Algebraic and qualitative remarks about the family yy′ = (αxm+k–1 + βxm–k–1)y + γx2m–2k–1
dc.contributor.author | Rodríguez-Contreras, Jorge | |
dc.contributor.author | Acosta-Humánez, Primitivo B. | |
dc.contributor.author | Reyes-Linero, Alberto | |
dc.date.accessioned | 2019-11-12T21:04:12Z | |
dc.date.available | 2019-11-12T21:04:12Z | |
dc.date.issued | 2019 | |
dc.description.abstract | The aim of this paper is the analysis, from algebraic point of view and singularities studies, of the 5-parametric family of differential equations yy′=(αxm+k−1+βxm−k−1)y+γx2m−2k−1,y′=dydx where a, b, c ∈ ℂ, m, k ∈ ℤ and α=a(2m+k)β=b(2m−k),γ=−(a2mx4k+cx2k+b2m). This family is very important because include Van Der Pol equation. Moreover, this family seems to appear as exercise in the celebrated book of Polyanin and Zaitsev. Unfortunately, the exercise presented a typo which does not allow to solve correctly it. We present the corrected exercise, which corresponds to the title of this paper. We solve the exercise and afterwards we make algebraic and of singularities studies to this family of differential equations. | eng |
dc.identifier.issn | 23915455 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/4331 | |
dc.language.iso | eng | eng |
dc.publisher | De Gruyter | eng |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | eng |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | Open Mathematics | eng |
dc.source | Vol. 17, Issue 1 (2019) | eng |
dc.source.bibliographicCitation | Guckenheimer J., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag New York, 1983. | eng |
dc.source.bibliographicCitation | Guckenheimer J., Hoffman K., Weckesser W., The forced Van der Pol equation I: The slow flow and its bifurcations, SIAM J. Applied Dynamical Systems, 2003, 2, 1–35. | eng |
dc.source.bibliographicCitation | Kapitaniak T., Chaos for Engineers: Theory, Applications and Control, Springer, Berlin, Germany, 1998. | eng |
dc.source.bibliographicCitation | Nagumo J., Arimoto S., Yoshizawa S., An active pulse transmission line simulating nerve axon, Proc. IRE, 1962, 50, 2061– 2070. | eng |
dc.source.bibliographicCitation | Nemytskii V.V., Stepanov V.V., Qualitative Theory of Differential Equations, Princeton University Press, Princeton, 1960. | eng |
dc.source.bibliographicCitation | Perko L., Differential equations and Dynamical systems, Third Edition, Springer-Verlag New York, Inc, 2001. | eng |
dc.source.bibliographicCitation | Van der Pol B., Van der Mark J., Frequency demultiplication, Nature, 1927, 120, 363–364. | eng |
dc.source.bibliographicCitation | Acosta-Humánez P.B., La Teoría de Morales-Ramis y el Algoritmode Kovacic, LecturasMatemáticas, Volumen Especial, 2006, 21–56. | eng |
dc.source.bibliographicCitation | Acosta-Humánez P.B., Pantazi Ch., Darboux Integrals for Schrodinger Planar Vector Fields via Darboux Transformations, SIGMA Symmetry Integrability Geom. Methods Appl., 2012, 8, 043, arXiv:1111.0120. | eng |
dc.source.bibliographicCitation | Acosta-Humánez P.B., Perez J., Teoría de Galois diferencial: una aproximación, Matemáticas: Enseãnza Universitaria, 2007, 91–102. | spa |
dc.source.bibliographicCitation | Acosta-Humánez P.B., Perez J., Una introducción teoría de Galois diferencial, Boletín deMatemáticas Nueva Serie, 2004, 11, 138–149. | spa |
dc.source.bibliographicCitation | Morales-Ruiz J., Differential Galois Theory and Non-Integrability of Hamiltonian Systems, Birkhäuser, Basel, 1999. | eng |
dc.source.bibliographicCitation | Van der Put M., Singer M., Galois Theory in Linear Differential Equations, Springer-Verlag New York, 2003. | eng |
dc.source.bibliographicCitation | Weil J.A., Constant et polynómes de Darboux en algèbre différentielle: applications aux systèmes différentiels linéaires, Doctoral thesis, 1995. | eng |
dc.source.bibliographicCitation | Acosta-Humánez P.B., Galoisian Approach to Supersymmetric Quantum Mechanics, PhD Thesis, Barcelona, 2009, arXiv:0906.3532. | eng |
dc.source.bibliographicCitation | Acosta-Humánez P.B., Blázquez-Sanz D., Non-integrability of some Hamiltonians with rational potentials, Discrete Contin. Dyn. Syst. Ser. B, 2008, 10, 265–293. | eng |
dc.source.bibliographicCitation | Acosta-Humánez P., Morales-Ruiz J., Weil J.-A., Galoisian approach to integrability of Schrödinger Equation, Rep. Math. Phys., 2011, 67(3), 305–374. | eng |
dc.source.bibliographicCitation | Polyanin A.D., Zaitsev V.F., Handbook of exact solutions for ordinary differential equations, Second Edition, Chapman and Hall, Boca Raton, 2003. | eng |
dc.source.bibliographicCitation | Acosta-Humánez P.B., Lázaro J.T., Morales-Ruiz J.J., Pantazi Ch., On the integrability of polynomial fields in the plane by means of Picard-Vessiot theory, Discrete Contin. Dyn. Syst., 2015, 35(5), 1767–1800. | eng |
dc.source.bibliographicCitation | Drumortier F., Llibre J., Artés J.C., Qualitative theory of planar differential systems, Springer-Verlag Berlin Heidelberg, 2006. | eng |
dc.source.uri | DOI: https://doi.org/10.1515/math-2019-0100 | eng |
dc.subject | Critical points | eng |
dc.subject | Integrability | eng |
dc.subject | Gegenbauer equation | eng |
dc.subject | Legendre equation | eng |
dc.subject | Liénard equation | eng |
dc.title | Algebraic and qualitative remarks about the family yy′ = (αxm+k–1 + βxm–k–1)y + γx2m–2k–1 | eng |
dc.type | article | eng |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Algebraic_and_qualitative_remarks_about_the_family.pdf
- Tamaño:
- 614.88 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 381 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: