Floraciones de Cianobacterias: impacto, técnicas de estudio y estrategias de mitigación: revisión
datacite.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.contributor.advisor | Torres-Bayona, Carlos | |
dc.contributor.author | Arroyo Mojica, Erika | |
dc.contributor.author | Rodríguez Bravo, Rubén | |
dc.date.accessioned | 2024-06-21T13:51:25Z | |
dc.date.available | 2024-06-21T13:51:25Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Las cianobacterias, microorganismos fotosintetizadores aeróbicos con una historia evolutiva de más de 3500 millones de años, representan una fusión única entre bacterias Gram negativas y algas eucariotas. Su capacidad para realizar fotosíntesis oxigénica y adaptarse a condiciones extremas las ha convertido en colonizadoras exitosas de ecosistemas acuáticos globales. Sin embargo, las proliferaciones excesivas de cianobacterias, conocidas como floraciones de algas nocivas (HABs), constituyen una preocupación global significativa debido a su impacto negativo en la pesca, la acuicultura y el suministro de agua potable. Estas floraciones, impulsadas principalmente por la eutrofización debido al exceso de nutrientes de actividades antropogénicas, facilitan la expansión de géneros tóxicos como Microcystis, Oscillatoria y Planktothrix, capaces de producir cianotoxinas como microcistinas, saxitoxinas y cilindrospermopsinas y que pueden representar serios riesgos para la salud humana, provocando problemas hepáticos, gastrointestinales, neurológicos, entre otros. La exposición a estas toxinas puede ocurrir a través del contacto dérmico, la inhalación, la ingestión de agua contaminada o alimentos que han estado en contacto con cianobacterias. Estrategias como la reducción de cargas de fósforo y nitrógeno en cuerpos de agua, mediante el control de fuentes agrícolas y urbanas, son esenciales para prevenir futuras floraciones con capacidad de comprometer la salud pública y de los ecosistemas. Además, los análisis espacio-temporales de la distribución y dinámica de cianobacterias, pueden ser cruciales para la predicción y la gestión efectiva de las floraciones. Este artículo de revisión aborda estos temas y destaca la importancia de políticas de uso seguro del agua y estrategias de mitigación para prevenir problemas relacionados con las floraciones de cianobacterias, protegiendo así la salud pública y la sostenibilidad de los ecosistemas acuáticos | spa |
dc.description.abstract | Cyanobacteria, aerobic photosynthesizing microorganisms with an evolutionary history of more than 3.5 billion years, represent a unique fusion between Gramnegative bacteria and eukaryotic algae. Their ability to perform oxygenic photosynthesis and adapt to extreme conditions has made them successful colonizers of global aquatic ecosystems. However, excessive cyanobacterial blooms, known as harmful algal blooms (HABs), are a significant global concern due to their negative impact on fisheries, aquaculture and drinking water supplies. These blooms, driven mainly by eutrophication due to excess nutrients from anthropogenic activities, facilitate the expansion of toxic genera such as Microcystis, Oscillatoria and Planktothrix, capable of producing cyanotoxins such as microcystins, saxitoxins and cylindrospermopsins, which can pose serious risks to human health, causing liver, gastrointestinal and neurological problems, among others. Exposure to these toxins can occur through dermal contact, inhalation, ingestion of contaminated water or food that has been in contact with cyanobacteria. Strategies such as reducing phosphorus and nitrogen loads in water bodies by controlling agricultural and urban sources are essential to prevent future blooms with the potential to compromise public and ecosystem health. In addition, spatiotemporal analyses of cyanobacterial distribution and dynamics can be crucial for the prediction and effective management of blooms. This review article addresses these issues and highlights the importance of safe water use policies and mitigation strategies to prevent problems related to cyanobacterial blooms, thus protecting public health and the sustainability of aquatic ecosystems | eng |
dc.format.mimetype | ||
dc.identifier.uri | https://hdl.handle.net/20.500.12442/14756 | |
dc.language.iso | spa | |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias Básicas y Biomédicas | spa |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | eng |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | |
dc.subject | Cianotoxinas | spa |
dc.subject | Cambio climático | spa |
dc.subject | Gestión hídrica | spa |
dc.subject | Salud pública | spa |
dc.subject.keywords | Cyanotoxins | eng |
dc.subject.keywords | Climate change | eng |
dc.subject.keywords | Water management | eng |
dc.subject.keywords | Public health | eng |
dc.title | Floraciones de Cianobacterias: impacto, técnicas de estudio y estrategias de mitigación: revisión | spa |
dc.type.driver | info:eu-repo/semantics/other | |
dc.type.spa | Trabajo de grado - pregrado | |
dcterms.references | Bisby, F. A., Coddington, J., Thorpe, J. P., Smartt, J., Hengeveld, R., Edwards, P. J., & Duffield, S. J. (1995). Characterization of biodiversity. Global biodiversity assessment, 162, 14624-14627. | eng |
dcterms.references | Oliver, R. L., & Ganf, G. G. (2006). Freshwater blooms. En The Ecology of Cyanobacteria (pp. 149–194). Kluwer Academic Publishers. | eng |
dcterms.references | Sant’Anna, C. L., Melcher, S. S., Carvalho, M. do C., Gelmego, M. P., & Azevedo, M. T. de P. (2007). Planktic Cyanobacteria from upper Tietê basin reservoirs, SP, Brazil. Revista Brasileira de Botanica. Brazilian Journal of Botany, 30(1). https://doi.org/10.1590/s0100-84042007000100002 | eng |
dcterms.references | Whitton, B. A., & Potts, M. (2012). Introduction to the Cyanobacteria. En Ecology of Cyanobacteria II (pp. 1–13). Springer Netherlands. | eng |
dcterms.references | Meichtry Zaburlín, N., Irmgard Martens, S., & Llano, V. (2009). Cianobacteria planctónica: su impacto en ambientes acuáticos continentales. Descripción de los géneros más frecuentes. En L. Giannuzzi (Ed.),Cianobacterias y cianotoxinas: identificación, toxicología, monitoreo y evaluación de riesgo(pp. 17-36). Corrientes: Moglia impresiones. | spa |
dcterms.references | Claudia, T.-L., & Jesus, O.-V. (2023). Potentially toxic Cyanobacteria in a eutrophic reservoir in northern Colombia. Water, 15(20), 3696. https://doi.org/10.3390/w15203696 | eng |
dcterms.references | Scherer, P. I., Raeder, U., Geist, J., & Zwirglmaier, K. (2017). Influence of temperature, mixing, and addition of microcystin-LR on microcystin gene expression inMicrocystis aeruginosa. MicrobiologyOpen, 6(1), e00393. https://doi.org/10.1002/mbo3.393 | eng |
dcterms.references | Anderson, D. M., Burkholder, J. M., Cochlan, W. P., Glibert, P. M., Gobler, C. J., Heil, C. A., Kudela, R. M., Parsons, M. L., Rensel, J. E. J., Townsend, D. W., Trainer, V. L., & Vargo, G. A. (2008). Harmful algal blooms and eutrophication: Examining linkages from selected coastal regions of the United States. Harmful Algae, 8(1), 39–53. https://doi.org/10.1016/j.hal.2008.08.017 | eng |
dcterms.references | Burkholder, J. M., Glibert, P. M., & Skelton, H. M. (2008). Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae, 8(1), 77–93. https://doi.org/10.1016/j.hal.2008.08.010 | eng |
dcterms.references | Adams, C. M., Larkin, S. L., Hoagland, P., & Sancewich, B. (2018). Assessing the economic consequences of harmful algal blooms: A summary of existing literature, research methods, data, and information gaps. En Harmful Algal Blooms (pp. 337–354). Wiley. https://doi.org/10.1002/9781118994672.ch8 | eng |
dcterms.references | Zhang, Y., Whalen, J. K., Cai, C., Shan, K., & Zhou, H. (2023). Harmful cyanobacteria-diatom/dinoflagellate blooms and their cyanotoxins in freshwaters: A nonnegligible chronic health and ecological hazard. Water Research, 233(119807), 119807. https://doi.org/10.1016/j.watres.2023.119807 | eng |
dcterms.references | Young, N., Sharpe, R. A., Barciela, R., Nichols, G., Davidson, K., Berdalet, E., & Fleming, L. E. (2020). Marine harmful algal blooms and human health: A systematic scoping review. Harmful Algae, 98(101901), 101901. https://doi.org/10.1016/j.hal.2020.101901 | eng |
dcterms.references | Sukenik, A., Hadas, O., Kaplan, A., & Quesada, A. (2012). Invasion of Nostocales (cyanobacteria) to subtropical and temperate freshwater lakes – physiological, regional, and global driving forces. Frontiers in microbiology, 3. https://doi.org/10.3389/fmicb.2012.00086 | eng |
dcterms.references | Moreira, C., Ramos, V., Azevedo, J., & Vasconcelos, V. (2014). Methods to detect cyanobacteria and their toxins in the environment. Applied Microbiology and Biotechnology, 98(19), 8073–8082. https://doi.org/10.1007/s00253-014-5951-9 | eng |
dcterms.references | García-Pichel, F. (2008). Ecología molecular y genómica ambiental de cianobacterias. Las cianobacterias: biología molecular, genómica y evolución , 59-88. | spa |
dcterms.references | Nübel, U., Garcia-Pichel, F., & Muyzer, G. (1997). PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and environmental microbiology, 63(8), 3327-3332. | eng |
dcterms.references | Neilan, B. A., Jacobs, D., & Goodman, A. E. (1995). Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Applied and Environmental Microbiology, 61(11), 3875–3883. https://doi.org/10.1128/aem.61.11.3875-3883.1995 | eng |
dcterms.references | Neilan, B. A., Jacobs, D., Therese, D. D., Blackall, L. L., Hawkins, P. R., Cox, P. T., & Goodman, A. E. (1997). RRNA sequences and evolutionary relationships among toxic and nontoxic Cyanobacteria of the genus Microcystis. International Journal of Systematic Bacteriology, 47(3), 693–697. https://doi.org/10.1099/00207713-47-3-693 | eng |
dcterms.references | Iteman, I., Rippka, R., Tandeau de Marsac, N., & Herdman, M. (2000). Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria The GenBank accession numbers for the sequences reported in this paper are AF180968 and AF180969 for ITS-L and ITS-S, respectively. Microbiology (Reading, England), 146(6), 1275–1286. https://doi.org/10.1099/00221287-146-6-1275 | eng |
dcterms.references | Wilson, K. M., Schembri, M. A., Baker, P. D., & Saint, C. P. (2000). Molecular characterization of the toxic Cyanobacterium Cylindrospermopsis raciborskii and design of a species-specific PCR. Applied and Environmental Microbiology, 66(1), 332–338. https://doi.org/10.1128/aem.66.1.332- 338.2000 | eng |
dcterms.references | Jungblut, A.-D., Hawes, I., Mountfort, D., Hitzfeld, B., Dietrich, D. R., Burns, B. P., & Neilan, B. A. (2005). Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environmental Microbiology, 7(4), 519–529. https://doi.org/10.1111/j.1462- 2920.2005.00717.x | eng |
dcterms.references | Gaget, V., Gribaldo, S., & Tandeau de Marsac, N. (2011). An rpoB signature sequence provides unique resolution for the molecular typing of cyanobacteria. International Journal of Systematic and Evolutionary Microbiology, 61(1), 170–183. https://doi.org/10.1099/ijs.0.019018-0 | eng |
dcterms.references | Hsu, T.-T. D., Acosta Caraballo, Y., & Wu, M. (2024). An investigation of Cyanobacteria, cyanotoxins and environmental variables in selected drinking water treatment plants in New Jersey. Heliyon, e31350, e31350. https://doi.org/10.1016/j.heliyon.2024.e31350 | eng |
dcterms.references | Rinta-Kanto, J. M., Konopko, E. A., DeBruyn, J. M., Bourbonniere, R. A., Boyer, G. L., & Wilhelm, S. W. (2009). Lake Erie Microcystis: Relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. Harmful Algae, 8(5), 665–673. https://doi.org/10.1016/j.hal.2008.12.004 | eng |
dcterms.references | Chiu, Y.-T., Chen, Y.-H., Wang, T.-S., Yen, H.-K., & Lin, T.-F. (2017). A qPCR-based tool to diagnose the presence of harmful Cyanobacteria and cyanotoxins in drinking water sources. International Journal of Environmental Research and Public Health, 14(5), 547. https://doi.org/10.3390/ijerph14050547 | eng |
dcterms.references | Wilson, K. M., Schembri, M. A., Baker, P. D., & Saint, C. P. (2000). Molecular characterization of the toxic Cyanobacterium Cylindrospermopsis raciborskii and design of a species-specific PCR. Applied and Environmental Microbiology, 66(1), 332–338. https://doi.org/10.1128/aem.66.1.332- 338.2000 | eng |
dcterms.references | Rasmussen, J. P., Giglio, S., Monis, P. T., Campbell, R. J., & Saint, C. P. (2008). Development and field testing of a real-time PCR assay for cylindrospermopsin-producing cyanobacteria. Journal of Applied Microbiology, 104(5), 1503–1515. https://doi.org/10.1111/j.1365- 2672.2007.03676.x | eng |
dcterms.references | Schembri, M. A., Neilan, B. A., & Saint, C. P. (2001). Identification of genes implicated in toxin production in the cyanobacterium Cylindrospermopsis raciborskii. Environmental Toxicology, 16(5), 413–421. https://doi.org/10.1002/tox.1051 | eng |
dcterms.references | Fergusson, K. M., & Saint, C. P. (2003). Multiplex PCR assay for Cylindrospermopsis raciborskii and cylindrospermopsin‐producing cyanobacteria. Environmental Toxicology, 18(2), 120–125. https://doi.org/10.1002/tox.10108 | eng |
dcterms.references | Lawton, L. A., Edwards, C., & Codd, G. A. (1994). Extraction and highperformance liquid chromatographic method for the determination of microcystins in raw and treated waters. The Analyst, 119(7), 1525. https://doi.org/10.1039/an9941901525 | eng |
dcterms.references | Welker, M., Bickel, H., & Fastner, J. (2002). HPLC-PDA detection of cylindrospermopsin—opportunities and limits. Water Research, 36(18), 4659–4663. https://doi.org/10.1016/s0043-1354(02)00194-x | eng |
dcterms.references | Azevedo, J., Osswald, J., Guilhermino, L., & Vasconcelos, V. (2011). Development and Validation of an SPE-HPLC-FL Method for the Determination of Anatoxin-a in Water and Trout (Oncorhincus mykiss). Analytical Letters, 44(8), 1431-1441. https://doi.org/10.1080/00032719.2010.512682 | eng |
dcterms.references | Lawrence, J. F., Niedzwiadek, B., & Menard, C. (2005). Quantitative determination of paralytic shellfish poisoning toxins in shellfish using prechromatographic oxidation and liquid chromatography with fluorescence detection: collaborative study. Journal of AOAC International, 88(6), 1714– 1732 | eng |
dcterms.references | Roje-Busatto, R., & Ujević, I. (2014). PSP toxins profile in ascidian Microcosmus vulgaris (Heller, 1877) after human poisoning in Croatia (Adriatic Sea). Toxicon, 79, 28-36. https://doi.org/10.1016/j.toxicon.2013.12.014 | eng |
dcterms.references | Ortelli, D., Edder, P., Cognard, E., & Jan, P. (2008). Fast screening and quantitation of microcystins in microalgae dietary supplement products and water by liquid chromatography coupled to time of flight mass spectrometry. Analytica Chimica Acta, 617(1-2), 230-237. https://doi.org/10.1016/j.aca.2008.03.033 | eng |
dcterms.references | Aráoz, R., Guérineau, V., Rippka, R., Palibroda, N., Herdman, M., Laprevote, O., Von Döhren, H., De Marsac, N. T., & Erhard, M. (2008). MALDI-TOF-MS detection of the low molecular weight neurotoxins anatoxin-a and homoanatoxin-a on lyophilized and fresh filaments of axenic Oscillatoria strains. Toxicon, 51(7), 1308-1315. https://doi.org/10.1016/j.toxicon.2008.02.018 | eng |
dcterms.references | Msagati, T., Siame, B., & Shushu, D. (2006). Evaluation of methods for the isolation, detection and quantification of cyanobacterial hepatotoxins. Aquatic Toxicology (Amsterdam, Netherlands), 78(4), 382–397. https://doi.org/10.1016/j.aquatox.2006.03.011 | eng |
dcterms.references | Spoof, L., Karlsson, K., & Meriluoto, J. (2001). High-performance liquid chromatographic separation of microcystins and nodularin, cyanobacterial peptide toxins, on C18 and amide C16 sorbents. Journal of Chromatography A, 909(2), 225–236. https://doi.org/10.1016/s0021-9673(00)01099-2 | eng |
dcterms.references | Lawton, L. A., Edwards, C., & Codd, G. A. (1994). Extraction and highperformance liquid chromatographic method for the determination of microcystins in raw and treated waters. The Analyst, 119(7), 1525. https://doi.org/10.1039/an9941901525 | eng |
dcterms.references | Nicholson, BC y Burch, MD (2001). Evaluación de métodos analíticos para la detección y cuantificación de cianotoxinas en relación con las directrices australianas sobre el agua potable (p. 57). Canberra, Australia: Consejo Nacional de Investigación Médica y de Salud de Australia. | spa |
dcterms.references | Edwards, C., Lawton, L. A., Beattie, K. A., Codd, G. A., Pleasance, S., & Dear, G. J. (1993). Analysis of microcystins from cyanobacteria by liquid chromatography with mass spectrometry using atmospheric‐pressure ionization. Rapid Communications in Mass Spectrometry: RCM, 7(8), 714– 721. https://doi.org/10.1002/rcm.1290070807 | eng |
dcterms.references | Meisen, I., Distler, U., Müthing, J., Berkenkamp, S., Dreisewerd, K., Mathys, W., Karch, H., & Mormann, M. (2009). Direct Coupling of High-Performance Thin-Layer Chromatography with UV Spectroscopy and IR-MALDI Orthogonal TOF MS for the Analysis of Cyanobacterial Toxins. Analytical Chemistry, 81(10), 3858-3866. https://doi.org/10.1021/ac900217q | eng |
dcterms.references | Humpage, A. R., Froscio, S. M., Lau, H. M., Murphy, D., & Blackbeard, J. (2012). Evaluation of the Abraxis Strip Test for Microcystins™ for use with wastewater effluent and reservoir water. Water research, 46(5), 1556–1565. https://doi.org/10.1016/j.watres.2011.12.015 | eng |
dcterms.references | Yu, F. Y., Liu, B. H., Chou, H. N., & Chu, F. S. (2002). Development of a sensitive ELISA for the determination of microcystins in algae. Journal of agricultural and food chemistry, 50(15), 4176–4182. https://doi.org/10.1021/jf0202483 | eng |
dcterms.references | Bláhová, L., Babica, P., Adamovský, O., Kohoutek, J., Maršálek, B., & Bláha, L. (2007) Analyses of cyanobacterial toxins (microcystins, cylindrospermopsin) in the reservoirs of the Czech Republic and evaluation of health risks. Environmental Chemistry Letters, 6(4), 223-227. https://doi.org/10.1007/s10311-007-0126-x | eng |
dcterms.references | Amorim, Á., & Vasconcelos, V. (1999). Dynamics of microcystins in the mussel Mytilus galloprovincialis. Toxicon, 37(7), 1041-1052. https://doi.org/10.1016/s0041-0101(98)00231-1 | eng |
dcterms.references | Saker, M. L., Welker, M., & Vasconcelos, V. M. (2007). Multiplex PCR for the detection of toxigenic cyanobacteria in dietary supplements produced for human consumption. Applied Microbiology And Biotechnology, 73(5), 1136- 1142. https://doi.org/10.1007/s00253-006-0565-5 | eng |
dcterms.references | Geis-Asteggiante, L., Lehotay, S. J., Fortis, L. L., Paoli, G., Wijey, C., & Heinzen, H. (2011). Development and validation of a rapid method for microcystins in fish and comparing LC-MS/MS results with ELISA. Analytical And Bioanalytical Chemistry/Analytical & Bioanalytical Chemistry, 401(8), 2617-2630. https://doi.org/10.1007/s00216-011-5345-0 | eng |
dcterms.references | Foss, A. J., & Aubel, M. T. (2013). The extraction and analysis of cylindrospermopsin from human serum and urine. Toxicon, 70, 54-61. https://doi.org/10.1016/j.toxicon.2013.04.007 | eng |
dcterms.references | Ueno, Y., Nagata, S., Tsutsumi, T., Hasegawa, A., Yoshida, F., Suttajit, M., Mebs, D., Pütsch, M., & Vasconcelos, V. (2006). Survey of microcystins in environmental water by a highly sensitive immunoassay based on monoclonal antibody. Natural Toxins, 4(6), 271–276. https://doi.org/10.1002/(sici)(1996)4:6<271::aid-nt4>3.0.co;2-a | eng |
dcterms.references | Moreira, C., Ramos, V., Azevedo, J., & Vasconcelos, V. (2014a). Methods to detect cyanobacteria and their toxins in the environment. Applied Microbiology and Biotechnology, 98(19), 8073–8082. https://doi.org/10.1007/s00253-014-5951-9 | eng |
dcterms.references | An, J., & Carmichael, W. W. (1994). Use of a colorimetric protein phosphatase inhibition assay and enzyme linked immunosorbent assay for the study of microcystins and nodularins. Toxicon: Official Journal of the International Society on Toxinology, 32(12), 1495–1507. https://doi.org/10.1016/0041- 0101(94)90308-5 | eng |
dcterms.references | Mountfort, D. O., Holland, P., & Sprosen, J. (2005). Method for detecting classes of microcystins by combination of protein phosphatase inhibition assay and ELISA: comparison with LC-MS. Toxicon: Official Journal of the International Society on Toxinology, 45(2), 199–206. https://doi.org/10.1016/j.toxicon.2004.10.008 | eng |
dcterms.references | Shoemaker, J. A., Tettenhorst, D. R., & de la Cruz, A. (2015). US EPA (United States Environmental Protection Agency). National Exposure Research Laboratory, Cincinnati, OH, USA, 1-70. | eng |
dcterms.references | Vogiazi, V., de la Cruz, A., Mishra, S., Shanov, V., Heineman, W. R., & Dionysiou, D. D. (2019). A comprehensive review: Development of electrochemical biosensors for detection of cyanotoxins in freshwater. ACS Sensors, 4(5), 1151–1173. https://doi.org/10.1021/acssensors.9b00376 | eng |
dcterms.references | Cinti, S., Moscone, D., & Arduini, F. (2019). Preparation of paper-based devices for reagentless electrochemical (bio)sensor strips. Nature Protocols, 14(8), 2437–2451. https://doi.org/10.1038/s41596-019-0186-y | eng |
dcterms.references | Parolo, C., Sena-Torralba, A., Bergua, J. F., Calucho, E., Fuentes-Chust, C., Hu, L., Rivas, L., Álvarez-Diduk, R., Nguyen, E. P., Cinti, S., QuesadaGonzález, D., & Merkoçi, A. (2020). Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nature Protocols, 15(12), 3788–3816. https://doi.org/10.1038/s41596-020-0357-x | eng |
dcterms.references | Salentijn, G. I. J., Grajewski, M., & Verpoorte, E. (2018). Reinventing (bio)chemical analysis with paper. Analytical Chemistry, 90(23), 13815– 13825. https://doi.org/10.1021/acs.analchem.8b04825 | eng |
dcterms.references | Singh, P. (2022). Electrochemical biosensors: Biomonitoring of food adulterants, allergens, and pathogens. En Electrochemical Biosensors (pp. 141–192). Elsevier. | eng |
dcterms.references | Singh, P. (2022). Electrochemical nano-biosensors: Environmental biomonitoring. En Electrochemical Biosensors (pp. 107–140). Elsevier. | eng |
dcterms.references | Singh, P. (2022a). Electrochemical biosensing: Progress and perspectives. En Electrochemical Biosensors (pp. 1–31). Elsevier. | eng |
dcterms.references | Drobac, D., Tokodi, N., Simeunović, J., Baltić, V., Stanić, D. y Svirčev, Z. (2013). Exposición humana a cianotoxinas y sus efectos sobre la salud. Arhiv za higijenu rada i toksikologiju , 64 (2), 305-315. | spa |
dcterms.references | Saadi, OE, Esterman, AJ, Cameron, S. y Roder, DM (1995). Agua del río Murray, aumento del recuento de células cianobacterianas y síntomas gastrointestinales y dermatológicos. Revista médica de Australia , 162 (3), 122-125. | spa |
dcterms.references | Azevedo, SM, Carmichael, WW, Jochimsen, EM, Rinehart, KL, Lau, S., Shaw, GR y Eaglesham, GK (2002). Intoxicación humana por microcistinas durante el tratamiento de diálisis renal en Caruaru—Brasil. Toxicología , 181 , 441-446. | spa |
dcterms.references | Azevedo, SM, Carmichael, WW, Jochimsen, EM, Rinehart, KL, Lau, S., Shaw, GR y Eaglesham, GK (2002). Intoxicación humana por microcistinas durante el tratamiento de diálisis renal en Caruaru—Brasil. Toxicología , 181 , 441-446. | spa |
dcterms.references | Carmichael, WW, Azevedo, SM, An, JS, Molica, RJ, Jochimsen, EM, Lau, S., ... y Eaglesham, GK (2001). Muertes humanas por cianobacterias: evidencia química y biológica de cianotoxinas. Perspectivas de salud ambiental , 109 (7), 663-668. | spa |
dcterms.references | Hilborn, ED, Carmichael, WW, Yuan, M. y Azevedo, SM (2005). Un método colorimétrico simple para detectar evidencia biológica de exposición humana a microcistinas. Toxico , 46 (2), 218-221 | spa |
dcterms.references | Jochimsen, E. M., Carmichael, W. W., An, J., Cardo, D. M., Cookson, S. T., Holmes, C. E., ... & Jarvis, W. R. (1998). Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. New England Journal of Medicine, 338(13), 873-878. | eng |
dcterms.references | Fleming, LE, Rivero, C., Burns, J., Williams, C., Bean, JA, Shea, KA y Stinn, J. (2002). Toxinas de algas verdiazules (cianobacterias), agua potable superficial y cáncer de hígado en Florida. Algas nocivas , 1 (2), 157-168. | spa |
dcterms.references | Zhang, F., Lee, J., Liang, S. y Shum, CK (2015). Floraciones de cianobacterias y enfermedad hepática no alcohólica: evidencia de un estudio ecológico a nivel de condado en los Estados Unidos. Salud Ambiental , 14 , 1-11. | spa |
dcterms.references | Aguilera, A., Haakonsson, S. Martin, M. V., Salerno, G. L., & Echenique, R. O. (2018). Bloom-forming cyanobacteria and cyanotoxins in Argentina: A growing health and environmental concern. Limnologica, 69, 103– 114.https://doi.org/10.1016/j.limno.2017.10.006 | eng |
dcterms.references | Rocha, M. F., Vieira Magalhães-Ghiotto, G. A., Bergamasco, R., & Gomes, R. G. (2024). Cyanobacteria and cyanotoxins in the environment and water intakes: Reports, diversity of congeners, detection by mass spectrometry and their impact on health. Toxicon: Official Journal of the International Society on Toxinology, 238(107589), 107589. https://doi.org/10.1016/j.toxicon.2023.107589 | eng |
dcterms.references | Labohá, P., Sychrová, E., Brózman, O., Sovadinová, I., Bláhová, L., Prokeš, R., Ondráček, J., & Babica, P. (2023). Cyanobacteria, cyanotoxins and lipopolysaccharides in aerosols from inland freshwater bodies and their effects on human bronchial cells. Environmental Toxicology and Pharmacology, 98(104073), 104073. https://doi.org/10.1016/j.etap.2023.104073 | eng |
dcterms.references | Mokoena, M. M. (2024). Microcystins in water containers used in the home: A review of their potential health effects. Ecotoxicology and Environmental Safety, 269(115787), 115787. https://doi.org/10.1016/j.ecoenv.2023.115787 | eng |
dcterms.references | Juanena, C., Negrin, A., & Laborde, A. (2020). Cianobacterias en las playas: riesgos toxicológicos y vulnerabilidad infantil. La Revista medica del Uruguay, 36(3), 157–182. https://doi.org/10.29193/rmu.36.3.7 | spa |
dcterms.references | Morales, M. C., Villalobos, K., Rodríguez, A. R., Simón, N. M., & UmañaCastro, R. (2017). Identificación y caracterización molecular de cianobacterias tropicales de los géneros Nostoc, Calothrix, Tolypothrix y Scytonema (Nostocales: Nostocaceae), con posible potencial biotecnológico.https://www.scielo.sa.cr/pdf/cinn/v9n2/1659-4266-cinn-9-02- 00280.pdf | spa |
dcterms.references | Almanza Viviana, Oscar Parra, Carlos E. de M. Bicudo, Célia Leite Sant´Anna, Ricardo Figueroa, Roberto Urritia, Fabiola Lara, Johana Beltrán, Carolina Baeza y Patricia González. (2016). Guía para el estudio de Cianobacterias en el sistema lacuestre del Gran Concepción: Aspectos ecológicos, toxicológicos, de controlvigilancia y taxonómicos. Centro de Ciencias Ambientales, EULA-Chile, Universidad de Concepción. Trama Impresores, 99 pp https://www.fcaudec.cl/wpcontent/uploads/2017/01/Guia_Cianobacterias.pdf | spa |
dcterms.references | Sánchez Zarza, M., Avilés Flores, M., González Esquivel, L., Ramírez Salinas, N., & Moeller Chávez, G. (2013). Desarrollo de metodologías y su aplicación para la determinación de cianobacterias y de compuestos emergentes en cuerpos de agua residual y agua potable. http://repositorio.imta.mx/handle/20.500.12013/1379 | spa |
dcterms.references | Espinosa, R. (2023). idUS - Depósito de Investigación Universidad de Sevilla. Idus.us.es. https://hdl.handle.net/11441/157953 | spa |
dcterms.references | Bertani, P., & Lu, W. (2021). Cyanobacterial toxin biosensors for environmental monitoring and protection. Medicine in Novel Technology and Devices, 10, 100059–100059. https://doi.org/10.1016/j.medntd.2021.100059 | eng |
dcterms.references | Antonella Miglione, Napoletano, M., & Cinti, S. (2021). Electrochemical Biosensors for Tracing Cyanotoxins in Food and Environmental Matrices. Biosensors, 11(9), 315–315. https://doi.org/10.3390/bios11090315 | eng |
dcterms.references | Kaebernick, M., & Neilan, B. A. (2001). Ecological and molecular investigations of cyanotoxin production. FEMS Microbiology Ecology, 35(1), 1–9. https://doi.org/10.1111/j.1574-6941.2001.tb00782.x | eng |
dcterms.references | Haider, S., Naithani, V., Viswanathan, P. N., & Kakkar, P. (2003). RETRACTED: Cyanobacterial toxins: a growing environmental concern. Chemosphere, 52(1), 1–21. https://doi.org/10.1016/s0045-6535(03)00032-8 | eng |
dcterms.references | Dörr, F. A., Pinto, E., Soares, R. M., & Feliciano de Oliveira e Azevedo, S. M. (2010). Microcystins in South American aquatic ecosystems: Occurrence, toxicity and toxicological assays. Toxicon: Official Journal of the International Society on Toxinology, 56(7), 1247–1256. https://doi.org/10.1016/j.toxicon.2010.03.018 | eng |
dcterms.references | Walsby, A. E. (1998, January). Gas vesicles and buoyancy in cynobacteria: interrelations with light. In Symposia-Society for General Microbiology (pp. 69-94). Cambridge University Press. | eng |
dcterms.references | Stal, L. J., Albertano, P., Bergman, B., Bröckel, K. von, Gallon, J. R., Hayes, P. K., Sivonen, K., & Walsby, A. E. (2003). BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea—responses to a changing environment. Continental Shelf Research, 23(17–19), 1695–1714. https://doi.org/10.1016/j.csr.2003.06.001 | eng |
dcterms.references | White, A. E., Spitz, Y. H., & Letelier, R. M. (2006). Modeling carbohydrate ballasting by Trichodesmium spp. Marine Ecology Progress Series, 323, 35– 45. https://doi.org/10.3354/meps323035 | eng |
dcterms.references | Laurén-Määttä, C., Hietala, J., Reinikainen, M., & Walls, M. (1995). DoMicrocystis aeruginosa toxins accumulate in the food web: a laboratory study. Hydrobiologia, 304(1), 23–27. https://doi.org/10.1007/bf02530700 | eng |
dcterms.references | Rosso y Leda Giannuzzi, L. (s/f). Factores ambientales y antropogénicos que afectan la formación de floraciones de cianobacterias y cianotoxinas. Edu.ar. Recuperado el 15 de mayo de 2024, de https://sedici.unlp.edu.ar/bitstream/handle/10915/72655/Documento_comple to.pdf-PDFA.pdf?sequence=1&isAllowed=y | spa |
dcterms.references | Carmichael, W. W. (1992). Cyanobacteria secondary metabolites—the cyanotoxins. The Journal of Applied Bacteriology, 72(6), 445–459. https://doi.org/10.1111/j.1365-2672.1992.tb01858.x | eng |
dcterms.references | Codd, G. A. (2000). Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control. Ecological Engineering, 16(1), 51–60. https://doi.org/10.1016/s0925-8574(00)00089-6 | eng |
dcterms.references | Peuthert, A., Chakrabarti, S., & Pflugmacher, S. (2007). Uptake of microcystins‐LR and ‐LF (cyanobacterial toxins) in seedlings of several important agricultural plant species and the correlation with cellular damage (lipid peroxidation). Environmental Toxicology, 22(4), 436–442. https://doi.org/10.1002/tox.20266 | eng |
dcterms.references | Crush, J. R., Briggs, L. R., Sprosen, J. M., & Nichols, S. N. (2008). Effect of irrigation with lake water containing microcystins on microcystin content and growth of ryegrass, clover, rape, and lettuce. Environmental Toxicology, 23(2), 246–252. https://doi.org/10.1002/tox.20331 | eng |
dcterms.references | Saqrane, S., Ouahid, Y., El Ghazali, I., Oudra, B., Bouarab, L., & del Campo, F. F. (2009). Physiological changes in Triticum durum, Zea mays, Pisum sativum and Lens esculenta cultivars, caused by irrigation with water contaminated with microcystins: A laboratory experimental approach. Toxicon: Official Journal of the International Society on Toxinology, 53(7–8), 786–796. https://doi.org/10.1016/j.toxicon.2009.01.028 | eng |
dcterms.references | Codd, G. A., Metcalf, J. S., & Beattie, K. A. (1999). Retention of Microcystis aeruginosa and microcystin by salad lettuce (Lactuca sativa) after spray irrigation with water containing cyanobacteria. Toxicon: Official Journal of the International Society on Toxinology, 37(8), 1181–1185. https://doi.org/10.1016/s0041-0101(98)00244-x | eng |
dcterms.references | Saqrane, S., & Oudra, B. (2009). CyanoHAB occurrence and water irrigation cyanotoxin contamination: Ecological impacts and potential health risks. Toxins, 1(2), 113–122. https://doi.org/10.3390/toxins1020113 | eng |
dcterms.references | McComas, S. (2003). Lake and pond management guidebook. CRC Press. | eng |
dcterms.references | Aubriot Benia, L. E. (2008). Flexibilidad de la cinética de incorporación de fosfato por fitoplancton a las fluctuaciones en el suministro del nutriente | spa |
dcterms.references | Vollenweider, R. A. (1968). Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. Organisation for Economic Cooperation and Development OECD. | eng |
dcterms.references | Schindler, D. W., Hecky, R. E., Findlay, D. L., Stainton, M. P., Parker, B. R., Paterson, M. J., Beaty, K. G., Lyng, M., & Kasian, S. E. M. (2008). Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences of the United States of America, 105(32), 11254–11258. https://doi.org/10.1073/pnas.0805108105 | eng |
dcterms.references | Köhler, Jonathan, Detergent Phosphates: An EU Policy Assessment. Journal of Business Chemistry, Vol. 3, No. 2, May 2006, Available at SSRN: https://ssrn.com/abstract=934705 | eng |
dcterms.references | Van Drecht, G., Bouwman, A. F., Harrison, J., & Knoop, J. M. (2009). Global nitrogen and phosphate in urban wastewater for the period 1970 to 2050. Global Biogeochemical Cycles, 23(4). https://doi.org/10.1029/2009gb003458 | eng |
dcterms.references | Lee, G. F., & Jones, R. A. (1986). Detergent phosphate bans and eutrophication. Environmental Science & Technology, 20(4), 330–331. https://doi.org/10.1021/es00146a003 | eng |
dcterms.references | Bashar, R., Gungor, K., Karthikeyan, K. G., & Barak, P. (2018). Cost effectiveness of phosphorus removal processes in municipal wastewater treatment. Chemosphere, 197, 280–290. https://doi.org/10.1016/j.chemosphere.2017.12.169 | eng |
dcterms.references | McCarty, P. L. (2018). What is the best biological process for nitrogen removal: When and why? Environmental Science & Technology, 52(7), 3835– 3841. https://doi.org/10.1021/acs.est.7b05832 | eng |
dcterms.references | Winkler, M. K. H., & Straka, L. (2019). New directions in biological nitrogen removal and recovery from wastewater. Current Opinion in Biotechnology, 57, 50–55. https://doi.org/10.1016/j.copbio.2018.12.007 | eng |
dcterms.references | Glibert, P. M., Maranger, R., Sobota, D. J., & Bouwman, L . (2020). Further evidence of the Haber-Bosch—harmful algal bloom (HBHAB) link and the risk of suggesting HAB control through phosphorus reductions only. En Just Enough Nitrogen (pp. 255–282). Springer International Publishing | eng |
dcterms.references | Paerl, H. W., Havens, K. E., Xu, H., Zhu, G., McCarthy, M. J., Newell, S. E., Scott, J. T., Hall, N. S., Otten, T. G., & Qin, B. (2020). Mitigating eutrophication and toxic cyanobacterial blooms in large lakes: The evolution of a dual nutrient (N and P) reduction paradigm. Hydrobiologia, 847(21), 4359–4375. https://doi.org/10.1007/s10750-019-04087-y | eng |
dcterms.references | Chorus, I., Fastner, J., & Welker, M. (2021). Cyanobacteria and cyanotoxins in a changing environment: Concepts, controversies, challenges. Water, 13(18), 2463. https://doi.org/10.3390/w13182463 | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | |
sb.programa | Microbiología | spa |
sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: