Floraciones de Cianobacterias: impacto, técnicas de estudio y estrategias de mitigación: revisión

datacite.rightshttp://purl.org/coar/access_right/c_f1cf
dc.contributor.advisorTorres-Bayona, Carlos
dc.contributor.authorArroyo Mojica, Erika
dc.contributor.authorRodríguez Bravo, Rubén
dc.date.accessioned2024-06-21T13:51:25Z
dc.date.available2024-06-21T13:51:25Z
dc.date.issued2024
dc.description.abstractLas cianobacterias, microorganismos fotosintetizadores aeróbicos con una historia evolutiva de más de 3500 millones de años, representan una fusión única entre bacterias Gram negativas y algas eucariotas. Su capacidad para realizar fotosíntesis oxigénica y adaptarse a condiciones extremas las ha convertido en colonizadoras exitosas de ecosistemas acuáticos globales. Sin embargo, las proliferaciones excesivas de cianobacterias, conocidas como floraciones de algas nocivas (HABs), constituyen una preocupación global significativa debido a su impacto negativo en la pesca, la acuicultura y el suministro de agua potable. Estas floraciones, impulsadas principalmente por la eutrofización debido al exceso de nutrientes de actividades antropogénicas, facilitan la expansión de géneros tóxicos como Microcystis, Oscillatoria y Planktothrix, capaces de producir cianotoxinas como microcistinas, saxitoxinas y cilindrospermopsinas y que pueden representar serios riesgos para la salud humana, provocando problemas hepáticos, gastrointestinales, neurológicos, entre otros. La exposición a estas toxinas puede ocurrir a través del contacto dérmico, la inhalación, la ingestión de agua contaminada o alimentos que han estado en contacto con cianobacterias. Estrategias como la reducción de cargas de fósforo y nitrógeno en cuerpos de agua, mediante el control de fuentes agrícolas y urbanas, son esenciales para prevenir futuras floraciones con capacidad de comprometer la salud pública y de los ecosistemas. Además, los análisis espacio-temporales de la distribución y dinámica de cianobacterias, pueden ser cruciales para la predicción y la gestión efectiva de las floraciones. Este artículo de revisión aborda estos temas y destaca la importancia de políticas de uso seguro del agua y estrategias de mitigación para prevenir problemas relacionados con las floraciones de cianobacterias, protegiendo así la salud pública y la sostenibilidad de los ecosistemas acuáticosspa
dc.description.abstractCyanobacteria, aerobic photosynthesizing microorganisms with an evolutionary history of more than 3.5 billion years, represent a unique fusion between Gramnegative bacteria and eukaryotic algae. Their ability to perform oxygenic photosynthesis and adapt to extreme conditions has made them successful colonizers of global aquatic ecosystems. However, excessive cyanobacterial blooms, known as harmful algal blooms (HABs), are a significant global concern due to their negative impact on fisheries, aquaculture and drinking water supplies. These blooms, driven mainly by eutrophication due to excess nutrients from anthropogenic activities, facilitate the expansion of toxic genera such as Microcystis, Oscillatoria and Planktothrix, capable of producing cyanotoxins such as microcystins, saxitoxins and cylindrospermopsins, which can pose serious risks to human health, causing liver, gastrointestinal and neurological problems, among others. Exposure to these toxins can occur through dermal contact, inhalation, ingestion of contaminated water or food that has been in contact with cyanobacteria. Strategies such as reducing phosphorus and nitrogen loads in water bodies by controlling agricultural and urban sources are essential to prevent future blooms with the potential to compromise public and ecosystem health. In addition, spatiotemporal analyses of cyanobacterial distribution and dynamics can be crucial for the prediction and effective management of blooms. This review article addresses these issues and highlights the importance of safe water use policies and mitigation strategies to prevent problems related to cyanobacterial blooms, thus protecting public health and the sustainability of aquatic ecosystemseng
dc.format.mimetypepdf
dc.identifier.urihttps://hdl.handle.net/20.500.12442/14756
dc.language.isospa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ciencias Básicas y Biomédicasspa
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United Stateseng
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.subjectCianotoxinasspa
dc.subjectCambio climáticospa
dc.subjectGestión hídricaspa
dc.subjectSalud públicaspa
dc.subject.keywordsCyanotoxinseng
dc.subject.keywordsClimate changeeng
dc.subject.keywordsWater managementeng
dc.subject.keywordsPublic healtheng
dc.titleFloraciones de Cianobacterias: impacto, técnicas de estudio y estrategias de mitigación: revisiónspa
dc.type.driverinfo:eu-repo/semantics/other
dc.type.spaTrabajo de grado - pregrado
dcterms.referencesBisby, F. A., Coddington, J., Thorpe, J. P., Smartt, J., Hengeveld, R., Edwards, P. J., & Duffield, S. J. (1995). Characterization of biodiversity. Global biodiversity assessment, 162, 14624-14627.eng
dcterms.referencesOliver, R. L., & Ganf, G. G. (2006). Freshwater blooms. En The Ecology of Cyanobacteria (pp. 149–194). Kluwer Academic Publishers.eng
dcterms.referencesSant’Anna, C. L., Melcher, S. S., Carvalho, M. do C., Gelmego, M. P., & Azevedo, M. T. de P. (2007). Planktic Cyanobacteria from upper Tietê basin reservoirs, SP, Brazil. Revista Brasileira de Botanica. Brazilian Journal of Botany, 30(1). https://doi.org/10.1590/s0100-84042007000100002eng
dcterms.referencesWhitton, B. A., & Potts, M. (2012). Introduction to the Cyanobacteria. En Ecology of Cyanobacteria II (pp. 1–13). Springer Netherlands.eng
dcterms.referencesMeichtry Zaburlín, N., Irmgard Martens, S., & Llano, V. (2009). Cianobacteria planctónica: su impacto en ambientes acuáticos continentales. Descripción de los géneros más frecuentes. En L. Giannuzzi (Ed.),Cianobacterias y cianotoxinas: identificación, toxicología, monitoreo y evaluación de riesgo(pp. 17-36). Corrientes: Moglia impresiones.spa
dcterms.referencesClaudia, T.-L., & Jesus, O.-V. (2023). Potentially toxic Cyanobacteria in a eutrophic reservoir in northern Colombia. Water, 15(20), 3696. https://doi.org/10.3390/w15203696eng
dcterms.referencesScherer, P. I., Raeder, U., Geist, J., & Zwirglmaier, K. (2017). Influence of temperature, mixing, and addition of microcystin-LR on microcystin gene expression inMicrocystis aeruginosa. MicrobiologyOpen, 6(1), e00393. https://doi.org/10.1002/mbo3.393eng
dcterms.referencesAnderson, D. M., Burkholder, J. M., Cochlan, W. P., Glibert, P. M., Gobler, C. J., Heil, C. A., Kudela, R. M., Parsons, M. L., Rensel, J. E. J., Townsend, D. W., Trainer, V. L., & Vargo, G. A. (2008). Harmful algal blooms and eutrophication: Examining linkages from selected coastal regions of the United States. Harmful Algae, 8(1), 39–53. https://doi.org/10.1016/j.hal.2008.08.017eng
dcterms.referencesBurkholder, J. M., Glibert, P. M., & Skelton, H. M. (2008). Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae, 8(1), 77–93. https://doi.org/10.1016/j.hal.2008.08.010eng
dcterms.referencesAdams, C. M., Larkin, S. L., Hoagland, P., & Sancewich, B. (2018). Assessing the economic consequences of harmful algal blooms: A summary of existing literature, research methods, data, and information gaps. En Harmful Algal Blooms (pp. 337–354). Wiley. https://doi.org/10.1002/9781118994672.ch8eng
dcterms.referencesZhang, Y., Whalen, J. K., Cai, C., Shan, K., & Zhou, H. (2023). Harmful cyanobacteria-diatom/dinoflagellate blooms and their cyanotoxins in freshwaters: A nonnegligible chronic health and ecological hazard. Water Research, 233(119807), 119807. https://doi.org/10.1016/j.watres.2023.119807eng
dcterms.referencesYoung, N., Sharpe, R. A., Barciela, R., Nichols, G., Davidson, K., Berdalet, E., & Fleming, L. E. (2020). Marine harmful algal blooms and human health: A systematic scoping review. Harmful Algae, 98(101901), 101901. https://doi.org/10.1016/j.hal.2020.101901eng
dcterms.referencesSukenik, A., Hadas, O., Kaplan, A., & Quesada, A. (2012). Invasion of Nostocales (cyanobacteria) to subtropical and temperate freshwater lakes – physiological, regional, and global driving forces. Frontiers in microbiology, 3. https://doi.org/10.3389/fmicb.2012.00086eng
dcterms.referencesMoreira, C., Ramos, V., Azevedo, J., & Vasconcelos, V. (2014). Methods to detect cyanobacteria and their toxins in the environment. Applied Microbiology and Biotechnology, 98(19), 8073–8082. https://doi.org/10.1007/s00253-014-5951-9eng
dcterms.referencesGarcía-Pichel, F. (2008). Ecología molecular y genómica ambiental de cianobacterias. Las cianobacterias: biología molecular, genómica y evolución , 59-88.spa
dcterms.referencesNübel, U., Garcia-Pichel, F., & Muyzer, G. (1997). PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and environmental microbiology, 63(8), 3327-3332.eng
dcterms.referencesNeilan, B. A., Jacobs, D., & Goodman, A. E. (1995). Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Applied and Environmental Microbiology, 61(11), 3875–3883. https://doi.org/10.1128/aem.61.11.3875-3883.1995eng
dcterms.referencesNeilan, B. A., Jacobs, D., Therese, D. D., Blackall, L. L., Hawkins, P. R., Cox, P. T., & Goodman, A. E. (1997). RRNA sequences and evolutionary relationships among toxic and nontoxic Cyanobacteria of the genus Microcystis. International Journal of Systematic Bacteriology, 47(3), 693–697. https://doi.org/10.1099/00207713-47-3-693eng
dcterms.referencesIteman, I., Rippka, R., Tandeau de Marsac, N., & Herdman, M. (2000). Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria The GenBank accession numbers for the sequences reported in this paper are AF180968 and AF180969 for ITS-L and ITS-S, respectively. Microbiology (Reading, England), 146(6), 1275–1286. https://doi.org/10.1099/00221287-146-6-1275eng
dcterms.referencesWilson, K. M., Schembri, M. A., Baker, P. D., & Saint, C. P. (2000). Molecular characterization of the toxic Cyanobacterium Cylindrospermopsis raciborskii and design of a species-specific PCR. Applied and Environmental Microbiology, 66(1), 332–338. https://doi.org/10.1128/aem.66.1.332- 338.2000eng
dcterms.referencesJungblut, A.-D., Hawes, I., Mountfort, D., Hitzfeld, B., Dietrich, D. R., Burns, B. P., & Neilan, B. A. (2005). Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environmental Microbiology, 7(4), 519–529. https://doi.org/10.1111/j.1462- 2920.2005.00717.xeng
dcterms.referencesGaget, V., Gribaldo, S., & Tandeau de Marsac, N. (2011). An rpoB signature sequence provides unique resolution for the molecular typing of cyanobacteria. International Journal of Systematic and Evolutionary Microbiology, 61(1), 170–183. https://doi.org/10.1099/ijs.0.019018-0eng
dcterms.referencesHsu, T.-T. D., Acosta Caraballo, Y., & Wu, M. (2024). An investigation of Cyanobacteria, cyanotoxins and environmental variables in selected drinking water treatment plants in New Jersey. Heliyon, e31350, e31350. https://doi.org/10.1016/j.heliyon.2024.e31350eng
dcterms.referencesRinta-Kanto, J. M., Konopko, E. A., DeBruyn, J. M., Bourbonniere, R. A., Boyer, G. L., & Wilhelm, S. W. (2009). Lake Erie Microcystis: Relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. Harmful Algae, 8(5), 665–673. https://doi.org/10.1016/j.hal.2008.12.004eng
dcterms.referencesChiu, Y.-T., Chen, Y.-H., Wang, T.-S., Yen, H.-K., & Lin, T.-F. (2017). A qPCR-based tool to diagnose the presence of harmful Cyanobacteria and cyanotoxins in drinking water sources. International Journal of Environmental Research and Public Health, 14(5), 547. https://doi.org/10.3390/ijerph14050547eng
dcterms.referencesWilson, K. M., Schembri, M. A., Baker, P. D., & Saint, C. P. (2000). Molecular characterization of the toxic Cyanobacterium Cylindrospermopsis raciborskii and design of a species-specific PCR. Applied and Environmental Microbiology, 66(1), 332–338. https://doi.org/10.1128/aem.66.1.332- 338.2000eng
dcterms.referencesRasmussen, J. P., Giglio, S., Monis, P. T., Campbell, R. J., & Saint, C. P. (2008). Development and field testing of a real-time PCR assay for cylindrospermopsin-producing cyanobacteria. Journal of Applied Microbiology, 104(5), 1503–1515. https://doi.org/10.1111/j.1365- 2672.2007.03676.xeng
dcterms.referencesSchembri, M. A., Neilan, B. A., & Saint, C. P. (2001). Identification of genes implicated in toxin production in the cyanobacterium Cylindrospermopsis raciborskii. Environmental Toxicology, 16(5), 413–421. https://doi.org/10.1002/tox.1051eng
dcterms.referencesFergusson, K. M., & Saint, C. P. (2003). Multiplex PCR assay for Cylindrospermopsis raciborskii and cylindrospermopsin‐producing cyanobacteria. Environmental Toxicology, 18(2), 120–125. https://doi.org/10.1002/tox.10108eng
dcterms.referencesLawton, L. A., Edwards, C., & Codd, G. A. (1994). Extraction and highperformance liquid chromatographic method for the determination of microcystins in raw and treated waters. The Analyst, 119(7), 1525. https://doi.org/10.1039/an9941901525eng
dcterms.referencesWelker, M., Bickel, H., & Fastner, J. (2002). HPLC-PDA detection of cylindrospermopsin—opportunities and limits. Water Research, 36(18), 4659–4663. https://doi.org/10.1016/s0043-1354(02)00194-xeng
dcterms.referencesAzevedo, J., Osswald, J., Guilhermino, L., & Vasconcelos, V. (2011). Development and Validation of an SPE-HPLC-FL Method for the Determination of Anatoxin-a in Water and Trout (Oncorhincus mykiss). Analytical Letters, 44(8), 1431-1441. https://doi.org/10.1080/00032719.2010.512682eng
dcterms.referencesLawrence, J. F., Niedzwiadek, B., & Menard, C. (2005). Quantitative determination of paralytic shellfish poisoning toxins in shellfish using prechromatographic oxidation and liquid chromatography with fluorescence detection: collaborative study. Journal of AOAC International, 88(6), 1714– 1732eng
dcterms.referencesRoje-Busatto, R., & Ujević, I. (2014). PSP toxins profile in ascidian Microcosmus vulgaris (Heller, 1877) after human poisoning in Croatia (Adriatic Sea). Toxicon, 79, 28-36. https://doi.org/10.1016/j.toxicon.2013.12.014eng
dcterms.referencesOrtelli, D., Edder, P., Cognard, E., & Jan, P. (2008). Fast screening and quantitation of microcystins in microalgae dietary supplement products and water by liquid chromatography coupled to time of flight mass spectrometry. Analytica Chimica Acta, 617(1-2), 230-237. https://doi.org/10.1016/j.aca.2008.03.033eng
dcterms.referencesAráoz, R., Guérineau, V., Rippka, R., Palibroda, N., Herdman, M., Laprevote, O., Von Döhren, H., De Marsac, N. T., & Erhard, M. (2008). MALDI-TOF-MS detection of the low molecular weight neurotoxins anatoxin-a and homoanatoxin-a on lyophilized and fresh filaments of axenic Oscillatoria strains. Toxicon, 51(7), 1308-1315. https://doi.org/10.1016/j.toxicon.2008.02.018eng
dcterms.referencesMsagati, T., Siame, B., & Shushu, D. (2006). Evaluation of methods for the isolation, detection and quantification of cyanobacterial hepatotoxins. Aquatic Toxicology (Amsterdam, Netherlands), 78(4), 382–397. https://doi.org/10.1016/j.aquatox.2006.03.011eng
dcterms.referencesSpoof, L., Karlsson, K., & Meriluoto, J. (2001). High-performance liquid chromatographic separation of microcystins and nodularin, cyanobacterial peptide toxins, on C18 and amide C16 sorbents. Journal of Chromatography A, 909(2), 225–236. https://doi.org/10.1016/s0021-9673(00)01099-2eng
dcterms.referencesLawton, L. A., Edwards, C., & Codd, G. A. (1994). Extraction and highperformance liquid chromatographic method for the determination of microcystins in raw and treated waters. The Analyst, 119(7), 1525. https://doi.org/10.1039/an9941901525eng
dcterms.referencesNicholson, BC y Burch, MD (2001). Evaluación de métodos analíticos para la detección y cuantificación de cianotoxinas en relación con las directrices australianas sobre el agua potable (p. 57). Canberra, Australia: Consejo Nacional de Investigación Médica y de Salud de Australia.spa
dcterms.referencesEdwards, C., Lawton, L. A., Beattie, K. A., Codd, G. A., Pleasance, S., & Dear, G. J. (1993). Analysis of microcystins from cyanobacteria by liquid chromatography with mass spectrometry using atmospheric‐pressure ionization. Rapid Communications in Mass Spectrometry: RCM, 7(8), 714– 721. https://doi.org/10.1002/rcm.1290070807eng
dcterms.referencesMeisen, I., Distler, U., Müthing, J., Berkenkamp, S., Dreisewerd, K., Mathys, W., Karch, H., & Mormann, M. (2009). Direct Coupling of High-Performance Thin-Layer Chromatography with UV Spectroscopy and IR-MALDI Orthogonal TOF MS for the Analysis of Cyanobacterial Toxins. Analytical Chemistry, 81(10), 3858-3866. https://doi.org/10.1021/ac900217qeng
dcterms.referencesHumpage, A. R., Froscio, S. M., Lau, H. M., Murphy, D., & Blackbeard, J. (2012). Evaluation of the Abraxis Strip Test for Microcystins™ for use with wastewater effluent and reservoir water. Water research, 46(5), 1556–1565. https://doi.org/10.1016/j.watres.2011.12.015eng
dcterms.referencesYu, F. Y., Liu, B. H., Chou, H. N., & Chu, F. S. (2002). Development of a sensitive ELISA for the determination of microcystins in algae. Journal of agricultural and food chemistry, 50(15), 4176–4182. https://doi.org/10.1021/jf0202483eng
dcterms.referencesBláhová, L., Babica, P., Adamovský, O., Kohoutek, J., Maršálek, B., & Bláha, L. (2007) Analyses of cyanobacterial toxins (microcystins, cylindrospermopsin) in the reservoirs of the Czech Republic and evaluation of health risks. Environmental Chemistry Letters, 6(4), 223-227. https://doi.org/10.1007/s10311-007-0126-xeng
dcterms.referencesAmorim, Á., & Vasconcelos, V. (1999). Dynamics of microcystins in the mussel Mytilus galloprovincialis. Toxicon, 37(7), 1041-1052. https://doi.org/10.1016/s0041-0101(98)00231-1eng
dcterms.referencesSaker, M. L., Welker, M., & Vasconcelos, V. M. (2007). Multiplex PCR for the detection of toxigenic cyanobacteria in dietary supplements produced for human consumption. Applied Microbiology And Biotechnology, 73(5), 1136- 1142. https://doi.org/10.1007/s00253-006-0565-5eng
dcterms.referencesGeis-Asteggiante, L., Lehotay, S. J., Fortis, L. L., Paoli, G., Wijey, C., & Heinzen, H. (2011). Development and validation of a rapid method for microcystins in fish and comparing LC-MS/MS results with ELISA. Analytical And Bioanalytical Chemistry/Analytical & Bioanalytical Chemistry, 401(8), 2617-2630. https://doi.org/10.1007/s00216-011-5345-0eng
dcterms.referencesFoss, A. J., & Aubel, M. T. (2013). The extraction and analysis of cylindrospermopsin from human serum and urine. Toxicon, 70, 54-61. https://doi.org/10.1016/j.toxicon.2013.04.007eng
dcterms.referencesUeno, Y., Nagata, S., Tsutsumi, T., Hasegawa, A., Yoshida, F., Suttajit, M., Mebs, D., Pütsch, M., & Vasconcelos, V. (2006). Survey of microcystins in environmental water by a highly sensitive immunoassay based on monoclonal antibody. Natural Toxins, 4(6), 271–276. https://doi.org/10.1002/(sici)(1996)4:6<271::aid-nt4>3.0.co;2-aeng
dcterms.referencesMoreira, C., Ramos, V., Azevedo, J., & Vasconcelos, V. (2014a). Methods to detect cyanobacteria and their toxins in the environment. Applied Microbiology and Biotechnology, 98(19), 8073–8082. https://doi.org/10.1007/s00253-014-5951-9eng
dcterms.referencesAn, J., & Carmichael, W. W. (1994). Use of a colorimetric protein phosphatase inhibition assay and enzyme linked immunosorbent assay for the study of microcystins and nodularins. Toxicon: Official Journal of the International Society on Toxinology, 32(12), 1495–1507. https://doi.org/10.1016/0041- 0101(94)90308-5eng
dcterms.referencesMountfort, D. O., Holland, P., & Sprosen, J. (2005). Method for detecting classes of microcystins by combination of protein phosphatase inhibition assay and ELISA: comparison with LC-MS. Toxicon: Official Journal of the International Society on Toxinology, 45(2), 199–206. https://doi.org/10.1016/j.toxicon.2004.10.008eng
dcterms.referencesShoemaker, J. A., Tettenhorst, D. R., & de la Cruz, A. (2015). US EPA (United States Environmental Protection Agency). National Exposure Research Laboratory, Cincinnati, OH, USA, 1-70.eng
dcterms.referencesVogiazi, V., de la Cruz, A., Mishra, S., Shanov, V., Heineman, W. R., & Dionysiou, D. D. (2019). A comprehensive review: Development of electrochemical biosensors for detection of cyanotoxins in freshwater. ACS Sensors, 4(5), 1151–1173. https://doi.org/10.1021/acssensors.9b00376eng
dcterms.referencesCinti, S., Moscone, D., & Arduini, F. (2019). Preparation of paper-based devices for reagentless electrochemical (bio)sensor strips. Nature Protocols, 14(8), 2437–2451. https://doi.org/10.1038/s41596-019-0186-yeng
dcterms.referencesParolo, C., Sena-Torralba, A., Bergua, J. F., Calucho, E., Fuentes-Chust, C., Hu, L., Rivas, L., Álvarez-Diduk, R., Nguyen, E. P., Cinti, S., QuesadaGonzález, D., & Merkoçi, A. (2020). Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nature Protocols, 15(12), 3788–3816. https://doi.org/10.1038/s41596-020-0357-xeng
dcterms.referencesSalentijn, G. I. J., Grajewski, M., & Verpoorte, E. (2018). Reinventing (bio)chemical analysis with paper. Analytical Chemistry, 90(23), 13815– 13825. https://doi.org/10.1021/acs.analchem.8b04825eng
dcterms.referencesSingh, P. (2022). Electrochemical biosensors: Biomonitoring of food adulterants, allergens, and pathogens. En Electrochemical Biosensors (pp. 141–192). Elsevier.eng
dcterms.referencesSingh, P. (2022). Electrochemical nano-biosensors: Environmental biomonitoring. En Electrochemical Biosensors (pp. 107–140). Elsevier.eng
dcterms.referencesSingh, P. (2022a). Electrochemical biosensing: Progress and perspectives. En Electrochemical Biosensors (pp. 1–31). Elsevier.eng
dcterms.referencesDrobac, D., Tokodi, N., Simeunović, J., Baltić, V., Stanić, D. y Svirčev, Z. (2013). Exposición humana a cianotoxinas y sus efectos sobre la salud. Arhiv za higijenu rada i toksikologiju , 64 (2), 305-315.spa
dcterms.referencesSaadi, OE, Esterman, AJ, Cameron, S. y Roder, DM (1995). Agua del río Murray, aumento del recuento de células cianobacterianas y síntomas gastrointestinales y dermatológicos. Revista médica de Australia , 162 (3), 122-125.spa
dcterms.referencesAzevedo, SM, Carmichael, WW, Jochimsen, EM, Rinehart, KL, Lau, S., Shaw, GR y Eaglesham, GK (2002). Intoxicación humana por microcistinas durante el tratamiento de diálisis renal en Caruaru—Brasil. Toxicología , 181 , 441-446.spa
dcterms.referencesAzevedo, SM, Carmichael, WW, Jochimsen, EM, Rinehart, KL, Lau, S., Shaw, GR y Eaglesham, GK (2002). Intoxicación humana por microcistinas durante el tratamiento de diálisis renal en Caruaru—Brasil. Toxicología , 181 , 441-446.spa
dcterms.referencesCarmichael, WW, Azevedo, SM, An, JS, Molica, RJ, Jochimsen, EM, Lau, S., ... y Eaglesham, GK (2001). Muertes humanas por cianobacterias: evidencia química y biológica de cianotoxinas. Perspectivas de salud ambiental , 109 (7), 663-668.spa
dcterms.referencesHilborn, ED, Carmichael, WW, Yuan, M. y Azevedo, SM (2005). Un método colorimétrico simple para detectar evidencia biológica de exposición humana a microcistinas. Toxico , 46 (2), 218-221spa
dcterms.referencesJochimsen, E. M., Carmichael, W. W., An, J., Cardo, D. M., Cookson, S. T., Holmes, C. E., ... & Jarvis, W. R. (1998). Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. New England Journal of Medicine, 338(13), 873-878.eng
dcterms.referencesFleming, LE, Rivero, C., Burns, J., Williams, C., Bean, JA, Shea, KA y Stinn, J. (2002). Toxinas de algas verdiazules (cianobacterias), agua potable superficial y cáncer de hígado en Florida. Algas nocivas , 1 (2), 157-168.spa
dcterms.referencesZhang, F., Lee, J., Liang, S. y Shum, CK (2015). Floraciones de cianobacterias y enfermedad hepática no alcohólica: evidencia de un estudio ecológico a nivel de condado en los Estados Unidos. Salud Ambiental , 14 , 1-11.spa
dcterms.referencesAguilera, A., Haakonsson, S. Martin, M. V., Salerno, G. L., & Echenique, R. O. (2018). Bloom-forming cyanobacteria and cyanotoxins in Argentina: A growing health and environmental concern. Limnologica, 69, 103– 114.https://doi.org/10.1016/j.limno.2017.10.006eng
dcterms.referencesRocha, M. F., Vieira Magalhães-Ghiotto, G. A., Bergamasco, R., & Gomes, R. G. (2024). Cyanobacteria and cyanotoxins in the environment and water intakes: Reports, diversity of congeners, detection by mass spectrometry and their impact on health. Toxicon: Official Journal of the International Society on Toxinology, 238(107589), 107589. https://doi.org/10.1016/j.toxicon.2023.107589eng
dcterms.referencesLabohá, P., Sychrová, E., Brózman, O., Sovadinová, I., Bláhová, L., Prokeš, R., Ondráček, J., & Babica, P. (2023). Cyanobacteria, cyanotoxins and lipopolysaccharides in aerosols from inland freshwater bodies and their effects on human bronchial cells. Environmental Toxicology and Pharmacology, 98(104073), 104073. https://doi.org/10.1016/j.etap.2023.104073eng
dcterms.referencesMokoena, M. M. (2024). Microcystins in water containers used in the home: A review of their potential health effects. Ecotoxicology and Environmental Safety, 269(115787), 115787. https://doi.org/10.1016/j.ecoenv.2023.115787eng
dcterms.referencesJuanena, C., Negrin, A., & Laborde, A. (2020). Cianobacterias en las playas: riesgos toxicológicos y vulnerabilidad infantil. La Revista medica del Uruguay, 36(3), 157–182. https://doi.org/10.29193/rmu.36.3.7spa
dcterms.referencesMorales, M. C., Villalobos, K., Rodríguez, A. R., Simón, N. M., & UmañaCastro, R. (2017). Identificación y caracterización molecular de cianobacterias tropicales de los géneros Nostoc, Calothrix, Tolypothrix y Scytonema (Nostocales: Nostocaceae), con posible potencial biotecnológico.https://www.scielo.sa.cr/pdf/cinn/v9n2/1659-4266-cinn-9-02- 00280.pdfspa
dcterms.referencesAlmanza Viviana, Oscar Parra, Carlos E. de M. Bicudo, Célia Leite Sant´Anna, Ricardo Figueroa, Roberto Urritia, Fabiola Lara, Johana Beltrán, Carolina Baeza y Patricia González. (2016). Guía para el estudio de Cianobacterias en el sistema lacuestre del Gran Concepción: Aspectos ecológicos, toxicológicos, de controlvigilancia y taxonómicos. Centro de Ciencias Ambientales, EULA-Chile, Universidad de Concepción. Trama Impresores, 99 pp https://www.fcaudec.cl/wpcontent/uploads/2017/01/Guia_Cianobacterias.pdfspa
dcterms.referencesSánchez Zarza, M., Avilés Flores, M., González Esquivel, L., Ramírez Salinas, N., & Moeller Chávez, G. (2013). Desarrollo de metodologías y su aplicación para la determinación de cianobacterias y de compuestos emergentes en cuerpos de agua residual y agua potable. http://repositorio.imta.mx/handle/20.500.12013/1379spa
dcterms.referencesEspinosa, R. (2023). idUS - Depósito de Investigación Universidad de Sevilla. Idus.us.es. https://hdl.handle.net/11441/157953spa
dcterms.referencesBertani, P., & Lu, W. (2021). Cyanobacterial toxin biosensors for environmental monitoring and protection. Medicine in Novel Technology and Devices, 10, 100059–100059. https://doi.org/10.1016/j.medntd.2021.100059eng
dcterms.referencesAntonella Miglione, Napoletano, M., & Cinti, S. (2021). Electrochemical Biosensors for Tracing Cyanotoxins in Food and Environmental Matrices. Biosensors, 11(9), 315–315. https://doi.org/10.3390/bios11090315eng
dcterms.referencesKaebernick, M., & Neilan, B. A. (2001). Ecological and molecular investigations of cyanotoxin production. FEMS Microbiology Ecology, 35(1), 1–9. https://doi.org/10.1111/j.1574-6941.2001.tb00782.xeng
dcterms.referencesHaider, S., Naithani, V., Viswanathan, P. N., & Kakkar, P. (2003). RETRACTED: Cyanobacterial toxins: a growing environmental concern. Chemosphere, 52(1), 1–21. https://doi.org/10.1016/s0045-6535(03)00032-8eng
dcterms.referencesDörr, F. A., Pinto, E., Soares, R. M., & Feliciano de Oliveira e Azevedo, S. M. (2010). Microcystins in South American aquatic ecosystems: Occurrence, toxicity and toxicological assays. Toxicon: Official Journal of the International Society on Toxinology, 56(7), 1247–1256. https://doi.org/10.1016/j.toxicon.2010.03.018eng
dcterms.referencesWalsby, A. E. (1998, January). Gas vesicles and buoyancy in cynobacteria: interrelations with light. In Symposia-Society for General Microbiology (pp. 69-94). Cambridge University Press.eng
dcterms.referencesStal, L. J., Albertano, P., Bergman, B., Bröckel, K. von, Gallon, J. R., Hayes, P. K., Sivonen, K., & Walsby, A. E. (2003). BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea—responses to a changing environment. Continental Shelf Research, 23(17–19), 1695–1714. https://doi.org/10.1016/j.csr.2003.06.001eng
dcterms.referencesWhite, A. E., Spitz, Y. H., & Letelier, R. M. (2006). Modeling carbohydrate ballasting by Trichodesmium spp. Marine Ecology Progress Series, 323, 35– 45. https://doi.org/10.3354/meps323035eng
dcterms.referencesLaurén-Määttä, C., Hietala, J., Reinikainen, M., & Walls, M. (1995). DoMicrocystis aeruginosa toxins accumulate in the food web: a laboratory study. Hydrobiologia, 304(1), 23–27. https://doi.org/10.1007/bf02530700eng
dcterms.referencesRosso y Leda Giannuzzi, L. (s/f). Factores ambientales y antropogénicos que afectan la formación de floraciones de cianobacterias y cianotoxinas. Edu.ar. Recuperado el 15 de mayo de 2024, de https://sedici.unlp.edu.ar/bitstream/handle/10915/72655/Documento_comple to.pdf-PDFA.pdf?sequence=1&isAllowed=yspa
dcterms.referencesCarmichael, W. W. (1992). Cyanobacteria secondary metabolites—the cyanotoxins. The Journal of Applied Bacteriology, 72(6), 445–459. https://doi.org/10.1111/j.1365-2672.1992.tb01858.xeng
dcterms.referencesCodd, G. A. (2000). Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control. Ecological Engineering, 16(1), 51–60. https://doi.org/10.1016/s0925-8574(00)00089-6eng
dcterms.referencesPeuthert, A., Chakrabarti, S., & Pflugmacher, S. (2007). Uptake of microcystins‐LR and ‐LF (cyanobacterial toxins) in seedlings of several important agricultural plant species and the correlation with cellular damage (lipid peroxidation). Environmental Toxicology, 22(4), 436–442. https://doi.org/10.1002/tox.20266eng
dcterms.referencesCrush, J. R., Briggs, L. R., Sprosen, J. M., & Nichols, S. N. (2008). Effect of irrigation with lake water containing microcystins on microcystin content and growth of ryegrass, clover, rape, and lettuce. Environmental Toxicology, 23(2), 246–252. https://doi.org/10.1002/tox.20331eng
dcterms.referencesSaqrane, S., Ouahid, Y., El Ghazali, I., Oudra, B., Bouarab, L., & del Campo, F. F. (2009). Physiological changes in Triticum durum, Zea mays, Pisum sativum and Lens esculenta cultivars, caused by irrigation with water contaminated with microcystins: A laboratory experimental approach. Toxicon: Official Journal of the International Society on Toxinology, 53(7–8), 786–796. https://doi.org/10.1016/j.toxicon.2009.01.028eng
dcterms.referencesCodd, G. A., Metcalf, J. S., & Beattie, K. A. (1999). Retention of Microcystis aeruginosa and microcystin by salad lettuce (Lactuca sativa) after spray irrigation with water containing cyanobacteria. Toxicon: Official Journal of the International Society on Toxinology, 37(8), 1181–1185. https://doi.org/10.1016/s0041-0101(98)00244-xeng
dcterms.referencesSaqrane, S., & Oudra, B. (2009). CyanoHAB occurrence and water irrigation cyanotoxin contamination: Ecological impacts and potential health risks. Toxins, 1(2), 113–122. https://doi.org/10.3390/toxins1020113eng
dcterms.referencesMcComas, S. (2003). Lake and pond management guidebook. CRC Press.eng
dcterms.referencesAubriot Benia, L. E. (2008). Flexibilidad de la cinética de incorporación de fosfato por fitoplancton a las fluctuaciones en el suministro del nutrientespa
dcterms.referencesVollenweider, R. A. (1968). Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. Organisation for Economic Cooperation and Development OECD.eng
dcterms.referencesSchindler, D. W., Hecky, R. E., Findlay, D. L., Stainton, M. P., Parker, B. R., Paterson, M. J., Beaty, K. G., Lyng, M., & Kasian, S. E. M. (2008). Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences of the United States of America, 105(32), 11254–11258. https://doi.org/10.1073/pnas.0805108105eng
dcterms.referencesKöhler, Jonathan, Detergent Phosphates: An EU Policy Assessment. Journal of Business Chemistry, Vol. 3, No. 2, May 2006, Available at SSRN: https://ssrn.com/abstract=934705eng
dcterms.referencesVan Drecht, G., Bouwman, A. F., Harrison, J., & Knoop, J. M. (2009). Global nitrogen and phosphate in urban wastewater for the period 1970 to 2050. Global Biogeochemical Cycles, 23(4). https://doi.org/10.1029/2009gb003458eng
dcterms.referencesLee, G. F., & Jones, R. A. (1986). Detergent phosphate bans and eutrophication. Environmental Science & Technology, 20(4), 330–331. https://doi.org/10.1021/es00146a003eng
dcterms.referencesBashar, R., Gungor, K., Karthikeyan, K. G., & Barak, P. (2018). Cost effectiveness of phosphorus removal processes in municipal wastewater treatment. Chemosphere, 197, 280–290. https://doi.org/10.1016/j.chemosphere.2017.12.169eng
dcterms.referencesMcCarty, P. L. (2018). What is the best biological process for nitrogen removal: When and why? Environmental Science & Technology, 52(7), 3835– 3841. https://doi.org/10.1021/acs.est.7b05832eng
dcterms.referencesWinkler, M. K. H., & Straka, L. (2019). New directions in biological nitrogen removal and recovery from wastewater. Current Opinion in Biotechnology, 57, 50–55. https://doi.org/10.1016/j.copbio.2018.12.007eng
dcterms.referencesGlibert, P. M., Maranger, R., Sobota, D. J., & Bouwman, L . (2020). Further evidence of the Haber-Bosch—harmful algal bloom (HBHAB) link and the risk of suggesting HAB control through phosphorus reductions only. En Just Enough Nitrogen (pp. 255–282). Springer International Publishingeng
dcterms.referencesPaerl, H. W., Havens, K. E., Xu, H., Zhu, G., McCarthy, M. J., Newell, S. E., Scott, J. T., Hall, N. S., Otten, T. G., & Qin, B. (2020). Mitigating eutrophication and toxic cyanobacterial blooms in large lakes: The evolution of a dual nutrient (N and P) reduction paradigm. Hydrobiologia, 847(21), 4359–4375. https://doi.org/10.1007/s10750-019-04087-yeng
dcterms.referencesChorus, I., Fastner, J., & Welker, M. (2021). Cyanobacteria and cyanotoxins in a changing environment: Concepts, controversies, challenges. Water, 13(18), 2463. https://doi.org/10.3390/w13182463eng
oaire.versioninfo:eu-repo/semantics/acceptedVersion
sb.programaMicrobiologíaspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
PDF_Resumen.pdf
Tamaño:
281.47 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
474.28 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.93 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones