combina la
genómica, proteómica y metabolómica en las ciencias deportivas, cuyo objetivo
principal es descubrir los mecanismos moleculares del rendimiento deportivo
mediante la identificación de biomarcadores. Múltiples polimorfismos han sido
reportados en genes que influyen en el rendimiento de deportistas cuyas disciplinas
se basan en la resistencia y fuerza muscular. En Colombia, la investigación en
genética deportiva es limitada, lo que genera una brecha en el conocimiento de esta
rama de las ciencias en el ámbito nacional, por lo que, al disponer de la
secuenciación genómica de dos grupos de deportistas de alto rendimiento del Valle
del Cauca, específicamente halterofilistas y ciclistas, se llevó a cabo el presente
estudio. Estas secuenciaciones fueron obtenidas a partir de un macroproyecto
inicial denominado “Identificación de variantes en genes asociados con la
modulación autonómica por la variabilidad de la frecuencia cardiaca en deportistas
de alto rendimiento del Valle del Cauca” del Dr. Yecid Mina de la Escuela Nacional
del Deporte, quien para los fines pertinentes de este estudio facilito los datos. Tras
una revisión en la literatura se seleccionaron los siguientes genes por su función,
impacto y asociación de los diferentes genotipos en el rendimiento de los deportistas
que se desempeñaban en la población de estudio: ACTN3, involucrado en la
contracción muscular rápida, importante para la fuerza explosiva; ECA, regulador
de la presión arterial y el flujo sanguíneo, impactando la resistencia cardiovascular;
AMPD1, el cual participa en el metabolismo energético, crucial para la producción
de energía durante el ejercicio; CDKN1A, que interviene en la reparación del ADN
y la apoptosis celular, claves para la recuperación muscular; HFE, regulador de la
absorción de hierro, esencial para el transporte de oxígeno a los músculos;
MYBPC3, que influye en la estructura y función del corazón, vital para la resistencia
cardiovascular; NFIA-AS2, modulador de la respuesta al estrés, importante para la
adaptación al entrenamiento; PPARA y PPARGC1A, que intervienen en el
metabolismo de lípidos y glucosa, claves para la producción de energía; LRPPRC,
que participa en la regulación del crecimiento muscular, importante para la
hipertrofia; MMS22L, que interviene en la reparación del ADN, crucial para la
recuperación muscular; y PHACTR1, regulador de la apoptosis celular, importante
para la eliminación de células dañadas.
El objetivo de este estudio fue determinar la presencia de variantes genéticas en los
genes ACTN3, ECA, AMPD1, CDKN1A, HFE, MYBPC3, NFIA-AS2, PPARA,
PPARGC1A, LRPPRC, MMS22L y PHACTR1 en dos grupos de deportistas de alto
rendimiento del pacifico colombiano: halterofilistas y ciclistas. Mediante
herramientas de bioinformática se realizó el análisis de homología de secuencias
en donde se determinó la presencia de polimorfismos de único nucleótido (Single
Nucleotide Polymorphism SNPs) en las secuenciaciones genéticas de diecinueve
deportistas de alto rendimiento de los cuales once eran halterofilistas y ocho
ciclistas.
En el análisis genético y estadístico no se revelaron diferencias significativas entre
las dos poblaciones de deportistas en cuanto a las variantes genéticas identificadas.
En el caso de los halterofilistas: el 54,5% presentó el SNP C > T en el gen ACTN3,
el 72,7% el SNP G > A en el gen ECA, el 27,3% el SNP A > C en el gen CDKN1A,
el 9,1% el SNP C > G en el gen HFE, el 54,5% presentó el SNP C > T en el gen
MYBPC3, el 18,2% el SNP G > T en el gen NFIA-AS2, el 54,5% el SNP G > C en el
gen PPARA, el 27,3% el SNP C > T en el gen PPARGC1A, el 18,2% el SNP A > G
en el gen LRPPRC, el 90,9% el SNP T > C en el gen MMS22L y el 63,6% el SNP C
> T en el gen PHACTR1. No hubo presentación de polimorfismos en el gen AMPD1.
En el caso de los ciclistas: el 62,5% presento el SNP C > T en el gen ACTN3, el
25,0% el SNP G > A en el gen AMPD1, el 75,0% el SNP G > A en el gen ECA, el
25,0% el SNP A > C en el gen CDKN1A, el 12,5% el SNP C > G en el gen HFE, el
37,5% presento el SNP C > T en el gen MYBPC3, el 12,5% el SNP G > T en el gen
NFIA-AS2, el 12,5% el SNP G > C en el gen PPARA, el 87,5% el SNP C > T en el
gen PPARGC1A, el 50,0% el SNP A > G en el gen LRPPRC, el 50,0% el SNP T >
C en el gen MMS22L y el 25,0% el SNP C > T en el gen PHACTR1.
A pesar de las diferentes demandas metabólicas asociadas con las disciplinas
deportivas de los ciclistas (actividades aeróbicas) y los halterofilistas (actividades
anaeróbicas), no se encontró un único tipo de polimorfismo en cada grupo
estudiado. Esto sugiere que las variantes genéticas no están estrechamente
relacionadas con la elección deportiva ni con el metabolismo específico. Se destaca
la importancia de considerar otros factores, como la nutrición y las ayudas
ergogénicas, así como investigar más genes relacionados con el metabolismo para
comprender completamente la interacción gen-ambiente en las respuestas al
ejercicio. Este estudio proporciona una visión inicial sobre las variantes genéticas
presentes en deportistas de alto rendimiento del Valle del Cauca en disciplinas de
halterofilia y ciclismo. Aunque se encontraron diferencias entre los grupos en cuanto
a los SNPs identificados, se necesita una investigación más exhaustiva para
comprender completamente cómo estas variantes genéticas afectan el rendimiento
deportivo. Esto resalta la importancia de continuar explorando el campo de la
genética deportiva y considerar múltiples factores que influyen en el rendimiento
deportivo.
"Sportomics", is an interdisciplinary approach that combines genomics, proteomics, and metabolomics in sports science, aiming to discover the molecular mechanisms of athletic performance by identifying biomarkers. Multiple polymorphisms have been reported in genes that influence the performance of athletes in disciplines based on endurance and muscular strength. In Colombia, research in sports genetics is limited, creating a gap in knowledge in this branch of science in the country. Therefore, this study was conducted using genomic sequencing data from two groups of high-performance athletes from Valle del Cauca, specifically weightlifters and cyclists, obtained from an initial macro project called "Identification of variants in genes associated with autonomic modulation by heart rate variability in high-performance athletes from Valle del Cauca," led by Dr. Yecid Mina from the National School of Sports, who provided the data for this study. After reviewing the literature, the following genes were selected based on their function, impact, and association of different genotypes with athlete performance in the study population: ACTN3, involved in rapid muscle contraction crucial for explosive strength; ACE, regulating blood pressure and blood flow, impacting cardiovascular endurance; AMPD1, participating in energy metabolism crucial for energy production during exercise; CDKN1A, involved in DNA repair and cellular apoptosis crucial for muscle recovery; HFE, regulating iron absorption essential for oxygen transport to muscles; MYBPC3, influencing heart structure and function vital for cardiovascular endurance; NFIA-AS2, modulating stress response important for adaptation to training; PPARA and PPARGC1A, involved in lipid and glucose metabolism crucial for energy production; LRPPRC, participating in muscle growth regulation important for hypertrophy; MMS22L, involved in DNA repair crucial for muscle recovery; and PHACTR1, regulating cellular apoptosis important for the elimination of damaged cells. The aim of this study was to determine the presence of genetic variants in the genes ACTN3, ACE, AMPD1, CDKN1A, HFE, MYBPC3, NFIA-AS2, PPARA, PPARGC1A, LRPPRC, MMS22L, and PHACTR1 in two groups of high-performance athletes from the Colombian Pacific region: weightlifters and cyclists. Bioinformatics tools were used for sequence homology analysis, determining the presence of single nucleotide polymorphisms (SNPs) in the genetic sequences of nineteen high-performance athletes, eleven weightlifters, and eight cyclists. The genetic and statistical analysis did not reveal significant differences between the two populations of athletes in terms of the genetic variants identified. In the case of weightlifters: 54.5% had the SNP C > T in the ACTN3 gene, 72.7% had the SNP G > A in the ACE gene, 27.3% had the SNP A > C in the CDKN1A gene, 9.1% had the C > G SNP in the HFE gene, 54.5% had the C > T SNP in the MYBPC3 gene, 18.2% had the G > T SNP in the NFIA-AS2 gene , 54.5% the SNP G > C in the PPARA gene, 27.3% the SNP C > T in the PPARGC1A gene, 18.2% the SNP A > G in the LRPPRC gene, 90.9 % the T > C SNP in the MMS22L gene and 63.6% the C > T SNP in the PHACTR1 gene. There were no polymorphisms in the AMPD1 gene. In the case of cyclists: 62.5% presented the SNP C > T in the ACTN3 gene, the 25.0% the G > A SNP in the AMPD1 gene, 75.0% the G > A SNP in the ACE gene, 25.0% the A > C SNP in the CDKN1A gene, 12.5% the SNP C > G in the HFE gene, 37.5% presented the SNP C > T in the MYBPC3 gene, 12.5% the SNP G > T in the NFIAAS2 gene, 12.5% the SNP G > C in the PPARA gene, 87.5% the SNP C > T in the PPARGC1A gene, 50.0% the SNP A > G in the LRPPRC gene, 50.0% the SNP T > C in the gene MMS22L and 25.0% the C > T SNP in the PHACTR1 gene. Despite the different metabolic demands associated with the sports disciplines of cyclists (aerobic activities) and weightlifters (anaerobic activities), a single type of polymorphism was not found in each studied group. This suggests that genetic variants are not closely related to athletic choice or specific metabolism. The importance of considering other factors such as nutrition and ergogenic aids, as well as investigating more metabolism-related genes, to fully understand the geneenvironment interaction in exercise responses is highlighted. This study provides an initial insight into the genetic variants present in high-performance athletes from Valle del Cauca in weightlifting and cycling disciplines. Although differences were found between the groups in terms of identified SNPs, further research is needed to fully understand how these genetic variants affect athletic performance. This emphasizes the importance of continuing to explore the field of sports genetics and considering multiple factors influencing athletic performance
"Sportomics", is an interdisciplinary approach that combines genomics, proteomics, and metabolomics in sports science, aiming to discover the molecular mechanisms of athletic performance by identifying biomarkers. Multiple polymorphisms have been reported in genes that influence the performance of athletes in disciplines based on endurance and muscular strength. In Colombia, research in sports genetics is limited, creating a gap in knowledge in this branch of science in the country. Therefore, this study was conducted using genomic sequencing data from two groups of high-performance athletes from Valle del Cauca, specifically weightlifters and cyclists, obtained from an initial macro project called "Identification of variants in genes associated with autonomic modulation by heart rate variability in high-performance athletes from Valle del Cauca," led by Dr. Yecid Mina from the National School of Sports, who provided the data for this study. After reviewing the literature, the following genes were selected based on their function, impact, and association of different genotypes with athlete performance in the study population: ACTN3, involved in rapid muscle contraction crucial for explosive strength; ACE, regulating blood pressure and blood flow, impacting cardiovascular endurance; AMPD1, participating in energy metabolism crucial for energy production during exercise; CDKN1A, involved in DNA repair and cellular apoptosis crucial for muscle recovery; HFE, regulating iron absorption essential for oxygen transport to muscles; MYBPC3, influencing heart structure and function vital for cardiovascular endurance; NFIA-AS2, modulating stress response important for adaptation to training; PPARA and PPARGC1A, involved in lipid and glucose metabolism crucial for energy production; LRPPRC, participating in muscle growth regulation important for hypertrophy; MMS22L, involved in DNA repair crucial for muscle recovery; and PHACTR1, regulating cellular apoptosis important for the elimination of damaged cells. The aim of this study was to determine the presence of genetic variants in the genes ACTN3, ACE, AMPD1, CDKN1A, HFE, MYBPC3, NFIA-AS2, PPARA, PPARGC1A, LRPPRC, MMS22L, and PHACTR1 in two groups of high-performance athletes from the Colombian Pacific region: weightlifters and cyclists. Bioinformatics tools were used for sequence homology analysis, determining the presence of single nucleotide polymorphisms (SNPs) in the genetic sequences of nineteen high-performance athletes, eleven weightlifters, and eight cyclists. The genetic and statistical analysis did not reveal significant differences between the two populations of athletes in terms of the genetic variants identified. In the case of weightlifters: 54.5% had the SNP C > T in the ACTN3 gene, 72.7% had the SNP G > A in the ACE gene, 27.3% had the SNP A > C in the CDKN1A gene, 9.1% had the C > G SNP in the HFE gene, 54.5% had the C > T SNP in the MYBPC3 gene, 18.2% had the G > T SNP in the NFIA-AS2 gene , 54.5% the SNP G > C in the PPARA gene, 27.3% the SNP C > T in the PPARGC1A gene, 18.2% the SNP A > G in the LRPPRC gene, 90.9 % the T > C SNP in the MMS22L gene and 63.6% the C > T SNP in the PHACTR1 gene. There were no polymorphisms in the AMPD1 gene. In the case of cyclists: 62.5% presented the SNP C > T in the ACTN3 gene, the 25.0% the G > A SNP in the AMPD1 gene, 75.0% the G > A SNP in the ACE gene, 25.0% the A > C SNP in the CDKN1A gene, 12.5% the SNP C > G in the HFE gene, 37.5% presented the SNP C > T in the MYBPC3 gene, 12.5% the SNP G > T in the NFIAAS2 gene, 12.5% the SNP G > C in the PPARA gene, 87.5% the SNP C > T in the PPARGC1A gene, 50.0% the SNP A > G in the LRPPRC gene, 50.0% the SNP T > C in the gene MMS22L and 25.0% the C > T SNP in the PHACTR1 gene. Despite the different metabolic demands associated with the sports disciplines of cyclists (aerobic activities) and weightlifters (anaerobic activities), a single type of polymorphism was not found in each studied group. This suggests that genetic variants are not closely related to athletic choice or specific metabolism. The importance of considering other factors such as nutrition and ergogenic aids, as well as investigating more metabolism-related genes, to fully understand the geneenvironment interaction in exercise responses is highlighted. This study provides an initial insight into the genetic variants present in high-performance athletes from Valle del Cauca in weightlifting and cycling disciplines. Although differences were found between the groups in terms of identified SNPs, further research is needed to fully understand how these genetic variants affect athletic performance. This emphasizes the importance of continuing to explore the field of sports genetics and considering multiple factors influencing athletic performance
Descripción
Palabras clave
Ómica del deporte, Polimorfismos, Halterofilistas, Ciclistas, ACTN3, ACE, AMPD1, CDKN1A, HFE, MYBPC3, NFIA-AS2, PPARA, PPARGC1A, LRPPRC, MMS22L, PHACTR1