Un modelo para la extracción de conocimiento en base de datos, mediante cómputo evolutivo, automátas finitos deterministas y reglas difusas
Resumen
El objetivo de esta tesis es el desarrollo de un método para la extracción de conocimiento en grandes bases de datos. Hoy en día se genera a través de la tecnología grandes cantidades de datos, tanto en volumen como en la dimensionalidad de sus variables. En este sentido, es necesario resaltar que la manipulación de los datos con un número elevado de variables presenta un problema para las técnicas tradicionales. Por otra parte, el conjunto de soluciones alternativas es tan elevado que la obtención de un óptimo global es inalcanzable en un tiempo razonable. Por tanto, es imprescindible emplear técnicas basadas en meta heurísticas que han demostrado ser una alternativa en la solución de problemas de gran complejidad por su aplicabilidad y eficiencia. El presente trabajo propone un nuevo modelo EKCEAD (A model for the extraction of knowledge in Databases through evolutionary computation, finite deterministic automata and fuzzy rules), para la extracción de conocimiento en grandes bases de datos en forma de reglas difusas mediante el desarrollo de varias herramientas orientadas a procesos de búsqueda y optimización que utiliza las ventajas de autómatas finitos en la obtención de la mejor solución. El cual se prueba con casos reales comparándolo con otros métodos similares referenciados en la literatura, los resultados obtenidos han sido validados mediante el uso de pruebas estadísticas no paramétricas, que muestran un buen desempeño en términos de precisión e interpretabilidad. Los resultados reflejan la bondad del modelo propuesto permitiendo que sea recomendado en la extracción de conocimiento en base de datos e incentivando su uso en futuras investigaciones.
Enlace para referencia:
https://hdl.handle.net/20.500.12442/4476
https://hdl.handle.net/20.500.12442/4476